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1 Introduction

Coordination games with heterogeneous tastes, such as the Battle of the Sexes, are

often used to represent the individual trade off between coordinating with others and

following one’s own taste. These games are particularly useful for studying social

norms as, when there are many players, a common interpretation is that the point

of coordination constitutes a social norm or convention (e.g., Schelling 1960, Lewis

1969, Granovetter 1978, Young 1993). This applies to many social settings such as

dress codes, political declarations and cultural customs. In these situations, it seems

reasonable to assume that the number of possible actions is large, that individuals

in society have a large variety of tastes and that partial gains of coordination can

be achieved also if two individuals behave partially, but not exactly, the same. The

purpose of this paper is to study the existence of a social norm (i.e., coordination)

in such circumstances and to study what norms can be upheld in equilibrium. In

particular, we are interested in the sustainability of biased norms, i.e., norms that are

misrepresentative of the private tastes in society.

For this purpose, we use a model of pairwise interaction between a large number (a

continuum) of individuals who can choose actions from a continuum. All individuals

differ in their private bliss points (or tastes), and the cost for an individual of devi-

ating from her bliss point is increasing with the size of the deviation. At the same

time, the individual feels peer pressure when deviating from the action of another

individual. Hence, the individual gains by behaving similarly to others (i.e., coordi-

nating) and this gain is increasing the more similar she behaves to each other person

in society. This means that coordination with one person may imply miscoordination

with another person. In this setup, whether a norm exists or not depends on whether

many individuals choose to behave the same in equilibrium, despite having different

tastes, despite having the option to choose actions from a continuum and despite the

fact that partial gains of coordination are attained even without behaving exactly the

same as others.1

1Naturally, analyzing existence of coordination between many players, with gains from partial
coordination, rules out the usage of the common binary action model (e.g., Granovetter 1978, Kuran
1995, and Neary 2012). A setup similar to ours has been used to analyze other questions under a more
restrictive set of functional form assumptions (Manski and Mayshar, 2003; Kuran and Sandholm,
2008). Furthermore, it is important to note the difference between our line of modeling and models
of status and effort (e.g., Clark and Oswald, 1998; Kandel and Lazear, 1992) or network externalities
(see Jackson and Zenou, 2014, section 4.3). In these models there is agreement about what is right
(to work hard or achieve status) but there is an individual effort cost of getting there. In our model,
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As an illustration, consider a Muslim girl who needs to choose headwear when

going to school. Her choice set contains at least seven forms of veiling (ranging from

burqa to hijab, see BBC 2010 for an illustration) and of course a large number of non-

veiling headwears (a scarf, a cap, no headwear, etc.). When choosing headwear, she

will need to trade offhow similar her headwear is to that of the other girls in class. For

example, wearing a hijab would imply full coordination gains with a classmate wearing

a hijab as well, partial coordination gains with a classmate wearing a burqa, a niqab,

or a scarf, and possibly no coordination gains with a classmate with no headwear. At

the same time, she needs to take into account her own private preference with respect

to headwear. Each of the other girls is of course facing a similar problem. When

all girls in class have made their choices, and none of them is inclined to change

headwear, we have an equilibrium. If there exists a headwear on which (at least

some) girls coordinate, despite their different tastes, we refer to it as a social norm.

Otherwise, if every girl chooses a unique headwear, we say that no norm exists.2

The explicit modeling of pairwise interaction differentiates our paper from a

branch of the literature that assumes that a norm exists and equals the (weighted)

average of what people do (see Glaeser and Scheinkman 2000 and Ozgur 2011 for

reviews and Michaeli and Spiro 2015 for a recent paper). In this literature social

pressure (or loss of miscoordination) is assumed to be the lowest when a person com-

pletely conforms to the norm and, importantly, this is independent of whether anyone

else follows the norm. It could even be that what is considered a norm in that setup

would actually be the maximal point of pressure in a model of pairwise interactions

like in our paper.3 Moreover, social pressure is after all a form of disutility. Hence,

on the other hand, there is disagreement about the right action since tastes are heterogeneous, but
individuals gain by coordinating. Hence, we are interested in what sociologists call a descriptive norm
(something people do) while models of status and work effort have a prescriptive norm (something
people should do). See Cialdini et al. (1991), Cialdini (2003) and Blumenthal et al. (2001) for a
further discussion.

2In a recent paper, Carvalho (2012) studies veiling under peer pressure. In his paper, veiling
entails a positive peer effect stemming from all religious types, regardless of their own veiling choices,
and a negative peer effect from all secular types, regardless of their veiling choices. In contrast, in
our model pairwise pressure stems from differences in the chosen actions of peers, which to us seems
more natural for studying public expressions such as veiling. This approach is pursued by Carvalho
in a subsequent paper (Carvalho 2014) which studies the integration of groups with different norms.
However, there the gains from coordination are assumed to be binary (i.e., arise only when two
individuals behave exactly the same). Hence, the relation between the gains from full coordination
vs. partial coordination, which is shown in the current paper to be crucial for the existence of norms,
cannot be investigated in that model.

3As an easy example, consider a case where actions can be chosen in the whole range [0, 1] but

3



using a von Neumann-Morgenstern (vNM) approach seems the most natural way to

aggregate pressure. To see this formally, denote the action of one individual by s

and the action of another individual she interacts with by s′. When the individual

interacts with many others, like in our model, the vNM aggregate pressure she feels

when stating s is Es′ [p (|s− s′|)], where p is the pairwise pressure between two indi-
viduals. This is not the same as the pressure she feels when interacting with a person

who takes the average action in the population, p (|s− Es′ [s′]|), as modelled in the
previous literature just mentioned.4

We start by showing that existence of norms hinges on the curvature of pairwise

pressure (i.e., on the gains from full coordination relative to the gains from partial

coordination). When pairwise pressure is convex, a norm cannot exist in equilibrium.

The crude intuition for this is that in this case, slight deviations from full coordination

are inconsequential, so there is no need for a person to act exactly as her peers, hence

the person will want to deviate toward her bliss point. Thus, when tastes are fully

heterogeneous, then also on the aggregate level individuals do not act the same, which

implies a norm does not exist. Previous papers with a model similar to ours (Manski

and Mayshar 2003 and Kuran and Sandholm 2008) are nested in this case as they

assume a quadratic pairwise pressure. In contrast, when pairwise pressure is concave,

the marginal benefit from coordination is increasing as individuals approach each

other, and hence equilibria with endogenous norms exist, provided that concerns for

coordination are suffi ciently strong.5

To see what the curvature of social pressure represents, consider the earlier head-

wear problem, where, on an axis of strictness, burqa is stricter than hijab, which itself

is stricter than a scarf. Suppose now that a girl considers changing headwear from

scarf to hijab. A concave pressure implies that this change will mainly reduce pressure

arising from a girl already wearing hijab, while the reduction of pressure arising from

half of the population chooses 0 while the other half chooses 1. Here, treating 0.5 as the social norm
would not only be somewhat unconvincing from a descriptive point of view, but also, if pairwise
pressure happens to be concave, contradictory to the nature of the norm as a pressure-minimizing
choice, as 0.5 would be the point where aggregate pressure is maximized.

4In another branch of the literature individuals are punished for the private taste they are per-
ceived to have and the punishment increases the more deviant this perceived taste is from an exoge-
nous norm (e.g., Bernheim, 1994). This leads to a signaling model where some types try to hide their
tastes by behaving similarly to others. In our model pressure is applied to actions of individuals.

5Showing this existence is not trivial, as most equilibria contain also non-conformers. Aggregating
over the pairwise pressures is thus complex, as the non-conformers put pressure on others, with
different tastes, to follow their non-conforming choices rather than the norm.
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a girl wearing burqa will be smaller. A convex pressure (e.g., quadratic costs) implies

the opposite: when changing from scarf to hijab, the reduction of pressure arising

from the girl wearing hijab is smaller than the reduction of pressure from the girl

wearing burqa. We show that a concave pairwise pressure is necessary and suffi cient

for the existence of a norm when tastes are fully heterogeneous (as long as individuals

care suffi ciently about coordination).

Furthermore, we characterize what patterns of behavior are self-sustaining and

imply norm existence in equilibrium. Two prototypical types of equilibria that sustain

a social norm exist. These differ in the fundamental feature of who upholds the

norm (i.e., which individuals coordinate). In the first type of equilibrium society, the

norm is upheld by individuals with private tastes close to the norm. We call this an

alienating society, as potential non-conformers are those with tastes far from the norm

—in that sense they are alienated. In the second type of equilibrium society, those

upholding the norm are individuals whose tastes are far from it. By conforming,

these individuals unwillingly help to strengthen the norm, by making it more of a

focal point. Meanwhile, those who only slightly disagree with the norm choose to

follow their private tastes. We call this an inverting society, as actions are inverted

relative to private tastes.6

As mentioned, our second research question is what norms (i.e., which points of

coordination) a society can sustain. We are particularly interested in analyzing the

emergence of a biased norm in society —a coordination point that is far from the

average taste —and in understanding whether biasness makes the norm stronger or

weaker. Biased norms are commonplace in social and political life. This has been

documented in excessive drinking among college students (for a review see Borsari and

Carey 2001), in attitudes toward alcohol prohibition (Robinson 1932, Cohen 2001)

and toward racial segregation (O’Gorman 1975, Fields and Schuman 1976, Miller and

Prentice 1994), among religious communities (Schank 1932) and vegetarians (Kitts

6The patterns of individual behavior that characterize the alienating and inverting societies can
emerge also in a model with an exogenous norm (see Michaeli and Spiro 2015). However, when
the norm is exogenous, the patterns of behavior do not affect the strength of the norm and, more
generally, are not required to be self-enforcing. Hence, such reduced-form modeling cannot be used
to investigate the two main research questions of the current paper, about the conditions for the
existence of a norm and about the strength and sustainability of biased norms. Thus, we view the
current paper as providing the microfoundations for that earlier paper and more broadly for the
strand of the literature that simply assumes a norm exists (surveyed in Glaeser and Scheinkman
2000 and in Ozgur 2011).
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2003), in honor cultures and honor killings (Colson 1975, Gladwell 2000, Milgram

1992, Wilson and Kelling 1982, Centola et al. 2005), and in norms of violence (Cohen

et al. 1996, Vandello and Cohen 2000).

We find that the difference between the alienating and inverting societies in terms

of who upholds the norm has implications for the existence of biased norms. First

note that the more biased the norm is, the larger is the overall misalignment between

the tastes of individuals and the norm —there are more private bliss points far from

the norm. Hence, in the alienating society, where norm-deviators are those who

strongly disagree with the norm, a biased norm will be less sustainable than a central

norm. Conversely, in inverting societies, the norm draws its strength from those who

privately disagree with it the most as they are the ones who adhere to it. Thus, a

biased norm will have more adherence and will survive under weaker conditions than

a non-biased norm. It will also be dynamically more stable. Our model thus predicts

that inverting societies will be particularly well suited for upholding biased norms as

those exemplified. It also points at the potential history-dependence of societies: If

a group of individuals, possibly a long time ago, established a particular norm, this

norm can be expected to persist long after the group is gone and private tastes have

changed.

The next section presents the model and analyzes the existence of a norm in

equilibrium. Sections 3 and 4 analyze the strength of biased norms and the patterns

of norm conformity in the alienating and inverting societies respectively. Section 5

concludes. The appendix presents some auxiliary results and all formal proofs.

2 A model of peer pressure and single norm equilibria

Consider a society with a continuum of individuals, each having a different bliss point

t ∈ T ⊆ R, i.e., some private preference, ideology or opinion, referred to also as the
individual’s type. One can think of t as a position on a political scale. Let f (t) denote

a continuous probability density function of types. Each individual chooses a publicly

observable action (or stance), denoted by s ∈ R. The inner disutility of an individual
choosing action s in public, D (|t− s|), increases in the distance between that action
and the individual’s type, representing the cognitive dissonance or displeasure felt by

her.

In addition, the individual feels social pressure. When choosing action s, the social
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pressure arising from another individual choosing s′ is

p = p (|s− s′|)

which is increasing in the distance between s and s′ (p can also be thought of as the

loss from miscoordination when two individuals behave differently). Such pressure

arises between each pair of individuals, hence we refer to p as pairwise pressure. This

means that, given the actions of all types in society, s′ : T → R, the aggregate
pressure felt by an individual taking action s is given by

P (s; s′) ≡ Es′(τ) [p (|s− s′ (τ)|)] =

∫
τ∈T

p (|s− s′(τ)|) f (τ) dτ . (1)

This formulation captures the essence of the coordination problem: when a person

takes an action s which is similar to some s′1 taken by another person, it may imply

miscoordination with another person who takes s′2. Hence, the individual has to trade

off conformity (coordination) between different individuals.7

The objective of the individual is to choose an action s which minimizes the total

loss that arises from the inner disutility and the aggregate social pressure

L (s; t, s′) ≡ D (|t− s|) + P (s; s′) . (2)

All individuals move simultaneously and hence take the actions of others as given.

An equilibrium is a mapping from the type space to the action space, s∗ : T → R,
such that, for each t ∈ T

s∗ (t) = arg min
s
{D (|t− s|) + P (s; s∗)} . (3)

That is, each individual optimally chooses her action s∗ (t), given the choices of all

others, such that the chosen actions recreate the ones taken as given by the individual.

Being interested in studying the emergence of a norm in society and in the conditions

under which this norm may be biased, we first define what we mean by a norm.

7There are two ways to interpret equation (1). Either s is a statement or action made in public,
implying that P (s; s′) is an actual pressure felt when choosing s. Or, alternatively, P (s; s′) is the
expected pressure felt when not knowing whom one is about to interact with under random pairwise
matching (as, for instance, in Kuran and Sandholm 2008).
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Definition 1 A social norm is an action s̄ taken by a non-zero mass of agents. If

the social norm is not equal to the average type in society, the norm is said to be

biased.

We will analyze the existence and characteristics of the following type of equilib-

rium.

Definition 2 A single norm equilibrium is an equilibrium with one and only one

social norm.

Note that the continuity of f(t) excludes cases where a norm exists simply because

it represents the private preference of a mass of people. To be up-front, the single

norm equilibrium is not the only type of equilibrium that may exist, as there may be

more than one norm in equilibrium. However, we confine our analysis to the single

norm equilibrium and to inexistence of a norm in equilibrium.

Wherever applicable, we will perform the analysis for power functions of the form

D= |s− t|α , (4)

p=K |s− s′|β , (5)

where α > 0 and β > 0 represent the curvature of cognitive dissonance and pairwise

pressure respectively. K represents the relative weight of the peer pressure, and so

captures the extent to which individuals care about social pressure (or coordination).

In our analysis, α, β and K are identical across individuals in a given society. The

heterogeneity is in individual tastes and, to make analytical headway, we let the dis-

tribution of types be uniform: t ∼ U (−1, 1). This of course makes the problem more

tractable. But it also ensures that a biased norm, following the above definition, does

not arise as an artefact of the distribution of types being non-symmetric.8 With the

uniform distribution, following (1) and (5), the aggregate pressure function becomes

P (s; s′) ≡ 1

2
K

1∫
−1

|s− s′(τ)|β dτ .

8We illustrate and discuss in Appendix A how our main conclusions translate to other distribu-
tions of types.
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We start the analysis by characterizing what kind of peer pressure is needed for

the existence of single norm equilibria and by characterizing the main properties of

these equilibria when they do exist.9

Proposition 1 For any α > 0:

1. If β > 1, there exists no single norm equilibrium.

2. If β ≤ 1 and β ≤ α, single norm equilibria exist, provided that K is suffi ciently

large. In these equilibria the types closest to the norm fully conform.

3. If β ≤ 1 and α < β, single norm equilibria exist, provided that K is suffi ciently

large. In these equilibria the types closest to the norm follow their hearts and,

hence, only types suffi ciently far from the norm fully conform.

The proof of the proposition appears in the appendix and the results are depicted

in Figure 1. As can be seen in the figure, the proposition spans the entire parameter

space. The main result of the proposition is that single norm equilibria can emerge

if and only if β ≤ 1.

The case of β > 1 is represented by the upper region in the figure. Loosely

speaking, it portrays a society where individuals are liberal in how they perceive

others’opinions, in the sense that tension (p) arises in between two individuals only

when they choose distant actions. For two such liberal individuals, there will never

be a reason to take the same action (unless they happen to privately agree). Hence,

also at the aggregate level, there will not be any one mode of behavior that many

follow.10 Note also that β > 1 nests the special case of a double quadratic function as

has been analyzed by Manski and Mayshar (2003), Kuran and Sandholm (2008) and

Acemoglu and Jackson (2014). Their analyses have different focus than ours, but our

own analysis implies that no norm can be sustained in the double quadratic case.

As an illustration of the workings of a society where β ≤ 1, consider two individuals

of types t1 and t2 such that t1 < t2. Suppose that both individuals start by following

their hearts but they consider compromising on an intermediate action s̃ ∈ (t1, t2). If

t1 changes her chosen action from s (t1) = t1 to s (t1) = s̃, she makes it easier for type

9In the following proposition, and throughout the paper, “following one’s heart”means s (t) = t.
10In fact, the proof of the proposition also rules out the existence of multiple norms in equilibrium

when β > 1. The exception is the special case of α = 1, which cannot sustain a single norm
equilibrium but where there can potentially exist more than one norm.
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t2 to choose s̃ too (because p(|s̃− s (t1)|) decreases from p (|s̃− t1|) to p (|s̃− s̃|)).
However, at the same time, t1 also makes it easier for t2 to follow her heart (because

p(|t2 − s (t1)|) decreases from p (|t2 − t1|) to p (|t2 − s̃|)). If peer pressure is concave,
the decrease of p(|s̃− s (t1)|) is greater than the decrease of p(|t2 − s (t1)|), which
incentivizes t2 to choose s̃ as well —conformity by leftists helps conform rightists. This

description suggests that concave peer pressure can facilitate clustering. However, in

order to create a norm (i.e., coordination) in a society with many individuals, it is

the aggregate pressure P that has to be concave around the norm, thus incentivizing

individuals to fully conform. Indeed, if the pairwise pressure p is concave and some

individuals do cluster at a point s̄, then the aggregate pressure P will also be concave

around s̄, which facilitates the clustering in the first place.11 For individuals in this

cluster not to deviate from it, it has to contain suffi ciently many of them. Hence, K

has to be suffi ciently large to make full conformity worthwhile for many.

