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I Introduction

In his presidential address, Cochrane (2011) argues the “cross-section” of the expected

return is in disarray. Harvey et al. (2016) identify more than 300 published factors which

have predictive power for the cross section of expected returns.1 Many economic models,

such as the consumption CAPM of Lucas Jr (1978), Breeden (1979), and Rubinstein

(1976), instead predict only a small number of factors as being important for the cross

section of expected return.

Researchers typically employ two methods to identify return predictors: (i)

(conditional) portfolio sorts based on one or multiple characteristics such as size or

book-to-market; (ii) linear regression in the spirit of Fama and MacBeth (1973). Both

methods have many important applications, but they fall short in what Cochrane (2011)

calls the multidimensional challenge: “[W]hich characteristics really provide independent

information about average returns? Which are subsumed by others?” Both methods are

subject to the curse of dimensionality when the number of characteristics is large relative

to the number of stocks, they make strong functional form assumptions, and they are

sensitive to outliers.2 Cochrane (2011) speculates, “To address these questions in the zoo

of new variables, I suspect we will have to use different methods.”

We propose a non-parametric methodology to determine which firm characteristics

provide independent information for the cross section of expected returns without

imposing strong functional forms. We estimate smooth functions over intervals (knots) of

the distribution of many firm characteristics to allow for non-linearities. Specifically, we

use a group LASSO (least absolute shrinkage and selection operator) procedure suggested

by Huang, Horowitz, and Wei (2010). This procedure achieves two goals: (i) model

selection: which characteristics have incremental predictive power for expected returns,

given the other characteristics; (ii) non-parametric estimation: estimating the effect of

characteristics on returns non-parametrically. In our empirical application, we estimate

quadratic splines.

1Figure 2 documents the number of discovered factors over time.
2We discuss these and related concerns in Section II and compare current methods to our proposed

framework in Section III.
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We estimate our model on 24 characteristics including size, book-to-market, beta, and

other prominent variables and anomalies on a sample period from July 1963 to June 2015.

Only 8 variables, including size, idiosyncratic volatility, and return-based predictors, have

independent explanatory power for expected returns for the full sample and all stocks

using ten knots for interpolation. We find similar results when we split the sample and

estimate the model in the early or later part. For stocks whose market capitalization

is above the 20% NYSE size percentile, only book-to-market, investment, idiosyncratic

volatility, and past returns remain significant return predictors.

We compare the out-of-sample performance of the non-parametric model to a linear

model. We estimate both models over a period until 1990 and select significant return

predictors. We then create rolling monthly return predictions and construct a hedge

portfolios going long stocks with the 10% highest predicted returns and shorting stocks

with the 10% lowest predicted returns. The non-parametric model generates an average

Sharpe ratio of 1.72 compared to 0.97 for the linear model. The linear model selects

substantially more characteristics in sample but performs worse out of sample.

We also study whether the predictive power of characteristics for expected returns

varies over time. We estimate the model using 120 months of data on all characteristics

we select in our baseline analysis and then estimate rolling one-month-ahead return

forecasts. We find substantial time variation in the predictive power for expected returns.

Momentum returns conditional on other return predictors vary substantially over time.

For example, we also find a momentum crash similar to Daniel and Moskowitz (2016) as

past losers appreciated during the recent financial crisis.

A. Related Literature

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and

Mossin (1966) predicts an asset’s beta with respect to the market portfolio is a

sufficient statistic for the cross-section of expected returns. Fama and MacBeth (1973)

provide empirical support for the CAPM. Subsequently, researchers identified many

variables such as size (Banz (1981)), the book-to-market ratio (Rosenberg et al. (1985)),

leverage (Bhandari (1988)), or earnings-to-price ratios (Basu (1983)) contain additional

3



independent information for expected returns. Fama and French (1992) synthesize these

findings and Fama and French (1993) show a three factors model with the market return,

a size, and a value factor can explain cross sections of stocks sorted on characteristics

which appeared anomalous relative to the CAPM. In this sense, Fama and French (1992)

and Fama and French (1996) achieve a significant dimension reduction: researchers who

want to explain the cross section of stock returns only have to explain the size and value

factors.

In the following 20 years, many researchers joined a “fishing expedition” to identify

characteristics and factor exposures the three-factor model cannot explain. Harvey et al.

(2016) list over 300 published papers which study the cross section of expected returns

and propose a t-statistic of 3 for new factors to account for multiple testing on a common

dataset. Figure 3 shows the suggested adjustment over time.