A different angle on what the curvature of p means is attained by considering

support of sport teams. Suppose one person publicly supports team s1, another

person publicly supports team s2, while a third person publicly supports team s3,

where the closeness between the teams is given by s1 < s2 < s3. Now suppose the

third person changes his support from s3 to s2. A concave p implies that this change

of support reduces pressure from the person also supporting s2 more than it reduces

pressure from the person supporting s1. The proposition says that this concavity

of p is what enables the existence of social norms. A convex p, on the other hand,

would mean that the change of support from s3 to s2 mainly reduces pressure from

the person supporting s1.

As is further expressed in statements 2 and 3, when β ≤ 1 there exist two qual-

itatively different types of single norm equilibria. They are treated in great detail

in the next two sections. These two types of equilibria differ in whether or not they

induce conformity by types close to the norm. This in turn depends on which of β

and α is the smallest, i.e., which of p and D is the most concave. The first type of

equilibrium (or society) is one that does induce full conformity by types close to the

norm. It emerges when β < α (of course provided that β ≤ 1) and is represented

by the lower right region in Figure 1. While Proposition 1 establishes existence of

11Note that a concave p is not a suffi cient condition for a concave P as, depending on the distrib-
ution of actions, a concave p may also imply a convex P . For instance, in the appendix (Lemma 5)
we show that if all types follow their hearts (s (t) = t), then a convex P would arise independently
of the curvature of p. Hence, it is the concave p along with clustering that creates the concave P .
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Figure 1: Graphical illustration of Proposition 1: Existence and main properties of
single norm equilibria depending on values of α and β.

this type of equilibrium for any parameter combination that fulfills the requirements,

we defer explaining the intuition for this pattern of conformity to Section 3, where

we analyze a special case in more detail. There we will see that, if anyone does not

conform, it has to be types far from the norm. In fact, they greatly deviate from the

norm and are in a sense alienated. Hence we call this an alienating society.

The second type of society emerges when α < β ≤ 1 and is represented by the

lower left region in Figure 1. This society does not induce conformity by those who

nearly agree with the norm. Instead, these types follow their hearts. Since in a

single norm equilibrium somebody has to uphold the norm, the fact that those close

to the norm disconform implies that there is a cutoff beyond which some types do

conform. That is, and perhaps surprisingly, individuals who dislike the norm are

the ones upholding it. We call this an inverting society since the private tastes and

the public actions are inverted between those close to the norm and those far from

it. Here too, while Proposition 1 establishes existence of this type of equilibrium for

any parameter combination fulfilling the requirements, we defer the intuition for this

pattern of conformity to Section 4, where we study a special case in more detail.

As parts 2 and 3 of Proposition 1 state, there is potential for multiple single
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norm equilibria for each set of parameters that allows their existence. However,

these equilibria differ only in the location of the norm, and share the same basic

society characteristics regarding who upholds the norm. The possible location of the

norm, and how this location affects the sustainability of the norm, is the second main

question of this paper. Hence, the next two sections concentrate on a comparative-

statics analysis of the different equilibria (different norm locations), showing whether

equilibria with biased norms require larger or smaller weight of peer pressure (K).

Performing this analysis for any combination of α and β is very diffi cult. To make

analytical headway we therefore look at two special cases which capture the essential

properties of our two society types. As expressed in Proposition 1, which of the two

kinds of societies will emerge crucially hinges on which of α and β is the smallest.

Hence, we will let the smaller of the two parameters approach zero. I.e., the case of

β being smaller than 1 and smaller than α will be illustrated by letting β approach

0, implying that p is a step function. The case of α < β ≤ 1 will be illustrated by

letting α approach 0, implying that D is a step function.

3 Alienating societies

The purpose of this section is to further examine the case represented by point 2 of

Proposition 1 and by the lower right region in Figure 1. The fundamental character-

istic of this case is that p is concave and, in particular, more concave than D. To

capture this very concave pairwise pressure, we let p be a step function,

p (|s− s′|) =

{
K if |s− s′| 6= 0

0 if |s− s′| = 0
(6)

while D = |s− t|α for some α > 0. A first useful result thus follows.

Lemma 1 Suppose that p is given by (6), D is given by (4) with α > 0 and a single

norm s̄ exists and is followed by a share x of the population. Define

y ≡ (xK)1/α . (7)

Then for an individual of type t, the optimal action is given by

s∗ (t) =

{
s̄ if |t− s̄| ≤ y

t otherwise
. (8)
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This is a partial equilibrium result showing which action an individual will take

given the existence of a norm s̄. Since (6) implies that the only way to avoid being

pressured by someone is to fully agree with her, the only way to lower aggregate

pressure to any meaningful extent is by choosing a mode of behavior followed by

many. When a single norm exists, this can be achieved only by following this norm.

Furthermore, since all actions except for following the norm yield the same pressure,

the only effect of the pressure is in determining how unpleasant it feels to take any of

these actions relative to following the norm. This is determined by the share of norm

followers x:

P =

{
K if s 6= s̄

(1− x)K if s = s̄
. (9)

Given such a social pressure function P , the only sensible thing to do for an individual

is to either follow the norm (thereby lowering pressure) or to follow her heart (thereby

not feeling cognitive dissonance). Any other choice will induce some cognitive dis-

sonance while not reducing social pressure. Moreover, two individuals of different

types face the same reduction in pressure when following the norm, but differ in the

cognitive dissonance that accompanies it. Thus follows the behavior depicted by the

lemma —a type close to the norm will conform to it while a type far from the norm

will follow her heart, in a sense being alienated. The parameter y in Lemma 1 cap-

tures the distance between the norm and the type who is indifferent between the two

corner solutions. That the norm will be upheld by those closest to it thus echoes the

result for the more general case of β smaller than 1 and smaller than α, as stated in

point 2 of Proposition 1.

The previous lemma implies that if we assume that individuals divide into two

distinctive kinds — those who follow the norm and those who follow their hearts —

then that same qualitative division is obtained after inducing the individual choices.

This hints at the possibility of an equilibrium. However, the actual existence of

an equilibrium hinges on the share of norm followers implied by (8) being equal to

the value of x that is assumed in the lemma. In order to establish this relation, the

following lemma presents the share of norm followers given the individual optimization

in (8).

Lemma 2 Suppose s∗(t) is according to (8), for a given value of y. Then the share
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of individuals following the norm s̄ is

x =


y if y ≤ 1− |s̄|
y+1−|s̄|

2
if 1− |s̄| < y < 1 + |s̄|

1 if y ≥ 1 + |s̄|
. (10)

Furthermore, x is increasing in y and decreasing in |s̄|.

This lemma presents the share of the population (x) that follows the norm as a

function of y (the distance between the norm and the indifferent type). It builds

on the previous result that those close to the norm fully conform while those far

from it follow their hearts. This directly implies that the further from the norm the

indifferent type is, the greater is the number of individuals conforming to the norm.

The use of a uniform distribution at [−1, 1] implies that when s̄ = 0 we automatically

get that x = y, but when s̄ 6= 0 the mapping from y to x is not one-to-one for every

y, as expressed in (10).

A static equilibrium of the model is essentially a fixed point, defined by a triplet

(x, y, s̄) that satisfies Lemma 1 and Lemma 2 simultaneously. The conditions for the

existence of such an equilibrium are presented in the following proposition.

Proposition 2 Suppose that pairwise pressure is according to (6) and D is given by

(4) with α > 0. Then:

1. For each value of s̄ ∈ [−1, 1] there exists a single norm equilibrium with s̄ as

the norm if and only if K is suffi ciently large.

2. Denote by Kmin (|s̄|) the infimum value of K that supports a single norm equi-

librium with s̄ as the norm. Then Kmin (|s̄|) is weakly increasing in |s̄|.

This proposition expresses two main results which extend part 2 of Proposition

1. Firstly, there exist single norm equilibria for any s̄, i.e., the norm may be biased.

This holds as long as individuals care suffi ciently about social pressure —K has to be

greater than Kmin (|s̄|).12 Secondly, the more biased the norm is, the larger is the K

12In the case of α > 1 we get that Kmin = 0. This is a direct consequence of p being a step
function. If one were to assume a less concave p (i.e., not a step function), Kmin would have been
greater than zero also when α > 1. The rest of the results presented are not specific to the step
function assumption: they hold more generally when β < α and β ≤ 1.
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needed to sustain it in equilibrium. This last result is a key result. It essentially says

that in order to uphold a biased norm, individuals in society need to care about social

pressure more than is needed in order to uphold a more central norm. The intuition

for this result is that the strength of the norm depends on the number of followers,

where potential deviators are types with tastes far from the norm. When the norm

is biased, there are more private tastes further away from the norm and hence more

potential deviators. To sustain the norm this has to be compensated for by a heavier

weight of pressure (i.e., a stronger emphasis on coordination).

Figure 2 depicts this equilibrium. The two graphs on the left show the case of a

central norm, where the distribution of actions is shown in the upper left schedule

and the mapping of types to actions in equilibrium is shown on the lower left. In this

particular case all individuals conform fully to the norm. The right graphs show the

case of a biased norm. Here, a group of extreme objectors express their heterogeneous

private tastes

The previous results imply that, for a given value of K, there can be multiple

equilibria, as the norm can be located anywhere along a continuous range, but these

equilibria share the same pattern of norm conformity —alienation. Moreover, even

for given values of K and s̄ there can be multiple single norm equilibria. However,

not all equilibria are dynamically stable, in the sense that a small perturbation to the

share of norm followers may not lead to convergence back to the same equilibrium.

In order to rule out such equilibria that have no gravity and to investigate further the

properties of the stable equilibria, we add a simple dynamic structure to the model

(as in, for instance, Granovetter 1978 and Kuran 1995). The dynamics considered

are such that we perturb the share of norm followers in a single norm equilibrium and

examine whether there is convergence back to that equilibrium. Let i indicate the

period of the dynamic process (representing a time period or a generation). Then, an

individual of type t in period i solves the following problem.

min
si

L
(
si; t, s

′
i−1

)
=D (|t− si|) + P

(
si; s

′
i−1

)
where (11)

P
(
si; s

′
i−1

)
≡ 1

2

1∫
−1

p
(∣∣si − s∗i−1(τ)

∣∣) dτ .
This formulation implies that a person in period i plays a best response against the

observed behavior in society in period i−1. It can be interpreted either as individuals
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Figure 2: The left graphs show the distribution of actions (top) and s∗ (t) (bottom)
in equilibrium with a central norm (s̄ = 0). The right graphs show the distribution
of actions and s∗ (t) in equilibrium with a biased norm (s̄ = −0.5). In all figures
β = 0.01, α = 0.9 and K = 1.2.

adjusting their actions when observing how others are acting, or as an overlapping

generations model, where the actions of the older generation (the parents) create

pressure on the younger generation (the kids), who put pressure on the next generation

and so on.13

In the following proposition (and in Proposition 5 later on) we use xss (|s̄| , K)

to denote the share of norm followers in a stable single norm steady state. We also

present a welfare analysis, where the welfare of an individual with loss L is simply −L.
This analysis enables us to establish a relationship of first-order stochastic dominance

between different norms.14

13Implicitly we assume here that the distribution of types is stationary between generations. For
short to medium-run analysis (say, limited to at most a few decades) this seems reasonable.
14For given values of K and s̄ there can be up to two different stable single norm steady states,

corresponding to two different values of xss (|s̄| ,K). When there are two such steady states, one
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Proposition 3 Consider the dynamic model in (11) with p being a step function as
in (6) and D as given in (4) with α > 0. Then:

1. For any s̄ ∈ [−1, 1], there exists a stable single norm steady state if and only if

K > Kmin (|s̄|).

2. xss (|s̄| , K) ≥ xss (|s̄′| , K) if and only if |s̄| ≤ |s̄′|.

3. Consider a norm s̄ and suppose K > Kmin (|s̄|). Let xi denote the share of
norm followers in period i. Then there exists a value xconv (|s̄| , K) such that

if xi > xconv (|s̄| , K), there is convergence to a stable steady state with a single

norm s̄ followed by a share xss (|s̄| , K) > xconv (|s̄| , K). Otherwise, if 0 ≤
xi ≤ xconv (|s̄| , K), there is convergence to a stable steady state where each type

follows her heart.15

4. xconv (|s̄| , K) is increasing in |s̄| and decreasing in K.

5. The welfare distribution under |s̄| first-order stochastically dominates the welfare
distribution under |s̄′| if and only if |s̄| ≤ |s̄′|.

To understand these results, recall that Lemma 1 shows that alienation is a distri-

bution of actions that recreates itself. That is, if in period i there is a cutoff distance

from the norm, beyond which types follow their hearts and within which they follow

the norm, then there will exist such a cutoff also in period i+1. This implies that, for

a given s̄, the dynamics of the model can be described by analyzing the dynamics of

the proportion of norm conformers, xi+1 = f (xi). This function is the main building

block for proving Proposition 3. We demonstrate a prototypical case in Figure 3 for

is always “degenerate”(xss (|s̄| ,K) = 1) and one is always “non-degenerate”(xss (|s̄| ,K) ∈ ]0, 1[).
The comparison of xss (|s̄| ,K) with xss (|s̄′| ,K) in statement (2) of the proposition is thus applied as
follows: When there exist two xss (|s̄| ,K) and two xss (|s̄′| ,K), the proposition compares the non-
degenerate with each other and the degenerate with each other; when there exist two steady states for
s̄ and one for s̄′ (or vice versa), the proposition compares max {xss (|s̄| ,K)} with max {xss (|s̄′| ,K)};
finally, when there is only one steady state for each norm, the proposition compares the unique
xss (|s̄| ,K) with the unique xss (|s̄′| ,K). Moreover, whenever there exist two stable steady states
for a given norm, the welfare distribution in the degenerate steady state first-order stochastically
dominates the welfare distribution in the non-degenerate steady state (see see Lemma 19 in the
appendix). Hence, we apply the same comparison rule to the comparison of welfare distributions in
statement (3) of the proposition.
15For brevity, we treat the unstable steady states (xuss) as ones where if xi = xuss then xi+1 <

xuss.
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Figure 3: A phase diagram showing the dynamics for s̄ = −0.5, p being a step
function, α = 0.6 and K = 1.5. The dotted line depicts the diagonal where xi+1 = xi,
the solid line depicts the intertemporal dynamics xi+1 = f (xi). The vertical line
depicts xconv, i.e., the boundary between the zone of convergence to a single norm
equilibrium (x = 1) and to “pluralism”(x = 0).

α < 1. The figure depicts a phase diagram with xi on the horizontal axis and xi+1

on the vertical axis. The 45-degree diagonal depicts the steady state values, where

xi+1 = xi. As can be seen in the figure, f(0) = 0, and then f (xi) starts below the

45-degree line, but afterwards it increases and crosses the 45-degree line and stays

above it. Hence, x = 1 and x = 0 are stable steady states in this case, while there

is an interior unstable steady state between them. The value of x in this inner state

(xconv in the proposition) also forms the boundary between the zone of convergence

to a stable single norm (with xss = 1) and the zone of divergence toward a state of

pluralism (x = 0). The figure also highlights that the steady state in which a norm

exists is stable not only with respect to small perturbations: there is convergence

to it from a rather broad range of initial conditions (depending on the value of K).

In the specific example depicted in the figure, the stable single norm steady state is

degenerate, in the sense that everyone in society adheres to the norm (xss = 1), but

more generally there can be non-degenerate stable steady states (xss < 1), i.e., where

part of the population is alienated.
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Apart from convergence, the proposition also highlights the effect of the bias of

the norm. Parts (1) and (3) of the proposition imply that a biased norm can persist

also in a dynamic setting. This means that societies may be history dependent in

the following sense. Suppose a group of individuals at some point choose the same

action. Then, provided that they are suffi ciently many (xi > xconv (|s̄|)), this mode of
behavior may be established as a norm and may persist also after those individuals

are gone, even if it does not represent the average private taste in society. Note

also that if that initial group is only slightly larger than xconv, the norm will gain

more followers over time, thus becoming stronger. The fourth part of the proposition

states that the minimum amount of conformity (xconv) necessary for the norm to be

sustainable in the long run is decreasing in the weight of the pressure and increasing

in the bias of the norm. This can be demonstrated using Figure 3. By increasing K,

the function f (xi) tilts upwards, which implies that xconv decreases and so the zone

of convergence to the single norm equilibrium increases. In contrast, by increasing |s̄|,
the function f (xi) tilts downwards, implying a smaller zone of convergence. Hence,

increasing K and increasing |s̄| work in opposite directions. This means that, while
a biased norm can persist in this dynamic setting, the more biased it is, the less

magnetic it is, unless it is compensated for by a larger K. Hence, biased norms are

less sustainable than central norms in two ways. Firstly, they require people to care

more about social pressure (Kmin is higher). Secondly, they require more conformity

in the first period (xconv is higher).

Part 2 of the proposition implies that public cohesion in society —i.e., the extent

of norm conformity —is falling with biasness. This has further implications for the

sustaining and collapse of norms. To see why, suppose that a long time ago a steady

state with a norm s̄ was established based on the type distribution of that time. Now

suppose that the type distribution, throughout history, has gradually shifted away

from the norm due to a change of private sentiments in society. Part 2 implies that

this shift will be accompanied by a decline in norm conformity. Eventually, once the

type distribution has shifted suffi ciently, the norm s̄ will no longer constitute a stable

steady state (this happens when f (xi) shifts below the 45-degree line in Figure 3)

and the norm will collapse.

Part 5 of the proposition addresses the issue of welfare, stating that the welfare

distribution under a biased norm is stochastically dominated by that of a more central

norm. First order stochastic dominance between the welfare distributions under s̄ and
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s̄′ means that, if we rank individuals according to their welfare under each norm, then

an individual at rank r under s̄ is at least as well off as an individual at rank r under

s̄′, and this holds for all ranks. Quite intuitively, the ranking of individuals under a

given norm follows from their distance to that norm. That is, type t has a higher

welfare than t′ whenever |t− s̄| < |t′ − s̄|. This implies that the types far from the

norm who follow their hearts are at the bottom of the ranking. Also note that, when

p is a step function, a person who follows her heart under s̄ has the same welfare as

a person who follows her heart under s̄′. Thus, given that under a biased norm there

are more people who follow their hearts, a biased norm implies there are more people

with this lowest welfare. Moreover, those who conform under both norms are better

off under the central norm, as there are less non conformers who pressure them.

However, while the welfare distribution under a central norm stochastically dom-

inates all other welfare distributions, it is not Pareto dominant.16 Our interpretation

of these welfare results is that, while there will always be disagreement between spe-

cific individuals about what the best norm is, the alienating society is more likely to

establish a central norm, as it will imply a higher welfare for more people. Hence, to

the extent that the alienating society sustains biased norms, it is probably due to a

shift of private sentiments away from what used to be, historically, a central norm.

Generally, the proposition paints a coherent picture of biased norms being weaker

than central norms in alienating societies as they imply less cohesion, lower welfare

and a smaller zone of convergence, and require a harsher punishment to be sustained.

4 Inverting societies

The purpose of this section is to further examine the case represented by point 3 of

Proposition 1 and by the lower left region in Figure 1. The fundamental characteristic

of this case is that D is concave and, in particular, more concave than p. To capture

this very concave cognitive dissonance, we let D be a step function,

D (|t− s|) =

{
1 if |t− s| 6= 0

0 if |t− s| = 0
(12)

while p = K |s− s′|β for some β ≤ 1. A first useful result is the following.

16This is somewhat easy to see when considering the case of α < 1 and noting that types suffi ciently
close to the norm would rather have the norm exactly at their bliss point rather than at 0, due to
the concavity of D, but it can be shown that this result applies more broadly to any combination of
K and α.
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Lemma 3 Suppose D is according to (12) and P (s; ·) has a unique min point at s̄
and is increasing in the distance from s̄ on each side. Then on each side of s̄ there

exists a cutoff value such that types within the cutoff follow their hearts while types

beyond the cutoff choose s∗(t) = s̄.

The intuition for this result is straightforward. When D is a step function, an

individual will either follow her heart or, once she deviates from her private taste,

choose the action that lowers social pressure the most —this action is s̄ in the lemma.

This is so because she does not distinguish between actions that are not exactly her

private taste. Hence, the lemma essentially says that a minimum point of social

pressure s̄ may function as a norm by inducing full conformity by some types. The

question then is which individuals will be the full conformers and which individuals

will follow their hearts. When social pressure is increasing with the distance from

the norm, types far from the norm will find it the hardest to follow their hearts.

Meanwhile, the dissonance of deviation from one’s bliss point is independent of type.

Hence, there will be a cutoff distance from the norm such that types beyond it fully

conform, while types within it will follow their hearts. On the aggregate level this

can be interpreted as an inversion of preferences, as those who despise the norm the

most are the ones following it in public. Furthermore, the fact that those who nearly

agree with the norm follow their hearts openly can be interpreted as existence of mild

critique. This pattern of conformity thus echoes the result for the more general case

of α < β ≤ 1, as stated in part 3 of Proposition 1.

Now, the previous lemma was a form of partial equilibrium since it assumed that

P monotonically increases in the distance from a unique minimum point s̄. The

question then is whether the individual choices implied by Lemma 3 induce such

properties of P . In the upcoming analysis we will again use y (with some abuse of

notation) to denote the distance between the norm and the type who is indifferent

between following her heart and following the norm.

Lemma 4 Suppose that β ≤ 1 and that there exist a norm s̄ ∈ [−1, 1] and a cutoff

value y ∈ [0, 1 + |s̄|] such that all types with |t− s̄| ≤ y choose s∗(t) = t while the

rest choose s∗(t) = s̄. Then there exists a value ymax (s̄) ≥ 1 such that P (s; ·) has a
unique min point at s̄ and is increasing on each side of s̄ if and only if y ≤ ymax (s̄).

While the previous lemma described what individuals choose given social pressure,

this lemma describes the properties of social pressure given the choices of individuals.
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The bottom line of Lemma 4 is that if there is inversion preferences, then P will be

increasing in the distance from the norm, as long as there are suffi ciently many norm

followers. This is the same as requiring that the most deviant action in society (at

distance y from the norm) is not too deviant. ymax (s̄) then measures how deviant this

behavior can be while still ensuring that P is everywhere increasing in the distance

from s̄.

Put together, Lemmas 3 and 4 allude to the existence of an equilibrium, since

the first says that inversion of preferences will arise if P is increasing in the distance

from s̄ and the second says that given inversion, P will be increasing in the distance

from s̄. The conditions for the existence of such an equilibrium are presented in the

following proposition.

Proposition 4 Suppose D is according to (12) and p is according to (5) with β ≤ 1.

Then:

1. For each value of s̄ ∈ [−1, 1] there exists a lower bound for K, denoted by

Kmin (|s̄|), such that a single norm equilibrium with a norm s̄ exists if and only

if K ≥ Kmin (|s̄|).

2. Kmin (|s̄|) is weakly decreasing in |s̄|.

The existence of single norm equilibria when α < β < 1 was stated already in

Prop 1 (part 3), but the current proposition adds that any norm s̄ in the range [−1, 1]

can be sustained in equilibrium as long as K ≥ Kmin (|s̄|).17 For the norm to exist, it
has to constitute an attractive mode of behavior, relative to other modes of behavior

an individual can adopt. For this to be achieved, enough individuals need to fully

conform, thereby lowering pressure at the norm. This requires that individuals care

suffi ciently about coordinating with others —K has to be suffi ciently large. Unlike

the alienating society (see Proposition 2), here the pattern of individual choice is that

of inversion of preferences. In the appendix (Lemma 26) we show that inversion is

the only pattern of individual choice consistent with a single norm equilibrium when

D is a step function.

The second part of the proposition implies that a biased norm not only may exist,

but also the conditions for its existence are less demanding the more biased it is —

17Note that this value is not necessarily equal to the Kmin (|s̄|) under alienation in Proposition 2.
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Figure 4: The left graphs show the distribution of actions (top) and s∗ (t) in equilib-
rium (bottom) with a central norm (s̄ = 0). The right graphs show the distribution of
actions and s∗ (t) in equilibrium with a biased norm (s̄ = 0.9). In all figures β = 0.6,
α = 0.1 and K = 1.6.

individuals can care less about social pressure. The crude intuition for this is that

inversion implies that types far from the norm uphold it. Hence, a norm that is far

from people’s tastes generates more conformity, which makes the norm stronger.

For a more detailed explanation, consider the distribution of actions under a cen-

tral norm, as depicted in the upper left panel of Figure 4. Suppose now that we move

the norm slightly toward the left edge. The conformity of types at the edges of the

type distribution then implies that the “distribution package”will move together with

the norm without changing appearance —those beyond s̄±y will fully conform, while
those within this range will follow their hearts. This illustrates that biased norms

may exist. Now, if we continue moving s̄ leftward, at some point the type t = s̄− y
will equal −1. When moving s̄ beyond this point, the left wing of the uniform part

will be truncated (as in the upper right panel of Figure 4). This truncation of the left

wing further implies a narrowing of the right wing. The reason for this is that the

23



effect of truncation of the left wing is similar to inducing conformity by people on the

left side of the norm. Then, as explained in Section 2, the concavity of peer pressure

implies that the conformity of leftists will inspire more conformity of rightists, mak-

ing the norm a stronger focal point. Consequently, a lower K is needed in order to

sustain the norm in equilibrium. All in all, biasness of the norm thereby compensates

for weakness of social pressure, making biased norms more sustainable than central

norms. Put differently, biasness facilitates coordination.

We will now analyze the dynamic stability of these equilibria and the properties

of the stable ones. For this purpose we add the same dynamic structure to the model

as we did in the previous section (see equation 11). Here we will perturb the cutoff y

in a single norm equilibrium and examine whether there is convergence back to this

equilibrium.18

Proposition 5 Consider the dynamic model in (11) with D being a step function as

in (12) and p as given in (5) with β ≤ 1. Then:

1. For any s̄ ∈ [−1, 1], there exists a single norm stable steady state if and only if

K > Kmin (|s̄|).

2. xss (|s̄| , K) ≥ xss (|s̄′| , K) if and only if |s̄| ≥ |s̄′|.

3. Consider a norm s̄ and suppose K > Kmin (|s̄|). Let yi denote a cutoff value
in period i, such that all types with t ∈ [s̄− yi, s̄+ yi] follow their hearts while

the rest follow the norm. Then there exists a value yconv (|s̄|) , such that there
is convergence to a stable steady state with a single norm s̄ if yi < yconv (|s̄|).

4. yconv (|s̄|) is increasing in |s̄|.

To understand these results, first note that Lemmas 3 and 4 together imply that

inversion of preferences in period i recreates inversion in period i+1 with a new cutoff

value of conformity. This implies that the dynamic process can be described solely

by the dynamics of the cutoff yi. Figure 5 shows a phase diagram that depicts yi+1

(vertical axis) as a function of yi (horizontal axis). As can be seen from the figure,

there is a stable steady state with a norm when yi = yss. The existence of such a

steady state for a given |s̄| hinges on K being greater than Kmin(|s̄|), as defined in
18The comparison of the share of norm followers under different norms is executed like in Propo-

sition 3 —see Footnote 14.
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Figure 5: A phase diagram showing convergence to a stable single norm equilibrium
when s̄ = −1, for D being a step function, β = 0.5 and K = 2. The dotted line
depicts the diagonal where yi+1 = yi, the solid line depicts the intertemporal dynamics
yi+1 = f (yi). The vertical lines depict the upper bounds for convergence, yuss and
ymax (with yuss being the binding one in the case depicted here). The phase diagram
is not defined for yi > ymax.

the static Proposition 4. It may be interesting to note that the steady state is never

degenerate —there is always a share of the population (those close to the norm) who

follow their hearts. In the proof of the proposition we show that an increased |s̄|
pushes the function yi+1 downward, which implies that yss decreases with biasness,

so that the most deviant behavior in the steady state becomes less deviant. This has

the further consequence that the share of the population conforming increases with

biasness (part 2 of the proposition). This means that cohesiveness increases with the

bias of the norm as the deviant behavior becomes less extreme and there are more

norm conformers.

If yi < yss, society will converge to this stable steady state. Furthermore, there

may be another, unstable, steady state at yuss, which marks the border between

the convergence zones. The existence of yuss hinges on f (yi) intersecting the 45-

degree line twice to the left of ymax, as depicted in the diagram. Beyond ymax, P is

non-monotonic and hence the phase diagram is not applicable. If there exists such

yuss < ymax, then yi < yuss is a necessary and suffi cient condition for convergence
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to the stable steady state yss. However, if there does not exist such a yuss, there is

convergence to yss starting from any yi < ymax. Hence, the suffi cient conditions for

convergence are that yi < ymax and that yi < yuss whenever yuss exists. The last point

of the proposition states that the range of convergence, [0, yconv ≡ min {yuss, ymax}],
increases with biasness.19

yconv may be interpreted as the maximum level of initial public deviance. If initially

a norm exists and the most deviant behavior is less deviant than yconv, then this norm

will stay stable over time. It should be noted, as is exemplified in Figure 5, that yconv
is often much larger than yss. Hence, we can start with a norm that is to a non-trivial

degree weaker than in the steady state and still converge to the steady state. What

point (4) of the proposition suggests is that the most deviant behavior in the first

period can be more deviant the more biased the norm is.20 Furthermore, Lemma 3

tells us that, in the first period, the norm need not necessarily be established through

inversion of preferences —it is suffi cient that one focal mode of behavior exists and

then inversion will ensue in later periods. So an inverting steady state may be attained

from a non-inverting initial condition. We thus get history dependence: if a group

of individuals, possibly a long time ago, had established together one focal mode of

behavior, this mode of behavior could become an endogenous norm, upheld by those

who despise it the most.

One may note that Proposition 5 is silent about welfare. The reason for this

is that, unlike in the alienating society, here it is not possible to get a consistent

ranking of norm locations according to first-order stochastic dominance of welfare

distributions.21 The rough intuition for this is that on the one hand, the maximal

19This is so because an increased |s̄| not only tilts the function yi+1 downwards, which implies an
increase in yuss, but also because ymax increases with biasness.
20We say “suggests” since the proposition only establishes suffi cient conditions for convergence

(y0 < min {yuss, ymax}) as beyond ymax pure inversion may not be maintained, which substantially
complicates the analysis. To see what happens when y0 is beyond ymax we have performed an
extensive set of simulations of the model for different combinations of α, β and K. They consistently
show the same results: there is in practice a maximum value of y0 below which there is convergence
to a steady state with inversion, and above which society converges to pluralism. Importantly, this
numerical cutoff of convergence is increasing in biasness.
21There is a handful of examples of pairs of norms whose corresponding welfare distributions do

not stochastically dominate each other. Furthermore, it can be shown that a suffi cient condition for
guaranteeing that there is no stochastic dominance of the welfare distributions under |s̄| = 0 and
|s̄| = 1 is that yss under |s̄| = 0 will be smaller than 1.5 times yss under |s̄| = 1. This suffi cient
condition holds for many parameter combinations that support stable equilibria at both |s̄| = 0 and
|s̄| = 1, e.g. β = 0.5 and K = 4.
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welfare under each distribution, experienced by the type exactly at the norm, is higher

the more biased the norm is (because biasness implies more norm conformers and a

narrower uniform part); but on the other hand, types at the far edge of the uniform

part are worse off under a more biased norm, because they are further away from the

norm compared to their equally ranked counterparts under the less biased norm and

are more pressured given that the norm is stronger. One possible interpretation for

this ambiguity with respect to welfare is that in the inverting society it is less clear-cut

which norm will arise in equilibrium, whereas in the alienating society central norms

seem unambiguously more plausible. However, once a norm has been established,

the predictions for the inverting society are unambiguous: Biased norms are more

stable, as they require lower social pressure (Kmin is lower), imply more cohesion (xss
is higher) and maintain their dynamic attraction in the presence of more deviant

behavior. Furthermore, a norm will not collapse due to a shift of private sentiments

away from it, as this will only increase cohesion.

5 Conclusion

This paper studies the existence, location and sustainability of endogenous social

norms under peer pressure. In many situations characterized by peer pressure, in-

dividuals may truly disagree (on a private level) about the right ideology or best

conduct. Hence, there will not exist a consensus behavior that can make for an ex-

ogenous norm. Nevertheless, we show that in these situations a clear norm (or point

of coordination) may be endogenously sustained and will also be dynamically stable.

That is, there may seem to exist a consensus about a certain mode of behavior, which

many in society adopt, while in fact individual preferences are completely hetero-

geneous. Moreover, a norm that is biased with respect to private preferences will

sometimes be more sustainable than a representative norm. This can shed light on

the sustainability of biased norms, as observed for example in religious communities,

racial attitudes and honor cultures.

The paper maps societies into a class that cannot maintain an endogenous norm

and a class that can. Within the class that can, the paper highlights a fundamental

difference between two main subclasses of societies. Firstly, in societies where pairwise

pressure is suffi ciently concave, individuals with tastes that are very different from

the norm may be alienated and act according to these tastes in public. For a norm to

survive in this type of society, it has to be suffi ciently representative of the tastes of
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individuals in society. If society is very heterogeneous, or the norm is biased, a norm

can be sustained only under strong pressure to coordinate. In the other subclass

of societies, where pairwise pressure is not suffi ciently concave, preferences will be

inverted — the ones following their hearts will be those with tastes that are only

slightly different from the norm, while those who privately dislike the norm the most

will fully conform. This means that in this kind of society we should observe only

small deviations from the norm. Here biased norms are more sustainable and more

magnetic than representative norms.

We believe the model in this paper represents an essential element in human in-

teraction. Namely, that coordination problems arise in between multiple individuals

with heterogeneous tastes. Analytically proving outcomes in this setting is not a triv-

ial matter and we have not exhausted the possible equilibria that can arise. However,

our results of the dynamic model strongly indicate that the single norm equilibrium,

which has been the focus of this paper, is not just a technical possibility —outcomes

will tend to gravitate toward these equilibria from a broad set of initial conditions.

A Appendix: Non-uniform distribution of types (for online
publication)

The logic described in the paper is valid also when the distribution of types is not
uniform. When β < α ≤ 1, the more general lesson is that a single norm will tend
to be accompanied by alienation of those who privately dislike the norm. This also
has implications for the location of the norm and for the level of cohesion in society.
It implies that unless K is very large, the norm can be sustained only if it is located
such that many in society largely agree with it privately. This is since otherwise there
would be a large portion of opposers to the norm, who, by opposing, would make
conforming unattractive even to those who object the norm less. Figure 6 shows
steady states under some other distributions of types. Under a normal distribution,
the norm has to be located within the bell of the normal distribution (as represented
by the mass point in the upper left panel of Figure 6). Alternatively, if the whole
distribution is skewed, the norm needs to be located on the same side as the mass of
types (upper right).
When α < β ≤ 1, the more general lesson is that single norms will be accom-

panied by inversion of preferences virtually regardless of the distribution of types.
Furthermore, for a norm to be sustainable and have a high degree of cohesion it has
to be located away from any mass of private opinions. Otherwise, if there is a mass of
people with tastes close to the norm, these people will choose to follow their hearts,
and by doing so will make the norm less attractive even to those whose tastes are
further away (and are therefore subject to more pressure when following their hearts).
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Figure 6: Histograms with single norm steady states in the dynamic model. In each
histogram, the black surface represents the steady state distribution of actions while
the grey surface represents the underlying distribution of types. The distribution of
actions in the zeroth generation is such that all take the same action. Note that the
y-axes have been truncated for visibility and that the distributions of types have been
truncated (where applicable) to be between -1 and 1. Upper left: α = 0.5, β = 0.01,
K = 1.2, s̄ = 0. Upper right: α = 0.5, β = 0.01, K = 1.2, s̄ = −0.8. Lower left:
α = 0.01, β = 0.5, K = 2.5, s̄ = −0.5. Lower right: α = 0.01, β = 0.5, K = 1.5,
s̄ = 0.