II Current Methodology

A. Expected Returns and the Curse of Dimensionality

One aim of the empirical asset pricing literature is to identify characteristics which predict

expected returns, i.e., find a characteristic C in period t− 1 which predicts excess returns

of firm i next period, Rit. Formally,

E[Rit|Cit−1]. (1)

Portfolio sorts are a standard practice to approximate equation (1). We typically

sort stocks into 10 portfolios and compare mean returns across portfolios. Portfolio sorts

are simple, straightforward, and intuitive, but they also suffer from several shortcomings.

First, we can only use portfolio sorts to analyze a small set of characteristics. Imagine

sorting stocks jointly into five portfolios based on CAPM beta, size, book-to-market,

profitability, and investment. We would end up with 55 = 3125 portfolios, which is larger
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than the number of stocks at the beginning of our sample.3 Second, portfolio sorts offer

little formal guidance to discriminate between characteristics. Imagine jointly sorting

stocks on size and book-to-market and finding a value premium only for the smallest

stocks. Does book-to-market now provide independent information? Fama and French

(2008) call this second shortcoming “awkward”. Third, portfolio sorts impose a strong

functional form on the conditional mean function estimating a constant expected return

over a part of the characteristic distribution, such as the smallest 10% of stocks. Fama

and French (2008) call this third shortcoming “clumsy”.4 Nonetheless, portfolio sorts are

by far the most commonly used technique to analyze which characteristics have predictive

power for expected returns.

An alternative to portfolio sorting is to assume linearity of equation (1) and run

linear panel regressions of excess returns on S characteristics, i.e.,

Rit = α +
S∑

s=1

βjCs,it−1 + εit+1. (2)

Linear regressions allow to study the predictive power for expected returns of many

characteristics jointly but they also have potential pitfalls. First, there is no a priori reason

why the conditional mean function should be linear.5 Fama and French (2008) estimate

linear regressions as in equation (2) to dissect anomalies, but raise concerns over potential

non-linearities. They make ad-hoc adjustments and use the log book-to-market ratio as an

explanatory variable, for example. Second, outliers might drive point estimates in linear

regressions. Third, small, illiquid stocks might have a large influence on point estimates

as they represent the majority of stocks. Researchers often use ad-hoc techniques to

mitigate concerns related to microcaps and outliers such, as winsorizing observations and

estimating linear regressions separately for small and large stocks (see Lewellen (2015) for

a recent example).

3The curse of dimensionality is a well understood shortcoming of portfolio sorts. See Fama and French
(2015) for a recent discussion in the context of factor construction for their five-factor model. They also
argue not-well-diversified portfolios have little power in asset pricing tests.

4Portfolio sorts are a restricted form of non-parametric regression. We will use the similarities of
portfolio sorts and non-parametric regressions to develop intuition for our proposed framework.

5Fama and MacBeth (1973) regressions also assume a linear relationship between expected returns and
characteristics. Fama-MacBeth point estimates are numerically equivalent to estimates from equation (2)
when characteristics are constant over time.
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Cochrane (2011) synthesizes many of the challenges portfolio sorts and linear

regressions face in the context of many return predictors and suspects “we will have

to use different methods.”

B. Equivalence between Portfolio Sorts and Regressions

Cochrane (2011) conjectures, “[P]ortfolio sorts are really the same thing as nonparametric

cross-sectional regressions, using nonoverlapping histogram weights.” Additional

assumptions are necessary to create a formal equivalence, but this statement contains

valuable intuition to study the problem of modeling the conditional mean function more

formally. We will first show a formal equivalence between portfolio sorting and regressions

and then outline how this naturally motivates the use of non-parametric methods.

We use R to denote excess returns and C to denote firm characteristics.

Suppose we observe returns Rit and a single characteristic Cit−1 for stocks i =

1, . . . , N and time periods t = 1, . . . , T . We sort stocks into L portfolios depending

on the value of the lagged characteristic, Cit−1. Specifically, stock i is in portfolio l at

time t if Cit−1 ∈ Ilt, where Ilt indicates an interval of the distribution for a given firm

characteristic. Take a firm with lagged market cap in the 45th percentile of the firm size

distribution. We would sort that stock in the 5th out of 10 portfolios in period t. For each

time period t, let Nlt be the number of stocks in portfolio l,

Nlt =
Nt∑
i=1

1(Cit−1 ∈ Ilt).

Nt is the total number of stocks in period t.

The return of portfolio l at time t, Plt, is then

Plt =
1

Nlt

N∑
i=1

Rit1(Cit−1 ∈ Ilt).