This can be seen in Figure 6 (bottom left), where we illustrate a case with a normal
distribution of types. The norm cannot be sustained within the bell-shape but only
at the tails. On the bottom right of Figure 6 we see that if the type distribution is
bimodal, a norm can be sustained virtually anywhere except close to the peaks.22

B Initial analytical results

For ease of notation, throughout all the upcoming appendices, we will use P (s)
instead of P (s; s′) to denote the aggregate pressure felt by choosing action s under a
predefined distribution of actions in society.

Lemma 5 Let there be a range of types that follow their hearts. Then the aggregate
pressure that results is strictly increasing in the distance from the middle of the range.

22Under a skewed distribution (e.g. an exponential distribution) it may be possible to support a
norm also close to the peak of private preferences. However, this norm will only be followed by very
few types with private tastes in the tail, while the vast majority will follow their hearts. Hence, the
simulation- and intuition-based conjecture is that it will be hard to sustain a norm with high degree
of cohesion if the norm is located such many nearly agree with it but not fully.
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Proof. The range of types that follow their hearts form a uniform part in the distri-
bution of actions, with pdf = 1

2
within the range and 0 outside. Denote this uniform

range by [a, b] with a < b. Then

P (s) =
1

2
K

b∫
a

|s− τ |β dτ

=


1
2
K (b−s)β+1−(a−s)β+1

β+1
if s < a

1
2
K (s−a)β+1+(b−s)β+1

β+1
if a ≤ s ≤ b

1
2
K (s−a)β+1−(s−b)β+1

β+1
if s > b

P ′ (s) =


1
2
K
[
− (b− s)β + (a− s)β

]
< 0 if s < a

1
2
K
[
(s− a)β − (b− s)β

]
if a ≤ s ≤ b

1
2
K
[
(s− a)β − (s− b)β

]
> 0 if s > b

It is easy to see that P ′ (s) > 0 if s > a+b
2
and P ′ (s) < 0 if s < a+b

2
, implying that

P (s) is strictly increasing in the distance from the middle of the range.

C Proof of Proposition 1

C.1 Part 1
First we note that there cannot be a norm at one of the distribution edges, i.e., at
s̄ = −1 or at s̄ = 1. To see this, note that a norm at, say, s̄ = 1 implies that the slope
of the aggregate pressure P at the norm is positive (because deviation to the left
decreases the pressure from all actions besides s = 1 while, when β > 1, not affecting
the pressure stemming from the mass of people at the norm), and so everyone would
like to deviate to the left, contradicting the existence of a norm there.23 Next we
consider norms at the interior of [−1, 1]. Here, note that when β > 1 then p and
p′ are continuous everywhere, which implies that P =

∫
p and P ′ =

∫
p′ must be

continuous everywhere as well. In particular at s = s̄. Hence, P ′ |s=s̄is well defined,
and so either P ′ |s=s̄= 0 or P ′ |s=s̄ 6= 0.
If P ′ |s=s̄= 0, then it must be that s∗ (t) 6= s̄ for any t 6= s̄, because for t 6= s̄,

a small enough deviation from s̄ toward t decreases D without increasing P . Thus
there is no positive mass of individuals at s̄, so it cannot be the norm.
If P ′ |s=s̄ 6= 0 then either P ′ |s=s̄> 0 or P ′ |s=s̄< 0. If P ′ |s=s̄> 0, then (1) no type

with t < s̄ will state the norm, as deviating in the left direction from s̄ reduces both
P and D, and (2) at most one type with t > s̄ can have |D′ (s̄; t)| = |P ′ (s̄)| when
D is strictly concave or strictly convex (i.e., when α 6= 1), and so only this one type

23This holds also if s = 1 ∀t. In this case the slope of the aggregate pressure P at the norm is 0,
but deviation to the left (i.e. towards one’s bliss point) is still profitable as it reduces D.
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can have a local min point of L at s̄. This means that when α 6= 1 there can be no
positive mass at s̄, which violates the definition of a norm. Now suppose α = 1 so
that D = |t− s̄|. Then each type either follows her heart or states a statement s such
that |P ′ (s)| = 1. Then there can potentially be multiple types choosing the same
action s̄ such that |P ′ (s̄)| = 1, which implies s̄ can be a norm. Suppose this holds and
that s̄ is the unique norm. Then the fact that no type with t < s̄ states s̄, together
with (i) the uniqueness of the norm s̄ and (ii) the fact that a type who does not state
an s such that |P ′ (s)| = 1 necessarily follows her heart, imply a uniform distribution
of actions to the left of s̄, stemming from the choices of types at this range to follow
their hearts (this is necessarily so since (a) there must be a finite number of points
with s < s̄ and |P ′ (s)| = 1 implying that if s 6= t for a positive mass of types with
t < s̄ then uniqueness of the norm is violated, and (b) all types with t > s̄ state s ≥ s̄
because they either follow their hearts or choose the unique norm). The shape of the
pressure imposed by the uniform part at s = [−1, s̄] is symmetric around its center,
creating the same slope at both edges of this part, s = −1 and s = s̄. On top of it,
there is the pressure stemming from actions s ≥ s̄. As β > 1, each of these sources
of pressure implies a steeper slope at s = −1 than at s = s̄, which altogether means
that |P ′ (−1)| > |P ′ (s̄)| = 1. This implies that types close to t = −1 will gain by
deviating to the right from their bliss points, in contradiction to the assumption that
they follow their hearts The same argument applies when P ′ |s=s̄< 0.�

C.2 Part 2
Suppose that indeed s (t) = s̄ = 0 ∀t ∈ [−1, 1]. To show that this is an equilibrium,
and using symmetry, we need to show that, for a suffi ciently large K, L(s, t) > L(0, t)
∀t ∈ (0, 1] and s ∈ (0, t]. Given that all types conform, the pressure function at
s ∈ (0, 1] is simply given by P (s) = Ksβ. We thus need to show that, for a suffi ciently
large K, (t− s)α + Ksβ > tα ∀t ∈ (0, 1] and s ∈ (0, t]. Let f(s, t) ≡ tα−(t−s)α

sβ
be

a function defined for s ∈ (0, t]. We will show that f(s, t) is finite. If α = 1 then
f(t, s) = s1−β, which is finite. If α > 1, the numerator tα − (t− s)α is increasing
in t hence reaches its maximum at t = 1 where it equals 1 − (1− s)α. This means
that in this case f(s, t) is bounded from above by 1−(1−s)α

sβ
. It is easy to see that

the numerator is finite, and when s → 0 we get by L’Hôpital’s rule that, if β < 1,
lim
s→0

1−(1−s)α
sβ

= lim
s→0

α(1−s)α−1
βsβ−1 = 0, hence 1−(1−s)α

sβ
is finite, implying that f(s, t) is finite

(if β = 1 then lim
s→0

1−(1−s)α
s

= lim
s→0

α(1−s)α−1
1

= α). Finally, if α < 1, the numerator

tα−(t− s)α is decreasing in t hence reaches its maximum when s = t, where it equals
sα. This means that in this case f(s, t) is bounded from above by sα−β, which is
itself bounded (even when s → 0, given that β ≤ α). Overall, we thus get that for
any α ≥ β the function f(s, t) is bounded from above by some finite value sup f(t, s).
Hence, for any K > sup f(s, t), there exists an equilibrium in which s = s̄ = 0
∀t ∈ [−1, 1]. In particular, this implies that types closest to the norm fully conform.
For showing the existence of multiple equilibria, a similar proof can be constructed
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for s̄ 6= 0.�

C.3 Part 3
Suppose a single norm exists at s̄ ≤ 0 and

s′ (t) =

{
t if t ∈ [s̄− x, s̄+ x]

s̄ if t ∈ [−1, s̄− x[ or if t ∈ ]s̄+ x, 1]

where x < s̄+ 1 ≤ 1 (i.e., the type s̄− x exists). This is an equilibrium if:24

• type t = s̄+x has no inner solution and is indifferent between choosing s = s̄+x
and s = s̄.

• types t ∈ [s̄, s̄+ x[ choose s∗ (t) = t,

• types t ∈ ]s̄+ x, 1] choose s∗ (t) = s̄,

which we will show holds, in three corresponding lemmas, for some x if K is
suffi ciently large. First, however, some auxiliary calculations.

P (s) =K
1

2

s̄+x∫
s̄−x

(|s− t|)β dt+ (1− x)K (s− s̄)β (13)

=

K
[
(1− x) (s− s̄)β + 1

2
(x+(s−s̄))β+1+(x−(s−s̄))β+1

β+1

]
for s− s̄ ≤ x

K
[
(1− x) (s− s̄)β + 1

2
(x+(s−s̄))β+1−((s−s̄)−x)β+1

β+1

]
for s− s̄ > x

.

Letting σ ≡ s− s̄, we can rewrite P (σ) as

P (σ) =

K
[
(1− x)σβ + 1

2
(x+σ)β+1+(x−σ)β+1

β+1

]
for σ ≤ x

K
[
(1− x)σβ + 1

2
(x+σ)β+1−(σ−x)β+1

β+1

]
for σ > x

. (14)

When type t chooses action s she feels the loss

L = (t− s)α + P (σ) . (15)

24We perform the whole analysis for t ≥ s̄, as any statement that holds at some distance d to the
right of the norm, holds also at distance d to the left of it, due to the symmetry of the distribution
of actions around s̄ in the equilibrium we check.
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The difference in loss between fully conforming to the norm (s = s̄) and following her
heart (s = t) is thus

∆L≡L (s = s̄)− L (s = t) (16)

= (t− s̄)α +K

[
xβ+1

β + 1
− (1− x) (t− s̄)β − 1

2

(x+ (t− s̄))β+1 + (x− (t− s̄))β+1

β + 1

]
,

Lemma 6 If K is suffi ciently large, there exists a type t = s̄+ x, with x ≤ 1, who

1. is indifferent between choosing s = s̄+ x and s = s̄.

2. has no inner solution.

Proof. 1) Let τ ≡ t− s̄. Type t with τ = x is indifferent between s = s̄ and s = t if
∆L, as given in (16), equals zero, i.e., if

xα = K

[
− xβ+1

β + 1
+ (1− x)xβ +

1

2

(2x)β+1

β + 1

]
,

hence

K =
xα−β

1− 2+β−2β

β+1
x
. (17)

Investigating K (x), we get that limx→0K = ∞ and limx→1K = β+1
2β−1

(> 0) . Differ-
entiating K with respect to x we get that

dK

dx
=

xα−β(
1− 2+β−2β

β+1
x
)2

[(
1− 2 + β − 2β

β + 1
x

)
α− β
x

+
2 + β − 2β

β + 1

]

=
xα−β−1

(β + 1)
(

1− 2+β−2β

β+1
x
)2

[
(α− β) (β + 1) +

(
2 + β − 2β

)
(1− α + β)x

]
,

and so dK
dx

= 0 only at one point, x0 ≡ (β−α)(1+β)

(1+β−α)(2+β−2β)
.

The sign of dK
dx
is the same as that of

F (α, β, x) ≡ (α− β) (β + 1) +
(
2 + β − 2β

)
(1− α + β)x.

F (α, β, 0) < 0 since α < β, and F (α, β, 1) =
(
2− 2β

)
(1 + β) + α(2β − 1), which is

positive for any α ∈ (0, 1). It follows that F (α, β, x) changes sign as x goes from 0
to 1, and so does dK

dx
. Thus x0 ∈ ]0, 1[. Hence, K is U-shaped in x: it starts at ∞

and is decreasing until x0 and increases thereafter. Substituting x0 into K, we get
K (x0) = (1 + β − α) (x0)α−β. Thus, if K ≥ (1 + β − α) (x0)α−β, there exists a type
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t with τ = x who is indifferent between choosing s = s̄+ x and s = s̄, where x(K) is
implicitly given by equation (17).
2) We showed that if K ≥ (1 + β − α) (x0)α−β , then there exists a type t with

τ = x, s.t. x satisfies (17), who is indifferent between choosing s = t (= s̄+ x) and
s = s̄. In order to show that this type has no inner solution, we will now show that
L′′ < 0 for any action in the range ]s̄, s̄+ x[ .
Differentiating L from equation (15) twice with respect to σ (after substituting

t− s = τ − σ) we get

L′ = −α (τ − σ)α−1 +

K
[
β (1− x)σβ−1 + 1

2

[
(x+ σ)β − (x− σ)β

]]
for σ ≤ x

K
[
β (1− x)σβ−1 + 1

2

[
(x+ σ)β − (σ − x)β

]]
for σ ≥ x

(18)

L′′ = α (α− 1) (τ − σ)α−2+

K
[
β (β − 1) (1− x)σβ−2 + β

2

[
(x+ σ)β−1 + (x− σ)β−1

]]
for σ ≤ x

K
[
β (β − 1) (1− x)σβ−2 + β

2

[
(x+ σ)β−1 − (σ − x)β−1

]]
for σ ≥ x

(19)
Plugging in τ = x, and considering naturally only actions with σ ≤ τ = x, we get
that

L′′ (τ = x)<α (α− 1) (x− σ)α−2 +K
[
β (β − 1) (1− x)σβ−2 + β (x− σ)β−1

]
<α (α− 1) (x− σ)α−2 +Kβ (x− σ)β−1 ≡ G(σ).

Next, G(σ) < 0 if and only if

Kβ (x− σ)β−α+1 < α (1− α) .

The LHS is decreasing in σ hence it is thus suffi cient to show that G(0) < 0. Using
the connection between K and x as given in (17), for G(0) < 0 one needs that

βx

1− 2+β−2β

β+1
x
< α (1− α) .

Noting that 1− 2+β−2β

β+1
x > 0, we get that G(0) < 0 ifx < 1

β
α(1−α)+ 2+β−2β

β+1

.

Hence, if K is suffi ciently large so that x < 1
β

α(1−α)+ 2+β−2β
β+1

(recall that limx→0K =

∞), then type t with τ = x has no inner solution.

Lemma 7 s∗ (t) = t for all t with τ < x.
Proof. Suffi cient conditions for this statement are 1) L (s = t) < L (s = s̄) and 2)
no inner solution for t with τ ∈ [0, x[.
1) When τ < x, ∆L = L (s = s̄) − L (s = t) is given by equation (16). We will

34



show that ∆L > 0 by showing that ∆L
xα

> 0. Define c ≡ τ/x ∈ [0, 1]. We then have

f(x, c) ≡ ∆L

xα
= cα +

K

xα−β

[
x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 + (1− c)β+1

β + 1

]

= cα +

(
1− 2 + β − 2β

β + 1
x

)−1
[

x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 + (1− c)β+1

β + 1

]

=

(
1− 2 + β − 2β

β + 1
x

)−1
([

1

β + 1
+ cβ − 1

2

(1 + c)β+1 + (1− c)β+1

β + 1
− 2 + β − 2β

β + 1
cα

]
x+ cα − cβ

)
.

We will show that f(x, c) > 0 for every x and any c ∈ [0, 1]. Define the part in the
squared brackets as

g(c) ≡ 1 + (β + 1) cβ − 1

2

[
(1 + c)β+1 + (1− c)β+1

]
−
(
2 + β − 2β

)
cα.

Then

f(x, c) =

(
1− 2 + β − 2β

β + 1
x

)−1(
x

β + 1
g(c) + cα − cβ

)
=− g(c)

2 + β − 2β
+

(
1− 2 + β − 2β

β + 1
x

)−1 (
2 + β − 2β

)−1 [
g(c) +

(
cα − cβ

) (
2 + β − 2β

)]
.

Finally, let
h(c) ≡ g(c) +

(
cα − cβ

) (
2 + β − 2β

)
.

We then have
h(0) = g(0) = 0,

h(1) = g(1) = 0,

and by differentiating h(c) twice with respect to c we get

h′′(c)

β + 1
= β (β − 1) cβ−2 − 1

2
β
(

(1 + c)β−1 + (1− c)β−1
)

+−β (β − 1) cβ−2 2 + β − 2β

β + 1

= β (β − 1) cβ−2

[
1− 2 + β − 2β

β + 1

]
− 1

2
β
(

(1 + c)β−1 + (1− c)β−1
)
< 0,

and so h(c) ≥ 0 in the range c ∈ [0, 1] . Consequentially, f(x, c) increases in x for
every given c ∈ [0, 1], and so f(x, c) ≥ f(0, c), where

f(0, c) = cα − cβ > 0, ∀c ∈ ]0, 1[ .

This proves that ∆L = f(x, c)xα is positive, i.e., L (s = t) < L (s = s̄) for all t with
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τ < x.
2) From equation (19) it is easy to see that for any given σ, the function L′′

increases in τ , and so reaches it maximum for τ = x. In the second part of the proof
of Lemma 6 we saw that L′′ is negative (for any σ) whenever x < 1

β
α(1−α)+ 2+β−2β

β+1

. This

implies that there is no inner solution for t with τ ∈ [0, x[ .

Lemma 8 s∗ (t) = s̄ for all t with τ > x.
Proof. To prove the lemma we show that the following suffi cient conditions hold for
all t with τ > x: 1) L (s = t) > L (s = s̄) .2) No inner solution in the range σ ∈ [x, τ ].
3) No inner solution in the range σ ∈ (0, x).
1) L (s = s̄) = τα +K xβ+1

β+1
as before, but for σ ≥ x we have:

L = (t− s)α +K

[
(1− x)σβ +

1

2

(x+ σ)β+1 − (σ − x)β+1

β + 1

]
, (20)

and so

∆L≡L (s = s̄)− L (s = t)

= τα +K

[
xβ+1

β + 1
− (1− x) τβ − 1

2

(x+ τ)β+1 − (τ − x)β+1

β + 1

]
.

Define c ≡ τ/x (> 1). We then have

f(x, c) ≡ ∆L

xα
= cα +

K

xα−β

[
x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 − (c− 1)β+1

β + 1

]

= cα +

(
1− 2 + β − 2β

β + 1
x

)−1
[

x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 − (c− 1)β+1

β + 1

]

=

(
1− 2 + β − 2β

β + 1
x

)−1
([

1

β + 1
+ cβ − 1

2

(1 + c)β+1 − (c− 1)β+1

β + 1
− 2 + β − 2β

β + 1
cα

]
x+ cα − cβ

)
.

Now let

g(c) ≡ 1 + (β + 1) cβ − 1

2

[
(1 + c)β+1 − (c− 1)β+1

]
−
(
2 + β − 2β

)
cα.

Then

f(x, c) =

(
1− 2 + β − 2β

β + 1
x

)−1(
x

β + 1
g(c) + cα − cβ

)
=− g(c)

2 + β − 2β
+

(
1− 2 + β − 2β

β + 1
x

)−1 (
2 + β − 2β

)−1 [
g(c) +

(
cα − cβ

) (
2 + β − 2β

)]
.
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We will show now that

h(c)≡ g(c) +
(
cα − cβ

) (
2 + β − 2β

)
= 1− 1

2
(1 + c)β+1 +

1

2
(c− 1)β+1 + cβ

(
2β − 1

)
.

is negative, and so f(x, c) decreases in x. Define r ≡ 1
c
, so that r ∈ (0, 1). We then

can define a new function z(r) such that

z(r) ≡ rβ+1h = rβ+1 − 1

2
(1 + r)β+1 +

1

2
(1− r)β+1 + r

(
2β − 1

)
.

We have z(0) = z(1) = 0, and

z′′(r) = (β + 1) β

[
rβ−1 − 1

2
(1 + r)β−1 +

1

2
(1− r)β−1

]
>

1

2
(β + 1) β

[
(1− r)β−1 − (1 + r)β−1

]
> 0,

and so z(r) < 0 in the range r ∈ (0, 1), i.e., h(c) < 0 in the range c > 1. Consequen-
tially, f(x, c) decreases in x at this range, and so f(x, c) < f(0, c), where

f(0, c) = cα − cβ < 0, ∀c > 1.

This proves that ∆L = f(x, c)xα is negative, i.e., L (s = t) > L (s = s̄) for all t with
τ > x.
2) From equation (19) for σ ≥ x we get that L′′ is a sum of three negative elements,

hence L′′ < 0, i.e., no inner solution in that range.
3) Type t with τ > x has no inner solution in the range σ ∈ (0, x) if L (σ, τ) −

L (0, τ) > 0 for any σ ∈ [0, x]. From equation (18) for σ ≤ x we have

L′ = −α (τ − σ)α−1 +K

[
β (1− x)σβ−1 +

1

2

[
(x+ σ)β − (x− σ)β

]]
,

and so ∂L′

∂τ
= −α (α− 1) (τ − σ)α−1 > 0. This implies that, when τ > x, L (σ, τ) −

L (σ, τ) > L (σ, x)−L (0, x) ≥ 0 for any σ ∈ [0, x], where the second inequality follows
from Lemma 6.

D Alienating societies

D.1 Proof of Lemma 1
The minimization problem of the individual is

min
s
L (s; t; s′) = P (s; s′) + |s− t|α . (21)
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Suppose a single norm exists with a share x stating it. Then

P (s) =

{
K if s 6= s̄

(1− x)K if s = s̄
. (22)

Therefore L (s; t; s′) is increasing in |s− t| except potentially at s = s̄, where P (s) <
K. Thus it is immediate that for each type t, s∗ (t) will be either t or s̄. Moreover, it
is immediate that s∗ (t) = t if and only if xK, the difference between P (t) and P (s̄) ,
falls below |t− s̄|α, thus follows the lemma.

D.2 Proof of Lemma 2
If y ≤ 1 − |s̄| , the norm is suffi ciently centered so that y types on each side follow
the norm, which implies x = y. When 1− |s̄| < y ≤ 1 + |s̄| , the norm is suffi ciently
biased, say to the left, so that there are no longer y types to the left of the norm
following the norm. Then, the total number of individuals declaring the norm is the
distance from −1 to s̄ on the left and y types on the right. It then follows that the
share of norm followers is x = (y + 1− |s̄|) /2. Finally, when y > 1 + |s̄| , we get that
even the type who is the furthest away from the norm (i.e. at distance 1 + |s̄| from
it) follows it, implying that all types follow the norm.

D.3 Proof of Proposition 2
Since Lemma 1 implies that, given a single norm with a share x of followers, s∗ (t)
is according to (8), a necessary and suffi cient condition for this s∗ (t) to be the dis-
tribution of actions in a single norm equilibrium is that x (y) that is obtained from
this distribution of actions in Lemma 2 would equal the value of x that was initially
assumed in Lemma 1 for creating this particular s∗ (t). This is more conveniently
written as a dynamic process, where the requirement is to have xi+1 (yi+1 (xi)) = xi.
Using (7) and (10) we can write

xi+1 = f (xi;K, |s̄|) ≡


(xiK)1/α if (xiK)1/α ≤ 1− |s̄|

(xiK)1/α+1−|s̄|
2

if 1− |s̄| < (xiK)1/α < 1 + |s̄|
1 if (xiK)1/α ≥ 1 + |s̄|

. (23)

We start by proving parts (1) and (2) of the proposition for the case of α ≥ 1. If one of
the following holds: (1) α > 1; (2) α = 1, |s̄| < 1 and K ≥ 1; or (3) α = 1, |s̄| = 1 and
K ≥ 2; then lim

xi→+0
f ′ (xi;K, |s̄|) ≥ 1, so that f (xi;K, |s̄|) starts (weakly) above the 45

degree line. In this case, the continuity of f (xi;K, |s̄|) and the fact that f (xi = 1) ≤ 1
imply that f (xi;K, |s̄|) crosses the 45 degree line at least once in the range xi ∈ (0, 1],
with the crossing point(s) constituting single norm EQ. Alternatively, if α = 1 and
either (1) |s̄| < 1 and K < 1; or (2) |s̄| = 1 and K < 2; then f (xi;K, |s̄|) is linear in
parts and lim

xi→+0
f ′ (xi;K, |s̄|) < 1, so that the first linear part is below the 45 degree
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line. As the slope of f (xi;K, |s̄|) only decreases when moving from the first linear
part to the second and from the second to the third, we get that f (xi;K, |s̄|) is below
the 45 degree line in xi ∈ (0, 1], in which case there is no single norm equilibrium
with a strictly positive share x of norm followers. All in all we get that when α > 1,
Kmin (|s̄|) = 0; when α = 1 and |s̄| < 1, Kmin (|s̄|) = 1; and when α = 1 and |s̄| = 1,
Kmin (|s̄|) = 2. These values of Kmin (|s̄|) are independent of |s̄|, which concludes the
proof of parts (1) and (2) of the proposition for the case of α ≥ 1.
We now proceed to proving parts (1) and (2) of the proposition for the case of

α < 1. To do so, we will now assume that a single norm equilibrium exists at |s̄| and
prove the existence of a value Kmin (|s̄|) such that the assumption holds if and only
if K ≥ Kmin (|s̄|) , and that Kmin (|s̄|) is increasing in |s̄| .
Looking at the borders between regions in equation (23), we get that if K ≥

(1 + |s̄|)α then at xi = 1 we are in the third region, implying that xi+1 (xi) = xi at
xi = 1, hence a single norm equilibrium exists (with full compliance to the norm).
Otherwise, (xiK)1/α ≤ K1/α < 1 + |s̄|, and the third region is irrelevant. Moreover,
xi+1 in the second region is strictly smaller than 1 and so xi = 1 is not an equilibrium.
Define now

G (xi;K, |s̄|)≡xi+1 (xi)− xi = f (xi;K, |s̄|)− xi,

=


(xiK)1/α − xi if (xiK)1/α ≤ 1− |s̄|

(xiK)1/α+1−|s̄|
2

− xi if 1− |s̄| < (xiK)1/α < 1 + |s̄|
1− xi if (xiK)1/α ≥ 1 + |s̄|

(24)

which in a single norm equilibrium equals zero for some xi 6= 0. G is continuous in
xi, K and |s̄|, with G (0;K, |s̄|) = 0 and G′ (0;K, |s̄|) < 0, and when K1/α < 1 + |s̄|
we also get that G (1;K, |s̄|) < 0. Differentiation of G with respect to xi yields

G′ (xi;K, |s̄|) =


1
α
K1/α (xi)

1/α−1 − 1 if (xiK)1/α < 1− |s̄|
1

2α
K1/α (xi)

1/α−1 − 1 if 1− |s̄| < (xiK)1/α < 1 + |s̄|
−1 if (xiK)1/α > 1 + |s̄|

(25)

and

G′′ (xi;K, |s̄|) =


1
α

(
1
α
− 1
)
K1/α (xi)

1/α−2 if (xiK)1/α < 1− |s̄|
1

2α

(
1
α
− 1
)
K1/α (xi)

1/α−2 if 1− |s̄| < (xiK)1/α < 1 + |s̄|
0 if (xiK)1/α > 1 + |s̄|

(26)

which immediately shows G is strictly convex in the first two regions. It thus follows
that when K1/α < 1 + |s̄|, G can get a local max only at the border between these
two regions, where xi = (1− |s̄|)α /K. Therefore, when K1/α < 1 + |s̄| , there exists a
single norm equilibrium if and only if the borderline point falls within the range [0, 1]
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and G at this point is weakly positive.25 Substituting xi = (1− |s̄|)α /K in equation
(24) yields G = (1− |s̄|) − (1− |s̄|)α /K, which equals 0 when K = (1− |s̄|)α−1 .
Substituting this value of K back in xi we get that xi = 1− |s̄| , thus falls within the
range [0, 1], and so there exists a single norm equilibrium for K = (1− |s̄|)α−1 . If K
is larger, then the value of xi at the border between the regions is smaller (hence falls
within the range [0, 1] too), and the value of G at this point is larger, i.e., positive.
As a result, if we let

Kmin (|s̄|) ≡ min
{

(1− |s̄|)α−1 , (1 + |s̄|)α
}
, (27)

then forK < Kmin (|s̄|) no single norm equilibrium exists, while for anyK ≥ Kmin (|s̄|)
there exists a single norm equilibrium at |s̄|. It is also worth noting that if K =
Kmin (|s̄|), the analysis above implies that max

xi
G (xi) = 0 (and reached either at

the border between the two regions, if Kmin (|s̄|) = (1− |s̄|)α−1, or at xi = 1, if
Kmin (|s̄|) = (1 + |s̄|)α); while if K > Kmin (|s̄|), then G (xi) > 0 either at the border-
line point or at xi = 1.
Finally, the fact that Kmin (|s̄|) is increasing in |s̄| follows directly from the fact

that (1− |s̄|)α−1 and (1 + |s̄|)α are both increasing in |s̄|.�

D.4 Proof of Proposition 3
We first remind, that in the proposition we treat the unstable steady states (xuss) as
ones where if xi = xuss then xi+1 < xuss. This includes the cases where xuss = xconv.
In the proof we do not make this shortcut.
Comparison method: Next, we remind how we perform the comparison of

xss (|s̄| , K) in statement (2) of the proposition and the comparison of welfare dis-
tributions in statement (5). For given values of K and s̄ there can be at most one
stable single norm steady state if α ≥ 1,26 and up to two different stable single norm
steady states, corresponding to two different values of xss (|s̄| , K), if α < 1. When
there are two such steady states, Lemma 14 says that one is always “degenerate”
(xss (|s̄| , K) = 1) and one is always “non-degenerate” (xss (|s̄| , K) ∈ ]0, 1[) —these
are x̃ and xend respectively in Section D.4.2 below. The comparison of xss (|s̄| , K)
with xss (|s̄′| , K) in statement (2) of the proposition is thus applied as follows: When
there exist two xss (|s̄| , K) and two xss (|s̄′| , K), the proposition compares the non-
degenerate with each other and the degenerate with each other; when there exist
two steady states for s̄ and one for s̄′ (or vice versa), the proposition compares
max {xss (|s̄| , K)} with max {xss (|s̄′| , K)}; finally, when there is only one steady
state for each norm, the proposition compares the unique xss (|s̄| , K) with the unique

25Note that if the borderline point falls outside the range [0, 1] , it means that only the first region
applies, and then the convexity of G means that G (1,K, |s̄|) < 0 ⇒ G (xi,K, |s̄|) < 0 ∀xi ∈ ]0, 1],
hence no single norm equilibrium exists (we know that G (1,K, |s̄|) < 0 because K1/α < 1 + |s̄|).
26When α > 1 this follows from the fact that in this case f ′ (xi;K, |s̄|) is decreasing at every xi

(see equation 23). The case α = 1 is analyzed separately under Section D.4.1 below.
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xss (|s̄′| , K).
Moreover, whenever there exist two stable steady states for a given norm, the

welfare distribution in the degenerate steady state first-order stochastically dominates
the welfare distribution in the non-degenerate steady state (see Lemma 19 below).
Hence, we apply the same comparison rule to the comparison of welfare distributions
in statement (5) of the proposition.
Proof for the case α ≥ 1: Statements (1)-(4) are proved in Section D.4.1 and

statement (5) is proved by Lemma 20.
Proof for the case α < 1:

• Statement 1: The ‘if’part follows from Lemma 14. As for the ‘only if’part,
we showed in the proof of Proposition 2 that the function G is strictly positive
at some point iffK > Kmin. Hence, if K ≤ Kmin, then ∀xi we have xi+1 ≤ xi,
which means that there can be no convergence from the left to any steady state,
implying that a stable steady state with a single norm cannot exist.

• Statement 2: Lemma 14 shows that at most two stable single norm steady
states may exist: a degenerate and a non-degenerate (the notation of x with
various ornaments is defined in equation (28)). Lemma 15 implies that when
comparing xss of two norms s̄ and s̄′ (where |s̄| ≤ |s̄′|) in statement (2) of the
proposition, we need to compare only the non-degenerate stable steady states.
To see why, note that one of the following two scenarios must hold: (i) there
exists a degenerate stable steady state for s̄′, in which case (by Lemma 15)
the maximal share of xss under both norms is 1, and so we have to com-
pare only the non-degenerate stable steady states, if both exist; (ii) there
does not exist a degenerate stable steady state for s̄′, in which case either
there exists a degenerate stable steady state for s̄, hence it is immediate that
max {xss (|s̄| , K)} = 1 > max {xss (|s̄′| , K)}, or there does not exist a degener-
ate stable steady state for s̄, in which case we again have to compare only the
non-degenerate stable steady states. Thus, it is suffi cient to compare xss (|s̄| , K)
in the non-degenerate stable steady states, if they exist. Statement 2 then fol-
lows from part (3) of Lemma 11.

• Statement 3: Follows from parts (1)-(3) of Lemma 13 (note that ẋ, x̂ and x̌ are
defined in equation (28)).

• Statement 4: Follows from parts (4) and (5) of Lemma 13.

• Statement 5: Follows from Lemma 20.

D.4.1 The case of α ≥ 1

We here prove statements (1)-(4) of Proposition 3 for the case α ≥ 1. We prove α > 1
and α = 1 separately.
α > 1
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When α > 1 we get by (23) that lim
xi→+0

f ′ (xi;K, |s̄|) = K/α lim
xi→+0

(xiK)1/α−1 =∞,
implying that there is convergence to the single norm equilibrium (whose existence
for every K > Kmin (|s̄|) = 0 was shown in the proof of Proposition 2) from every
xi > 0 (this proves statement 1). It thus follows that in this case xconv (|s̄|) = 0 and
so (i) xconv (|s̄|) is independent of |s̄| and K; (ii) xss (|s̄|) > xconv (|s̄|) ; and (iii) if
0 ≤ xi ≤ xconv (|s̄|), then it must be the case that xi = 0 and so xi+1 = xi = 0,
i.e., there is convergence to a stable steady state where each type follows her heart
(xss (|s̄|) = 0). This proves statements 3 and 4. Now note that since f ′ (xi;K, |s̄|) is
decreasing at every xi (see equation 23) there can exist at most one stable steady state
for each combination of s̄ and K. Increasing |s̄| has the effect of decreasing xss (|s̄|),
as it everywhere weakly decreases xi+1 as a function of xi (by increasing region (2)
in equation (23), and since the function f in this region is smaller the larger is |s̄|).
This proves statement 2.
α = 1
When α = 1 we have two separate cases to consider. The first one is when |s̄| < 1.

Here Kmin (|s̄|) was shown to equal 1 (see the proof of Proposition 2). Here the
function f is piecewise linear, where for K < 1 it stays below the 45 degree line (see
the proof of Proposition 2) and so there is no single norm equilibrium; and for K > 1
it stays above the 45 degree line until it reaches 1 and stays there (see equation 23),
implying a single norm equilibrium at xi = 1. Thus xss (|s̄|) = 1 (hence independent
of |s̄| which proves statement (2), and there exists a stable steady state if and only
if K > Kmin (|s̄|) = 1 with a share of followers xss (|s̄|) (if K = 1 the function f lies
on the 45 line degree in the first region, and so there is a continuum of steady states
but none is stable). It follows that if and only if K > 1 then there is convergence
to xss (|s̄|) from any xi > 0 which proves statements 1 and 3. Hence, xconv (|s̄|) = 0
[DELETE THIS:. To complete the proof for this case, note that statement (3) of the
proposition holds for xconv (|s̄|) = 0 and so xconv (|s̄|)][ADD: which] is independent of
|s̄| and K, which proves statement (4). The second case is when |s̄| = 1 (and it was
shown in the proof of Proposition 2 that Kmin (|s̄|) = 2). Here the function f (see
equation 23) starts immediately in region (2), and is above the 45 degree line if and
only if K > 2. The same arguments used in proving the previous case apply here,
with xss (|s̄|) = 1 and xconv (|s̄|) = 0.

D.4.2 The case of α < 1

The proof of statements (1)-(4) of Proposition 3 for the case α < 1 builds on a few
preliminary results and auxiliary lemmas which are presented here.
Note first that Lemmas 1 and 2 show that alienation recreates alienation. Hence,

the full dynamics can be described by the dynamics of x, the share of norm followers,
as given in equation (24). Following equation (26), it is straightforward to see that
xi+1 = f (xi;K, |s̄|) is convex within each of the first two regions and has a kink at
the border between the regions. Together with G′ (0;K, |s̄|) < 0 (see equation (25)),
this means we can define the following values of xi+1 (see Figure 7) that exhaust the

42



possible fix points, and which will be used throughout the upcoming lemmas.

x̂ ≡ {xi : xi+1 = xi and xi is in the first region} (28)

x̌ ≡ {xi : xi+1 = xi and xi is in the second region and G′ > 0}
x̃ ≡ {xi : xi+1 = xi and xi is in the second region and G′ < 0}

ẍ ≡
{
xi : (xiK)1/α = 1− |s̄|

}
(i.e., at the border between regions (1) and (2))

ẋ ≡
{
xi : (xiK)1/α = 1− |s̄| and G (xi) = 0 and G′2 (xi) < 0

}
xend ≡ {xi : xi+1 = xi = 1 } (i.e., at the endpoint)

Note that when G (ẍ) = 0 then either G′2 (xi) < 0, in which case ẍ = ẋ, or
G′2 (xi) > 0.

Lemma 9 Consider a given xi. Then G′ (xi : xi < ẍ) > G′ (xi : xi > ẍ).
Proof. Let G1, G2 and G3 denote the values of G in regions (1), (2) and (3) respec-
tively. When xi < ẍ, G1 applies, and when xi > ẍ, G2 applies. Then for a given xi,
G′1 = 1

α
K1/α (xi)

1/α−1 − 1 > 1
2α
K1/α (xi)

1/α−1 − 1 = G′2.

Lemma 10 G′ is weakly falling in |s̄| for any xi < (1 + |s̄|)α /K.
Proof. When xi < (1 + |s̄|)α /K we are in region (1) or region (2) of equation (25).
Here, dG

′
1

d|s̄| =
dG′2
d|s̄| = 0. Moreover, ẍ = (1− |s̄|)α /K decreases in |s̄|. This implies that

if |s̄| increases, region (2) expands at the expense of region (1). Then, by Lemma 9,
we get that G′ is weakly falling in |s̄|.

Lemma 11 1) If x̂ exists then it is independent of |s̄|. 2) If x̌ exists then it is weakly
increasing in |s̄|. 3) If x̃ exists it is weakly decreasing in |s̄|.
Proof. 1) By definition x̂ is in region 1. Hence G1 applies. Since G1 is independent
of |s̄| so must x̂ be. 2) By definition x̌ is in region 2. Lemma 10 together with
G (0) = 0 imply that G is weakly falling in |s̄| in region 1 and 2. Combined with the
fact that G′ (x̌) > 0 (by definition) this implies x̌ (if it exists) is weakly increasing in
|s̄|. 3) Same logic as part 2 but now with G′ (x̃) < 0.

Lemma 12 If ∃x̂ for some |s̄| then ∃x̂ for any |s̄′| < |s̄|.
Proof. G1 is independent of |s̄|. Then the fact that |s̄′| < |s̄| implies that region (1)
is broader under |s̄′|, so if ∃x̂ for some |s̄| then ∃x̂ for any |s̄′| < |s̄|.

Lemma 13 Suppose K > Kmin. Let xconv ≡ {xi : xi = min {x̂, x̌}} (when x̂ or x̌ or
both exist). Then:

1. If xi > xconv (|s̄|) there is convergence to a stable single norm steady state where
a share xss (|s̄|) > xconv (|s̄|) of the population state s̄.
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Figure 7: Some variations of the G function of equation (24), depicting the potential
fix points defined in equation (28). Note that these variations of G are not exhaustive
but are only meant to complement the proof.
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2. Otherwise, provided that @ẋ, if 0 ≤ xi < xconv (|s̄|), there is convergence to a
stable steady state where each type follows her heart (xss (|s̄|) = 0).

3. Furthermore, if ∃ẋ, then when 0 < xi < ẋ there is convergence to a stable steady
state where each type follows her heart (xss (|s̄|) = 0), and when ẋ ≤ xi < xconv
there is convergence to an unstable single norm steady state where a share ẋ
state the norm.27

4. xconv increases in |s̄|.

5. xconv decreases in K.

Proof. We start with statement 2) G′ (x̂) > 0 since G1 (0) = 0, G′1 (0) < 0 and G1

is convex. G′ (x̌) > 0 by definition. This implies x̂ and x̌ are unstable steady states.
Furthermore, they are the only unstable states.28 Hence, if x̂ exists, it must be the
smallest strictly positive steady state, and so G1 (0) = 0 and G′1 (0) < 0 imply that
∀xi < x̂ = xconv we have G (xi) < 0, i.e., xi+1 < xi. Otherwise there is no steady
state in the first region, in which case x̌ must be the smallest strictly positive steady
state. Then again G1 (0) = 0 and G′1 (0) < 0 imply that xi+1 < xi ∀xi < xconv. Thus,
the instability of xconv implies that xss (|s̄|) = 0.
1) In the proof of Proposition 2 we showed that G > 0 for some xi iff K > Kmin.

This implies x̂ or x̌ or both exist. Since G′ > 0 at both, this implies xi+1 > xi in a
neighborhood of xi > xconv, which implies convergence to a stable steady state.
3) When ∃ẋ, we know by convexity of G1 (and since the definition of x̂ requires

that G′ > 0 at x̂) that x̂ does not exist. Hence, the only possible fix points are ẋ, x̌
and xend. Note that by the definition of ẋ it must be stable in a neighborhood above
ẋ. By convexity of G1, ẋ must be unstable from below. Since there are no other
fix points below ẋ, xi < ẋ implies convergence to xss = 0. This concludes the first
subsentence. Furthermore, by instability of x̌ and stability of ẋ from above we know
that if xi ∈ ]ẋ, xconv[ , then there will be convergence to ẋ which implies the second
subsentence.
4) xconv ≡ x̂ whenever ∃x̂. From Lemma 11 we know that x̂ is independent of |s̄|

and from Lemma 12 we know it exists iff |s̄| is suffi ciently small. Hence, as |s̄| is
increased, xconv is either constant, or it makes a discrete jump to equal x̌ (which we
know exists since K > Kmin while in this scenario x̂ seizes to exist). Furthermore,
by Lemma 11 we know x̌ is increasing in |s̄|. Put together, this implies that xconv is
either constant or increasing in |s̄|.
27In line with our general treatment of unstable steady states as converging to less conformity,

statement (3) in the proposition treats this special case as one where xi, upon reaching ẋ, only
passes through it and continues to xss = 0.
28To see this note that x̃ must be stable by G′ (x̃) < 0. Furthermore, recall that @ẋ. Hence, the

only way for ẍ to be a steady state is if G (ẍ) = 0 and G′ (ẍ) > 0, which implies ẍ = x̂ (see above).
Finally, if xend exists in region 3 it must be stable since G′3 < 0 and if xend exists in region 1 or 2
then it must be that either xend = x̌ or xend = x̂.
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5) By definition of x̂ we get x̂ = K1/(α−1), which decreases in K. By defini-
tion of x̌ and using equation (24) we get an implicit expression H = (x̌K)1/α +
1 − |s̄| − 2x̌ = 0 defining x̌. Using the implicit function theorem we get dx̌/dK =

− (x̌)1/αK1/α−1/α/
(
K1/α (x̌)1/α−1 /α− 2

)
< 0 ⇔ K1/α (x̌)1/α−1 > 2α. From equa-

tion (25) this condition corresponds to the condition for G′2 > 0, which holds by the
definition of x̌. Hence xconv is locally decreasing in K. Note now that, by equation
(24), G1 and G2 are increasing in K. Hence, as K increases, we cannot switch from
xconv = x̂ to xconv = x̌. This implies that xconv is decreasing in K also globally.

Lemma 14 Suppose K > Kmin. Then there exists a stable steady state with a single
norm at xss = x̃ or at xss = 1 or at both. [ADD:No other stable steady states with a
single norm exist.]
Proof. When K > Kmin, a stable steady state must exist (see the proof of Proposition
2). All the steady states except for x̃ and 1 must be unstable since they all imply G′ > 0
on at least one side of the steady state. Hence, when K > Kmin there exists a stable
steady state at xss = x̃ or at xss = 1 or at both, and since xss 6= 0, the steady state
contains a single norm.

Lemma 15 Let p be a step function as in (6) and D as given in (4) with α > 0.
Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|. If there exists a degenerate stable steady
state for s̄′ then there exists a degenerate stable steady state for s̄ too.
Proof. The condition for existence of a degenerate stable steady state for s̄′ is K1/α ≥
1 + |s̄′| (see the definition of region 3 in equation 23). Since |s̄| ≤ |s̄′| we immediately
get that K1/α ≥ 1 + |s̄|, hence there exists a degenerate stable steady state for s̄ too.

D.4.3 Welfare results

Statement (5) of Proposition 3 is proved by Lemma 20 below. But first we present
some auxiliary results.

Lemma 16 Let p be a step function as in (6) and D as given in (4) with α > 0.
Then, in any single norm stable steady state, welfare decreases in |t− s̄|.
Proof. Consider first a degenerate stable steady state. In a degenerate stable steady
state the welfare of each individual is solely determined by her dissonance from going
to the norm, hence it is immediate that welfare decreases in the distance from the
norm. Now consider a non-degenerate stable steady state. There are two groups
of types to consider: the types close to the norm, who fully conform, and the types
far from the norm, who follow their hearts. Within the group who fully conforms,
welfare differs only due to the differences in D. As D increases in the distance to
the norm, welfare within this group is strictly decreasing in |t− s̄|. Furthermore, the
type furthest away from the norm among them is indifferent between conforming and
following her heart. The types far from the norm follow their hearts and suffer only
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the loss from social pressure, which, for p being a step function, is fixed at K. Among
them we have the indifferent type, implying that these types are ranked at the bottom
of the welfare distribution in society, and so welfare (weakly) decreases in the distance
from the norm within this group, hence decreases in |t− s̄| globally.

Definition 3 We call r (t, s̄) ∈ [0, 1] the welfare ranking of an individual of type t in
a given equilibrium with a norm at s̄, if the fraction of people in society whose welfare
is higher than that of t equals r (t, s̄).

Lemma 17 Let p be a step function as in (6) and D as given in (4) with α > 0.
Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|, such that for each norm there exists
a degenerate stable steady state (xss (|s̄| , K) = xss (|s̄′| , K) = 1). Then the welfare
distribution in the steady state corresponding to s̄ first-order stochastically dominates
the welfare distribution in the steady state corresponding to s̄′.
Proof. In a degenerate stable steady state the welfare of all individuals is solely de-
termined by their dissonance from going to the norm, and equals −D (|t− s̄|). Given
Lemma 16, a type with ranking r ≤ 1 − |s̄′| is at distance d = r from the norm in
both steady states and has the same ranking under s̄ and under s̄′, where in both cases
her welfare equals −D (d). A type with ranking 1 − |s̄′| < r < 1 − |s̄| has welfare
of −D (r) under s̄ and −D (2r − 1 + |s̄′|) < −D(r) under s̄′, because, under s̄′ this
type is at distance 2r − 1 + |s̄′| > r from the norm (as the types at one side of the
norm were already exhausted). Finally, a type with ranking r ≥ 1− |s̄| has welfare of
−D (2r − 1 + |s̄|) under s̄ and −D (2r − 1 + |s̄′|) ≤ −D (2r − 1 + |s̄|) under s̄′.

Lemma 18 Let p be a step function as in (6) and D as given in (4) with α > 0.
Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|, such that for each norm there exists
a non-degenerate stable steady state (xss (|s̄| , K) 6= 1 and xss (|s̄′| , K) 6= 1). Then
the welfare distribution in the steady state corresponding to s̄ first-order stochastically
dominates the welfare distribution in the steady state corresponding to s̄′.
Proof. From Lemma 16 we know that in both steady states welfare decreases in
the distance from the respective norm. Hence the welfare of the conformers, who
are types close to the norm, is higher than that of the non conformers, who are
types far from the norm. From Lemma 11 part (3) and the proof of Lemma 14,
we know that xss (|s̄| , K) ≥ xss (|s̄′| , K). Thus, the bottom 1 − xss (|s̄| , K) in both
welfare distributions are people who follow their heart and their welfare, which is
solely determined by the social pressure imposed on them, is −K. Right above them,
in terms of welfare, there are the xss (|s̄| , K) − xss (|s̄′| , K) types who follow their
heart under s̄′ but conform under s̄. Their welfare equals −K under s̄′ and is higher
under s̄ (otherwise they could follow their heart under s̄ too and get −K). Finally,
the top 1 − xss (|s̄′| , K) in both welfare distributions are people who conform in both
cases. If, in the steady state under s̄′, the conformers are on both sides of the norm
(as can happen for α > 1), then they are on both sides of the norm also under s̄,
which implies the same number of conformers under both norms. Hence, in both
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welfare distributions a ranking r ≤ 1 − xss (|s̄′| , K) corresponds to distance d = r
from the norm, implying the same welfare under both distributions for the type ranked
r. Otherwise, the conformers under s̄′ are only on one side of the norm, and a similar
reasoning to that of the proof to Lemma 17 applies: types with ranking r ≤ 1−|s̄′| have
the same dissonance D (r) in both steady states but are better off under s̄ because there
are less non-conformers who pressure them, and types with ranking 1−|s̄′| < r < 1−|s̄|
are strictly better off under s̄ both in terms of dissonance and social pressure.

Lemma 19 Let p be a step function as in (6) and D as given in (4) with α >
0. Consider a norm s̄ such that there exist two stable steady states for this norm,
one degenerate (xss (|s̄| , K) = 1) and one non-degenerate (xss (|s̄| , K) 6= 1). Then
the welfare distribution in the degenerate stable steady state first-order stochastically
dominates the welfare distribution in the non-degenerate stable steady state.
Proof. From Lemma 16 we get that the same welfare ranking applies to the two
welfare distributions, where at the top of the ranking are those conforming in the two
steady states, ordered by their distance from the norm, and after them the types who do
not conform in the non-degenerate stable steady state, again ordered by their distance
to the norm. The types at the top of the ranking, who conform in the two steady states,
are all better-off in the degenerate stable steady state, because, while their dissonance
is the same in both cases, they suffer from an additional social pressure in the non-
degenerate stable steady state, from the actions chosen by the non conformers. The
types at the bottom of the ranking, who conform only in the degenerate stable steady
state, are also all better-off in that case, because their choice to conform implies that
they are better-off by conforming, so for them L = D (|t− s̄|) < P (s; s′) = K,
while their loss in the non-degenerate stable steady state equals K (which is the social
pressure on the non conformers).

Lemma 20 Consider the dynamic model in (11) with p being a step function as in
(6) and D as given in (4) with α > 0. Then the welfare distribution under s̄ first-order
stochastically dominates the welfare distribution under s̄′ if and only if |s̄| ≤ |s̄′|.
Proof. Let |s̄| ≤ |s̄′|. If |s̄| = |s̄′| then symmetry implies that the welfare distributions
are the same under both norms and the proposition holds in the weak sense. Otherwise
there are two separate cases to consider. Case (i): there exists a degenerate stable
steady state for s̄′. By Lemma 15 this implies that there exists a degenerate stable
steady state for s̄ too, and by Lemma 17 we get that the welfare distribution in the
degenerate stable steady state corresponding to s̄ first-order stochastically dominates
the welfare distribution in the degenerate stable steady state corresponding to s̄′. If in
addition there exists also a non-degenerate stable steady state for one (and only one)
of the norms, then 19 implies that no further comparisons are needed (recall that in
this case we compare max {xss (|s̄| , K)} with max {xss (|s̄′| , K)}). Finally, if there
exist a non-degenerate stable steady state for each of the two norms, then Lemma
18 implies that also the welfare distribution in the non-degenerate stable steady state
corresponding to s̄ first-order stochastically dominates the welfare distribution in the
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non-degenerate stable steady state corresponding to s̄′. Case (ii): there does not
exist a degenerate stable steady state for s̄′, i.e., there exists only a non-degenerate
one, in which case there are three sub-cases: (a) For s̄ there exist two stable steady
states, one degenerate and one non-degenerate, and then by Lemmas 18 and 19 we
get that both welfare distributions under s̄ first-order stochastically dominate the one
welfare distribution under s̄′. (b) For s̄ there exists only a non-degenerate stable steady
state, and then by Lemma 18 we get that the welfare distribution under s̄ first-order
stochastically dominates the welfare distribution under s̄′. (c) For s̄ there exists only
a degenerate stable steady state. Then the ranking r that corresponds to distance d
from the norm is at least as low under s̄′ as it is under s̄ (where, recall, the lower is r
the better is the ranking), yet the welfare at this distance is lower under s̄′. This is so
because either the type at distance d conforms under s̄′, in which case her dissonance
is the same in both steady states, but she suffers from an additional social pressure
in the non-degenerate stable steady state of s̄′, from the actions chosen by the non
conformers; or the type at distance d follows her heart under s̄′, in which case her
welfare is −K, whereas in the degenerate stable steady state of s̄ all types have welfare
higher than −K (otherwise they would follow their hearts and get −K).

E Inverting societies

Let
sl ≡ s̄+ 1 and

σ ≡ s− s̄.
These notations will be useful for proofs that deal with the case in which s̄ < 0 and
y > s̄ + 1, where the distribution of actions is asymmetric around s̄, and sl then
denotes the size of the uniform part to the left of s̄, which equals the distance of s̄
from the left corner of the types distribution, −1.

E.1 Proof of Lemma 3
When D is a step function taking the value of 0 or 1 and P (s) has a unique min
point at s̄, we immediately have

s∗ (t) =

{
s̄ if 1 + P (s̄) ≤ P (t)

t if 1 + P (s̄) > P (t)
. (29)

Since, by assumption, P is increasing on each side of the norm, we get that types
suffi ciently far from the norm will state the norm and types suffi ciently close to the
norm will state their type.�

E.2 Proof of Lemma 4
If [s̄− y, s̄+ y] ∩ [−1, 1] = [s̄− y, s̄+ y], the distribution of actions is composed of a
mass of individuals at s̄ and a uniform part that is symmetric around s̄. The pressure
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that results from each of the two parts of this distribution of actions increases in the
distance from s̄ (see Lemma 5 regarding the contribution from the uniform part), and
so the lemma holds. Otherwise, assume without loss of generality that s̄ < 0 and
that all types at [−1, s̄+ y] follow their hearts, with y > s̄ + 1. The aggregate P (s)
that results from this distribution of actions can be written as

P (s) =

{Kx |s− s̄|β +K 1
2

(s+1)β+1+(s̄+y−s)β+1
β+1

if s ≤ s̄+ y

Kx |s− s̄|β +K 1
2

(s+1)β+1−(s−s̄−y)β+1

β+1
if s > s̄+ y

(30)

with

x =

(
1− y

2
− s̄+ 1

2

)
.

From the following expression of P ′(s)

P ′ (s) =


−K

(
1− y

2
− s̄+1

2

)
β (s̄− s)β−1 +K 1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β if s < s̄

K
(
1− y

2
− s̄+1

2

)
β (s− s̄)β−1 +K 1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β if s̄ < s ≤ s̄+ y

K
(
1− y

2
− s̄+1

2

)
β (s− s̄)β−1 +K 1

2
(s+ 1)β −K 1

2
(s− s̄− y)β if s > s̄+ y

(31)
it is clear that (a) P ′ (s)→ −∞ as s→− s̄ and P ′ (s)→∞ as s→+ s̄; and (b) P (s)
is decreasing in s for s < s̄ (recall that y > s̄+ 1) and is increasing in s for s > s̄+ y.
Moreover, when −1+s̄+y

2
< s ≤ s̄+ y (i.e., s in the right half of the uniform part), we

get that (s+ 1) > (s̄+ y − s) , hence P ′ (s) is positive too (this comes from the fact
that the part of P (s) that originates in the uniform part is increasing in the distance
from −1+s̄+y

2
, the center of this part). Therefore, the global min can only be found at

s ∈
[
s̄, −1+s̄+y

2

]
. In this range we have

P ′ (s) = K

(
1− y

2
− s̄+ 1

2

)
β (s− s̄)β−1 +K

1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β .

Note first that (i) if y = s̄+1, the distribution of actions is symmetric around s̄, and so
P ′ (s) ≥ 0 at the range s ∈

[
s̄, −1+s̄+y

2

]
; and (ii) if y = 1− s̄ (this is the distance from

s̄ to the furthest edge), then P ′ (s) < 0 at the range s ∈
[
s̄, −1+s̄+y

2

]
, since Lemma 5

implies that P (s) is increasing in the distance from 0 > −1+s̄+y
2

. Differentiating with
respect to y we get

dP ′ (s)

dy
=

1

2
K
[
−β (s− s̄)β−1 − β (s̄+ y − s)β−1

]
< 0 (32)

This inequality, together with i) and ii), then implies that ∃y ∈ ]s̄+ 1, 1− s̄[ , denoted
by ymax (s̄) , such that P ′ (s) ≥ 0 at the whole range s ∈

[
s̄, −1+s̄+y

2

]
if and only if y ≤

ymax (s̄) .29 We will now show that ymax (s̄) ≥ 1, by showing that for y = 1 and every

29This already takes into account the fact that the range
[
s̄, −1+s̄+y

2

]
is itself increasing in y.
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given s̄, P ′ (s) ≥ 0 at the whole range s ∈
[
s̄, −1+s̄+y

2

]
.

Rewriting the expression for P ′(s) we get

P ′ (s) =
1

2
K
[
(2− y − sl) βσβ−1 + (sl + σ)β − (y − σ)β

]
. (33)

Differentiating with respect to sl we get

dP ′ (s)

dsl
=

1

2
K
[
−βσβ−1 + β (sl + σ)β−1

]
≤ 0 (34)

This inequality suggests that P ′(s) is minimal when sl is maximal (i.e., equals 1− ε,
where s̄ = −ε → 0). Note that in this case σ → 0, as the range of s shrinks to be
s ∈

[
−ε, −ε

2

]
. Plugging s = −λε into (33), and letting λ ∈ [0.5, 1], we then have

P ′ (s) =
ε

2
β (−λε+ ε)β−1 +

1

2
(−λε+ 1)β − 1

2
(−ε+ 1 + λε)β

=
εβ

2
β [(1− λ)]β−1 +

1

2
(1− λε)β − 1

2
[1− (1− λ) ε]β ,

we get30

P ′ (s) =
εβ

2
β [(1− λ)]β−1 +

1

2

[
β (1− 2λ) ε+O(ε2)

]
and so, if β < 1

lim
ε→0

P ′ (s) = lim
ε→0

εβ

2
β [(1− λ)]β−1 = 0+

and if β = 1

lim
ε→0

P ′ (s) =
ε

2
[1 + 1− 2λ] = 0+.

This means that even for the maximal sl, P ′(s) is positive everywhere when y = 1,
implying that ymax (s̄) ≥ 1.�

E.3 Proof of Proposition 4
The proof of the proposition builds on a few auxiliary lemmas that are outlined first.
The actual proof of the proposition follows after the lemmas.

Lemma 21 If β = 1 then ymax (s̄) = 1 ∀s̄.
Proof. Lemma 4 implies that ymax (s̄) ≥ 1. Plugging in β = 1 and letting s→+ s̄ in
equation 31 yields P ′ (s) = K(1− y). This expression is negative for y > 1, which, by
the definition of ymax (s̄) implies that ymax (s̄) ≤ 1. Thus ymax (s̄) = 1 ∀s̄.

Lemma 22 Suppose that β < 1 and sl ∈ [0, 1] . Then (1− sl) β − 2 + (sl + 1)β < 0.

30In the following expression, O(ε2) is the standard mathematical notation for an element in the
order of ε2.
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Proof. (1− sl) β ≥ 0 and 2 − (sl + 1)β ≥ 0. However, we have (sl + 1)β < sl + 1 =

2− (1− sl) < 2− (1− sl) β, and so (1− sl) β −
[
2− (sl + 1)β

]
< 0.

Lemma 23 Suppose β ≤ 1. Let s̄ ≤ 0 and y ≤ ymax (s̄), and suppose that all types
t ∈ [s̄− y, s̄+ y] ∩ [−1, 1] follow their hearts and the rest state s̄. If type t = s̄ + y
is indifferent between the two corner solutions s∗ (t) = s̄ and s∗ (t) = t, then for any
type the best response is

s∗ (t) =

{
s̄ if |t− s̄| > y

t otherwise
.

Proof. For types with t > s̄ the result follows from Lemmas 3 and 4. As for
types t < s̄, if [s̄− y, s̄+ y] ∩ [−1, 1] = [s̄− y, s̄+ y] then the distribution of ac-
tions is symmetric around s̄ and the result follows from P then being symmetric and
monotonically increasing in |s− s̄|. Otherwise, by construction all types at [−1, s̄+ y]
follow their hearts, where y > s̄ + 1. We need to show that indeed all types with
t < s̄ have strict preference for the solution s∗ (t) = t. Since we know from Lemma
4 that P is strictly increasing in the distance from s̄ while D is fixed, it is suffi -
cient to show that s∗ (t) = t for the type t = −1. Looking at t = −1, the fact
that P gets its global min point at s̄ and equation (29) imply that it is suffi cient to
show that 1 + P (s̄) − P (−1) ≥ 0. Furthermore, note that the indifference of type
t = s̄ + y implies that 1 + P (s̄) − P (s̄+ y) = 0. Therefore, it is suffi cient to show
that P (s̄+ y) ≥ P (−1):

P (s̄+ y) =Kxyβ +K
1

2

(s̄+ y + 1)β+1

β + 1
,

P (−1) =Kx |−1− s̄|β +K
1

2

(s̄+ y + 1)β+1

β + 1
,

and so P (s̄+ y) ≥ P (−1) if and only if y ≥ s̄+ 1, which holds by assumption.

Lemma 24 Let s̄ ∈ [−1, 1] and let D be given by (12), and suppose that β ≤ 1. For
every y ≤ ymax (s̄), let S(y) denote a distribution of actions in society such that all
types t ∈ [s̄− y, s̄+ y] ∩ [−1, 1] follow their hearts while the rest choose s̄. Denote by
K(y) the value of K that, given the pressure function P (s) that results from S (y),
implies indeed s∗(t) = s̄ for all types with |t− s̄| > y and s∗(t) = t for all types with
|t− s̄| ≤ y. Then, when β < 1, K(y) has either a U-shape or a W -shape, and when
β = 1, K (y) is monotonically decreasing.
Proof. Without loss of generality, let s̄ ≤ 0. The given distribution of actions and the
fact that y ≤ ymax (s̄) imply by Lemma 4 that P is increasing in |σ| (recall σ ≡ s− s̄).
Moreover, from Lemma 3 we know that

s∗ (t) =

{
s̄ if 1 + P (s̄) ≤ P (t)

t if 1 + P (s̄) > P (t)
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which implies types suffi ciently far from the norm will state the norm and types suffi -
ciently close to the norm will state their type. We are looking for the value of K for
which the type who is indifferent between the two options is at distance y from s̄. I.e.,
1 + P (s̄) = P (s̄+ y) . Lemma 23 implies that this distance y applies to both sides.
However, as y grows from 0, we move from a region where the uniform part is symmet-
ric around s̄ (when y ≤ sl) to a region where it is asymmetric (when y ∈ [sl, 2− sl]).
Therefore the analysis will be first performed separately for each region, and then the
two analyses will be combined.
Region (1): y ≤ sl
In this region the uniform part of S is symmetric around the norm and so the

share of individuals following the norm is x = 1− y and P (σ) is given by:

P (σ) =

{Kx |σ|β +K 1
2

(|σ|+y)β+1+(y−|σ|)β+1
β+1

if |σ| ≤ y

Kx |σ|β +K 1
2

(|σ|+y)β+1−(|σ|−y)β+1

β+1
if |σ| > y

(35)

The type who is indifferent between the two options is at distance y from s̄, i.e.,
1 + P (0) = P (y) , if

1/K +
1

2

2yβ+1

β + 1
= (1− y) yβ +

1

2

(2y)β+1

β + 1

⇒ 1/K = (1− y) yβ +
(
2β − 1

) yβ+1

β + 1
. (36)

Region (2): y ∈ [sl, 2− sl]
In this region the uniform part of S is asymmetric around the norm, and the

share of individuals following the norm is x =
(
1− y

2
− sl

2

)
. Rewriting (30) we get

that P (σ) is given by:

P (σ) =

{Kx |σ|β +K 1
2

(sl+σ)β+1+(y−σ)β+1

β+1
if σ ≤ y

Kx |σ|β +K 1
2

(sl+σ)β+1−(σ−y)β+1

β+1
if σ ≥ y

.

The type who is indifferent between the two options is at distance y from s̄, i.e.,
1 + P (0) = P (y) , if

1/K +
1

2

(sl)
β+1 + (y)β+1

β + 1
=
(

1− y

2
− sl

2

)
yβ +

1

2

(sl + y)β+1

β + 1
⇒

1/K =
(

1− y

2
− sl

2

)
yβ +

1

2

(sl + y)β+1 − (sl)
β+1 − yβ+1

β + 1
.(37)

Joining the two regions:
Following equations 36 and 37, we can get the following expression for 1

K
as a
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function of y.

1

K
(y) =

{ (1− y) yβ +
(
2β − 1

)
yβ+1

β+1
if y ≤ sl(

1− y
2
− sl

2

)
yβ + 1

2
(sl+y)β+1−(sl)

β+1−yβ+1
β+1

if y ∈ [sl, 2− sl]
(38)

Differentiating in both regions yields

d(1/K)

dy
=

{
(1− y) yβ−1β − yβ

(
2− 2β

)
if y ≤ sl(

1− y
2
− sl

2

)
βyβ−1 − yβ + 1

2
(sl + y)β if y ∈ [sl, 2− sl]

. (39)

When β = 1 we get that d(1/K)
dy

= 1 − y in both regions, hence 1/K is a strictly
increasing function of y in the range [0, 1] (and K (y) is strictly decreasing in y ∈
[0, 1]). Since in this case ymax = 1 (see Lemma 21), we get that the lemma holds for
β = 1. We continue now with the case of β < 1. Differentiating once more

d2(1/K)

dy2

=

{ −yββ + (1− y) yβ−2 (β − 1) β − βyβ−1
(
2− 2β

)
< 0 if y ≤ sl(

1− y
2
− sl

2

)
β (β − 1) yβ−2 − 3

2
βyβ−1 + 1

2
β (sl + y)β−1 < 0 if y ∈ [sl, 2− sl]

(40)

so that 1/K is concave in y in both regions. Moreover, it is easy to verify that 1
K

(y) is
continuous at y = sl, the border between the two regions. If s̄ = 0 (sl = 1), then only
the first region applies. It is easy to verify that in the first region we get the following{d(1/K)

dy
> 0 as y → 0

d(1/K)
dy

< 0 as y → 1
,

and so in this case 1
K

(y) is hill-shaped. Otherwise s̄ < 0 (sl < 1). For the applicability
of 1

K
(y) in this lemma we require that y ≤ ymax (s̄). When s̄ < 0 we still have

d(1/K)
dy

> 0 as y → 0, but sl < 1 ≤ ȳ ≡ min {ymax (s̄) , 2− sl} (recall that from Lemma
4 we know that ymax (s̄) ≥ 1), and so region 2 applies to large enough values of y.
Moreover, d2(1/K)

dy2
< 0 implies that d(1/K)

dy
is strictly decreasing in y. Hence, ȳ ≥ 1

implies that d(1/K)
dy
|y=ȳ ≤ d(1/K)

dy
|y=1 = 1

2

[
(1− sl) β − 2 + (sl + 1)β

]
, which by Lemma

22 is strictly negative. Hence we know that 1
K

(y) has a positive slope at y → 0 and
a negative slope at y = min {ymax (s̄) , 2− sl}, and in between it is concave in each of
the regions. It thus follows that 1

K
(y) has at least one and at most two max points

and that these max points are internal, i.e. 1
K

(y) is either hill-shaped or M-shaped,
and so K(y) is either U-shaped or W -shaped.

Lemma 25 Let D be given by (12) and let β < 1. Suppose there exists a value of K
such that a single norm equilibrium at s̄ ∈ [−1, 1], where all types t ∈ [s̄− y, s̄+ y] ∩
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[−1, 1] follow their hearts while the rest choose s̄, exists for some y > ymax (s̄). Then
K ≥ Kmin (|s̄|).
Proof. Without loss of generality, let s̄ ≤ 0. Since the existence of the equilibrium
that is described in the lemma requires that t = s̄ + y will be indifferent between
following her heart and choosing s̄, and since y > ymax (s̄) ≥ 1 ≥ sl, the value of
K that may allow such an equilibrium (if it indeed exists) is given by equation (37),
with first and second derivatives as in the second lines of equations (39) and (40)
respectively. Then, the fact that d2(1/K)

dy2
< 0 implies that the value of d(1/K)

dy
at any

y > ymax (s̄) is strictly smaller than d(1/K)
dy
|y=1 = 1

2

[
(1− sl) β − 2 + (sl + 1)β

]
, which

by Lemma 22 is negative. Hence, 1
K

(y) is decreasing when y > ymax (s̄), implying
that for any y > ymax (s̄) , an equilibrium as described in the lemma requires K(y) >
K(ymax (s̄)) ≥ Kmin (|s̄|) .

Lemma 26 Let D be given by (12) and suppose that β ≤ 1. Then the only possible
distribution of actions in a single norm equilibrium at s̄ ∈ [−1, 1] is one where all
types t ∈ [s̄− y, s̄+ y]∩[−1, 1] for some y > 0 follow their hearts while the rest choose
s̄.
Proof. First note that if D is a step function as in (12), then for any t ∈ [−1, 1] ,
either s∗ (t) = t or s∗ (t) ∈ arg min (P ). Then, the existence of a single norm equi-
librium at s̄ implies that (i) s̄ ∈ arg min (P ) and (ii) s∗ (t) = t for every t for whom
s∗ (t) 6= s̄. Together with the uniform distribution of types, this implies that the dis-
tribution of actions can contain only uniform parts apart from the peak at s̄.
Moreover, the continuity of P (s) implies that for types suffi ciently close to s̄,

1 + P (s̄) > P (t) (since then P (t)→ P (s̄)), and so the distribution of actions must
necessarily contain a uniform part that is attached to s̄. We will now show that
there can be no other uniform parts in the distribution of actions. Without loss of
generality, let s̄ ≤ 0, and suppose that there exist (one or more) uniform parts that
are detached from s̄. Consider the rightmost uniform part. Since P is continuous,
at the left edge of this specific uniform part there must be a type t who is indifferent
between s∗ (t) = t and s∗ (t) = s̄, i.e., for whom 1 + P (s̄) = P (t) . Note also that
the sources of the pressure P (s) can be divided into two sections —those that compose
the rightmost uniform part, and those that lie to the left of this uniform part. The
sources of the first section impose the same pressure on the type at the left edge of
the rightmost uniform part and on the type at the right edge of this uniform part (due
to symmetry). The sources of the second section impose more pressure on the latter,
because this type is farther away from the norm. Together with the fact that D is
the same for both types, this implies that 1 + P (s̄) < P (t) for this latter type, in
contradiction to the assumption that this type chooses s∗ (t) = t. Since a rightmost
and detached uniform part cannot exist this implies that no detached uniform part
can exist to the right of s̄. A similar argument applies to the left of s̄ and hence we
have shown that the only uniform part that can exist is attached to s̄.
Finally, we need to show that this uniform part can be written as [s̄− y, s̄+ y] ∩
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[−1, 1] for some y, which boils down to showing that it cannot be asymmetric if it
does not touch any of the edges of the type distribution. I.e., this part cannot be
[s̄− y1, s̄+ y2] ⊂ [−1, 1] where y1, y2 > 0 and y1 6= y2. Suppose to the contrary that
this case holds. Then the aggregate pressure P (s) is given by:

P (σ) =


Kx |σ|β +K 1

2
(σ+y1)β+1+(y2−σ)β+1

β+1
if − y1 ≤ σ ≤ y2

Kx |σ|β +K 1
2

(y2−σ)β+1−(−y1−σ)β+1

β+1
if σ < −y1

Kx |σ|β +K 1
2

(σ+y1)β+1−(σ−y2)β+1

β+1
if σ > y2

(41)

where x = y1+y2
2
. Moreover, both the type t1 = s̄ − y1 and the type t2 = s̄ − y2 are

indifferent between s∗ (t) = t and s∗ (t) = s̄. Hence it must hold simultaneously that
1 + P (0) = P (−y1) and 1 + P (0) = P (y2), i.e., P (−y1) = P (y2) . Substituting
σ = −y1 and σ = y2 in equation (41) we get

Kxyβ1 +K
1

2

(y2 + y1)β+1

β + 1
= Kxyβ2 +K

1

2

(y2 + y1)β+1

β + 1

⇒ yβ1 = yβ2

which contradicts y1 6= y2.

Lemma 27 Suppose β ≤ 1. Kmin (|s̄|) is weakly decreasing in |s̄|.
Proof. We start with the case β < 1. First note that Kmin is never found on the
border between the regions (1) and (2),31 since d(1/K)

dy
|y→+sl is strictly greater (unless

sl = 0) than d(1/K)
dy
|y→−sl. We can therefore rewrite equation (38) as a function of s̄

for the two regions and differentiate 1/K w.r.t. s̄. This yields

d (1/K)

ds̄
=

{
0 if y ≤ s̄+ 1

−yβ

2
+ 1

2
(s̄+ y + 1)β − 1

2
(s̄+ 1)β if y ∈ [s̄+ 1,min {ymax (s̄) , 1− s̄}]

(42)

d2 (1/K)

ds̄2
=

{
0 if y ≤ s̄+ 1

1
2
β (s̄+ y + 1)β−1 − 1

2
β (s̄+ 1)β−1 if y ∈ [s̄+ 1,min {ymax (s̄) , 1− s̄}]

(43)

Note that d(1/K)
ds̄
|y→+s̄+1 =

(
2β−1 − 1

)
(s̄+ 1)β < 0 and d2(1/K)

ds̄2
≤ 0. These results

imply that 1
K

(y) is constant in s̄ in the first region and is strictly decreasing in s̄ in
region (2) (note that this does not violate the continuity of 1

K
(y) as can be verified by

plugging y = sl in equation (38)). Hence, since we have been analyzing the case of
s̄ ≤ 0, more generally K(y) is weakly decreasing in |s̄|. In particular Kmin is weakly
decreasing in |s̄| —it stays constant if Kmin is achieved in region (1) both before and
after the change in |s̄|, and is strictly decreasing if Kmin is achieved in region (2) after
the change in |s̄|.
31These regions are defined in the proof of Lemma 24.
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Now for the case β = 1. Plugging β = 1 into equation (38) we get that both regions
are independent of s̄. Hence, Kmin is independent of s̄.

Proof of Proposition 4
Lemma 24 implies that for any s̄ ∈ [−1, 1], one can construct a distribution of

stances, denoted by S(y), such that all types t ∈ [s̄− y, s̄+ y] ∩ [−1, 1] for some
y ≤ ymax (s̄) follow their hearts while the rest choose s̄, if a suitable value of K is
chosen. This means S(y) forms a single norm equilibrium. Moreover, this lemma
says that K(y), the value for which this single norm equilibrium exists for a given y,
is either U-shaped or W-shaped as a function of y when β < 1; and K(y) is strictly
decreasing in y with a min point at y = ymax when β = 1. When y → 0 we have

lim
y→0

1/K = lim
y→0

{
(1− y) yβ +

(
2β − 1

) yβ+1

β + 1

}
= 0,

so that K(y)→∞. Let Kmin (|s̄|) denote the minimal value of K(y). It thus immedi-
ately follows that for K ≥ Kmin (|s̄|) there exists a fix point y while for K < Kmin (|s̄|)
there does not. This proves the if part of statement (1). As for the only if part of the
statement, note that Lemma 26 implies that in any single norm equilibrium, all types
t ∈ [s̄− y, s̄+ y]∩ [−1, 1] for some y < 1+ |s̄| follow their hearts while the rest choose
s̄. It thus suffi ces to show that if such an equilibrium exists for some y > ymax (s̄), then
still K ≥ Kmin (|s̄|). For β < 1 this is proved in Lemma 25. For β = 1 we know from
Lemma 21 that ymax = 1. Then, when y > ymax = 1, no K can sustain a single norm
equilibrium at s̄. This can be seen by setting β = 1 and letting s →+ s̄ in equation
31, and noting that, for y > 1, s̄ is not the global min point of P and so cannot be
the norm given that D is a step function. As for statement (2) of the proposition,
the fact that Kmin is weakly decreasing in |s̄| follows directly from Lemma 27.�

E.4 Proof of Proposition 5
The proof of the proposition builds on a few auxiliary lemmas, and on expressions
within these lemmas, that are outlined first. The actual proof of the proposition
follows after the lemmas.

Lemma 28 Suppose β ≤ 1. Suppose in some generation i there exists a cutoff dis-
tance from the norm yi, such that all types in that generation that fulfill |t− s̄| > yi
follow the norm and all types fulfilling |t− s̄| ≤ yi follow their hearts and that
yi ≤ ymax (s̄). Then there exists a cutoff yi+1 in the next generation, such that all
types that fulfill |t− s̄| > yi+1 follow the norm and all types that fulfill |t− s̄| ≤ yi+1

follow their hearts. Furthermore yi+1 is an increasing function of yi.
Proof. When yi ≤ ymax (s̄) then by Lemma 4 P is increasing with distance from
s̄. Since D is a fixed cost it implies that types suffi ciently far from s̄ follow s̄ and
types suffi ciently close follow their t (note that this cutoff may be such that all types
choose s = t). By Lemma 23 we know that if the cutoff type t = s̄+ yi+1 is such that
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s̄− yi+1 < −1 then type t = −1 strictly prefers stating her type. This implies that we
only need to focus on the indifferent type t > s̄. The indifferent type (which we define
as tc ≡ s̄+ yi+1) is such that

L (tc, tc) = Pi+1 (tc) = Pi+1 (s̄) +D (tc, s̄) = L (s̄, tc) .

Define
F ≡ D (s̄, tc) /K + Pi+1 (s̄) /K − Pi+1 (tc) /K = 0.

Then F = 0 implicitly gives us yi+1 as a function of yi). For a given yi, F can take
one of the following forms:

F = (44)

F1 ≡ 1
K

+1
2

(s̄+1)β+1+(yi)
β+1

β+1
−1

2

[
(1− yi − s̄) (yi+1)β + (s̄+yi+1+1)β+1+(yi−yi+1)β+1

β+1

]
if yi ≥ yi+1,s̄− yi<-1

F2 ≡ 1
K

+
yβ+1i

β+1
−
[
(1− yi) (yi+1)β + 1

2
(yi+1+yi)

β+1+(yi−yi+1)β+1

β+1

]
if yi ≥ yi+1, s̄− yi ≥ -1

F3 ≡ 1
K

+1
2

(s̄+1)β+1+(yi)
β+1

β+1
−1

2

[
(1− yi − s̄) (yi+1)β + (s̄+yi+1+1)β+1−(yi+1−yi)β+1

β+1

]
if yi ≤ yi+1,s̄− yi<-1

F4 ≡ 1
K

+
yβ+1i

β+1
−
[
(1− yi) yβi+1 + 1

2
(yi+1+yi)

β+1−(yi+1−yi)β+1
β+1

]
if yi ≤ yi+1, s̄− yi ≥ -1

Note that when s̄ − yt → −1 then F1 = F2 and F3 = F4; that when yi+1 → yi
then F1 = F3 and F2 = F4; and finally that when s̄ − yi → −1 and yi+1 → yi then
F1 = F3 = F2 = F4. Hence, since each of F1, F2, F3 and F4 is continuous then F
is a continuous function and hence yi+1 is a continuous function of yi. This implies
that, if yi+1 is an increasing function yi for each of F1, F2, F3 and F4, then yi+1 is an
increasing function of yi also globally. By the implicit function theorem we have

dyi+1

dyi
= − Fyi

Fyi+1
.

Note that the bracket in each F equals P (s) |s=yi+1 , which implies that

Fyi+1 = − dP

dyi+1

= −dP
ds
|s=yi+1 , (45)

which we know is negative by Lemma 4. Hence, if Fyi is positive then
dyi+1
dyi

is positive.

Fyi =


1
2

(yi)
β + 1

2
(yi+1)β − 1

2
(yi − yi+1)β if yi ≥ yi+1, s̄− yi < −1

yβi + yβi+1 − 1
2

(yi+1 + yi)
β − 1

2
(yi − yi+1)β if yi ≥ yi+1, s̄− yi ≥ −1

1
2
yβi + 1

2
yβi+1 − 1

2
(yi+1 − yi)β if yi < yi+1, s̄− yi < −1

yβi + yβi+1 − 1
2

(yi+1 + yi)
β − 1

2
(yi+1 − yi)β if yi > yi+1, s̄− yi > −1

From this expression one can see that Fyi is strictly positive on all rows: the first and
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third row trivially follow from 1
2

(yi)
β > 1

2
(yi − yi+1)β and the second and fourth row

follow since 1
2
yβi + 1

2
yβi+1 ≥ 1

2
(yi+1 + yi)

β and 1
2
yβi >

1
2

(yi − yi+1)β.

Lemma 29 Suppose β ≤ 1. Then:

1. ymax (s̄) (from Lemma 4) is weakly increasing in |s̄|.

2. Let K(y) be implicitly given by equation (37) and let ỹ denote an implicit so-
lution to this equation for a given value of K. Then if K ′(ỹ) > 0, ỹ is weakly
increasing in |s̄|, and if K ′(ỹ) < 0, ỹ is weakly decreasing in |s̄|

Proof. ymax (s̄) is the maximum value of y such that P (s) is monotonically increasing
in |s− s̄|. In Lemma 4 we show that it is unique for a given s̄, such that P (s)
is monotonically increasing if and only if y ≤ ymax (s̄). For β = 1 we know from
Lemma 21 that ymax = 1 ∀s̄. For β < 1 we will show that ymax (sl) is decreasing in
sl (recall that sl ≡ s̄ + 1), which is equivalent to the first statement in the lemma.
Suppose that sl is given, and that y = ymax (sl). It follows then that ∃s ∈ [−1, 1]
such that P ′(s) = 0. If we then increase sl by some ε while keeping y = ymax (sl),
we get by equation (34) that ∃s ∈ [−1, 1] such that P ′(s) < 0, implying that P (s)
is not monotonically increasing in |s− s̄| for any y ≤ ymax (sl). This means that
ymax (sl + ε) < ymax (sl), i.e., ymax (s̄) is increasing in |s̄| as in statement (1).
2) Equation (37) depicts the functionK(y) in region (2) (as defined in Lemma 24).

From the proof of Lemma 24 we know that if β < 1 then K(y) is weakly decreasing in
|s̄| and if β = 1 then K(y) is constant in |s̄|, and this holds in particular for region
(2). It thus follows that, for a given value of K, any implicit solution ỹ for which
K ′(ỹ) > 0 is weakly increasing in |s̄|, and any implicit solution ỹ for which K ′(ỹ) > 0
is weakly decreasing in |s̄|.

Proof of Proposition 5
1) Recalling that F = 0 in equation (44) implicitly gives us yi+1(yi), we can see

in that equation that when yi = 0, the only way for F to equal zero is to have
F = F4 = 1/K − yβi+1, implying that yi+1(0) > 0.32 Lemma 28 further shows that
yi+1 is an increasing function of yi. If K < Kmin (|s̄|) , we know from Lemma 24
that no steady state exists. Otherwise, if K ≥ Kmin (|s̄|) , then by Lemma 24 we
know that a steady state exists (at least one). Next, note that F in equation (44) is
strictly decreasing in K (this applies to F1, F2, F3 and F4). This implies that FK < 0,
which together with Fyi+1 < 0 (see equation 45) implies that dyi+1

dK
= − FK

Fyi+1
< 0,

i.e., that the function yi+1(yi) goes down when K increases. This means that when
K < Kmin (|s̄|) , the function yi+1(yi) always stays above the 45 degree line (i.e. the
line that implies yi+1 = yi); when K = Kmin (|s̄|) the function yi+1(yi) is tangent to
the 45 degree line, and whenK > Kmin (|s̄|) the function yi+1(yi) crosses the 45 degree

32To see this note that when yi = 0, F4 and F2 are the only relevant cases and that if F = F2 then
by construction it must be that yi+1 = 0 implying F = F2 ≡ 1/K 6= 0, which contradicts F = 0.
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line at least once. It thus follows that when K = Kmin (|s̄|), any steady state would
not be stable, as there can be no convergence to it from the right. Furthermore, if
K > Kmin (|s̄|), it implies together with yi+1 (0) > 0 that there must be at least one
stable steady state, as there is at least one point where the function yi+1(yi) crosses
the 45 degree line, starting above it and continuing below it. Denoting the leftmost
stable steady state by yss and min {y (Kmin (s̄))} by ymin (s̄) (note that y (Kmin (s̄))
is unique if K(y) is U -shaped and may have at most two solutions when it is W -
shaped). Then we know that yss ≤ ymin (s̄) because our analysis up till now implies
that yi+1(ymin (s̄)) < ymin (s̄).33 From yi+1 (0) > 0 we know that yss 6= 0, and since
yss ≤ ymin (s̄) , it follows that xss ∈ ]0, 1[.

2) Let now K > Kmin (|s̄|) and take a steady state, be it stable or unstable. To
verify stability we need to compute dyi+1/dyi at the steady state —it is stable from
both sides if and only if the derivatives are smaller than 1. To simplify calculations,
note first that in steady states, where yi+1 = yi, we get that dF1

dyi
= dF3

dyi
and dF2

dyi
= dF4

dyi
,

which means that we can work solely with F3 and F4, depending on the region of y,
as defined in Lemma 24.34 If the steady state falls in the first region, where y < sl,
then F4 applies. There we have

dyi+1

dyi
=− Fyi

Fyi+1

=−
yβt + yβt+1 − 1

2
(yt+1 + yt)

β − 1
2

(yt+1 − yt)β

−
[
(1− yt) βyβ−1

t+1 + 1
2

(yt+1 + yt)
β − 1

2
(yt+1 − yt)β

] (46)

=
2yβi − 2β−1yβi[

(1− yi) βyβ−1
i + 2β−1yβi

]
which is strictly smaller than 1 iff

2yβi − 2β−1yβi < (1− yi) βyβ−1
i + 2β−1yβi

yi<
β

(2− 2β + β)
.

One can verify that β

(2−2β+β)
is the FOC solution in region (1) (to see this, one can

equate the first part of equation (39) to 0 and solve for y). From Lemma 24 we know
that this is the only local extremum in region (1) and that this is a minimum point.
Hence, in this region, a steady state yi is stable if and only if dK

dy
|yi < 0. If instead

33Note that ymin (s̄) is a steady state when K = Kmin (|s̄|), in which case yi+1(ymin (s̄)) = ymin (s̄).
As K is further increased, yi+1(ymin (s̄)) goes down.
34Unless the steady state falls exactly at the border between the two regions, where y = sl, in

which case there is convergence to this steady state only from one side.
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the steady state falls in the second region, where y > sl, then F3 applies. There

dyi+1

dyi
=− Fyi

Fyi+1

=−
1
2
yβt + 1

2
yβt+1 − 1

2
(yt+1 − yt)β

−
[(

1− yt
2
− (s̄+1)

2

)
βyβ−1

t+1 + 1
2

(s̄+ yt+1 + 1)β − 1
2

(yt+1 − yt)β
] (47)

=
yβi[(

1− yi
2
− (s̄+1)

2

)
βyβ−1

i + 1
2

(s̄+ yi + 1)β
]

which is smaller than 1 iff

(1− yi − s̄) βyβ−1
i + (s̄+ yi + 1)β − 2yβi > 0.

This inequality (short of a factor of 1/2) corresponds to d(1/K)/dy being positive in
the second region, as can be seen in the second region of equation (39). That is, in
this region too, a steady state yi is stable if and only if dKdy |yi < 0. Finally, we know
that in steady states, equation (38) holds. If the steady state is in region (1) of this
equation, then it is independent of s̄. Otherwise the steady state is in region (2).
Then part (2) of Lemma 29 says that if in a steady state yi we have K ′(yi) > 0, then
yi is increasing in |s̄|, and if we have K ′(yi) < 0, yi is decreasing in |s̄| . Therefore, in
all stable steady states we get that yi is weakly decreasing in |s̄| , implying that the
share of norm conformers xss (|s̄|) is weakly increasing in |s̄|.

3) Since K > Kmin (|s̄|) is given, we know from the proof of statement (1) that
there exists a stable steady state with a single norm s̄ such that there is convergence
to it from any yi < yss. To show convergence to a stable steady state from the right, let
yconv ≡ min {yuss, ymax (|s̄|)}, where yuss is the rightmost steady state in [0, ymax (|s̄|)]
that is unstable from both sides, if such a one exists. Suppose yuss does not exist,
so that yconv = ymax (|s̄|). Then either there is a unique, and stable, steady state
yss, and therefore yi+1 < yi ∀yi ∈ ]yss, ymax (|s̄|)], implying convergence to yss; or,
there may be steady states in ]yss, ymax (|s̄|)] that are unstable only from one side,
in which case yi+1 < yi in their neighborhood, implying once again convergence to
yss. Otherwise yconv = yuss, and the complete instability of yuss implies that when
yi
−→ yuss, yi+1 < yi, and so there is convergence to a stable steady state from any

yi < yuss.
35

4) Revisiting Lemma 29, part (1) of that lemma implies that yconv (|s̄|) is increasing
in |s̄| whenever yconv = ymax (|s̄|) . If instead yconv = yuss, then it was shown in the

35There may be two stable steady states to the left of yuss, with convergence from small values of
yi to the first steady state and from large values of yi to the second steady state, but this statement,
and hence statement (3) of the proposition, holds in this case too.
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proof to statement (2) of this proposition that yconv (|s̄|) is weakly increasing in |s̄|.
This concludes the proof.�
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