The difference in average returns between portfolios l and l′, or the excess return
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e(l, l′), is

e(l, l′) =
1

T

T∑
t=1

(Plt − Pl′t),

which is the intercept in a (time series) regression of the difference in portfolio returns,

Plt − Pl′t, on a constant.6

Alternatively, we can run a pooled time series-cross sectional regression of excess

returns on a dummy variable which equals 1 if firm i is in portfolio l ∈ L in period t,

1(Cit−1 ∈ Ilt):

Rit =
L∑
l=1

βl1(Cit−1 ∈ Ilt) + εit.

Let R be the NT × 1 vector of excess returns and let X be the NT × L matrix of

dummy variables, 1(Cit−1 ∈ Irt). Let β̂ be an OLS estimate,

β̂ = (X ′X)−1X ′R.

It then follows

β̂l =
1∑T

t=1

∑N
i=1 1(Cit−1 ∈ Ilt)

T∑
t=1

N∑
i=1

Rit1(Cit−1 ∈ Ilt)

=
1∑T

t=1Nlt

T∑
t=1

N∑
i=1

Rit1(Cit−1 ∈ Ilt)

=
1∑T

t=1Nlt

T∑
t=1

NltZtl

=
1

T

T∑
t=1

Nlt

1
T

∑T
t=1Nlt

Ztl.

Now suppose we have the same number of stocks in each portfolio l for each time

period t, i.e., Nlt = N̄l for all t. Then

β̂l =
1

T

T∑
t=1

Ztl

6We only consider univariate portfolios sorts in this example to gain intuition.
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and

β̂l − β̂l′ =
1

T

T∑
t=1

(Zlt − Zl′t) = e(l, l′).

Hence, the slope coefficients in pooled time series-cross sectional regressions are equivalent

to average portfolio returns and the difference of two slope coefficients is the excess return

between two portfolios.

If the number of stocks in a portfolio, Nlt, changes over time, then portfolio sorts and

regressions typically differ. There are two ways to restore equivalence. First, we could

take the different number of stocks in portfolio l over time into account when we calculate

averages and define excess return as

e∗(l, l′) =
1∑T

t=1Nlt

T∑
t=1

NltZlt −
1∑T

t=1Nl′t

T∑
t=1

Nl′tZl′t,

in which case we again get β̂l − β̂l′ = e∗(l, l′).

Second, we could use the weighted least squares estimator

β̃ = (X ′WX)−1X ′WR,

where the NT × NT weight matrix W is a diagonal matrix with the inverse number of

stocks on the diagonal, diag(1/Ntl). With this estimator we again get β̃l − β̃l′ = e(l, l′).

We will use the relationship between portfolio sorts and regressions to develop

intuition for our non-parametric estimators in Section III and show how we can interpret

portfolio sorts as a special case of non-parametric estimation.

III Non-parametric Estimation

We now return to the more general case trying to understand which characteristics, C,

provide independent information for expected returns. Suppose we knew the conditional
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mean function mt(c) ≡ E(Rit | Cit−1 = c).7 Then,

E(Rit | Cit−1 ∈ Ilt) =

∫
Ilt

mt(c)fClt−1
(c)dc

where f is the density function of the characteristic in period t − 1. Hence, to get

the return of portfolio l we can just integrate the conditional mean function over the

appropriate interval of the characteristic distribution. Therefore, the conditional mean

function contains all information for portfolio returns. However, knowing mt(c) provides

additional information about nonlinearities in the relationship between expected returns

and characteristics, and the functional form more generally.

To estimate the conditional mean function, mt, consider again regressing excess

returns, Rit, on L dummy variables, 1,

Rit =
L∑
l=1

βl1(Cit−1 ∈ Ilt) + εit.

Also assume the quantiles of the distribution of a characteristic, Cit−1, determine the

intervals Ilt and these quantiles might change over time. For example, with two portfolios

we might have

I1t = [min(Cit−1),median(Cit−1)] and I2t = (median(Cit−1),max(Cit−1)].

Now define C̃it−1 = Ft(Cit−1), which denotes the rank of characteristic, Cit−1,

normalized to the unit interval, [0, 1], for a fixed time period t.

Then, 1(Cit−1 ∈ Ilt) = 1(C̃it−1 ∈ Ĩl) and

Rit =
L∑
l=1

βl1(C̃it−1 ∈ Ĩl) + εit,

where Ĩl does not depend on t.

7We take the expected excess return for a fixed time period t.
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For example with the two portfolios we get

1(Cit−1 ∈ I1t) = 1(C̃it−1 ∈ [0, 0.5]) and 1(Cit−1 ∈ I2t) = 1(C̃it−1 ∈ (0.5, 1]). (3)

In non-parametric estimation, indicator functions of the form 1(X̃it−1 ∈ Ĩl) are called

constant splines. Estimating the conditional mean function, mt, using constant splines,

means approximating it by a step function. In this sense, portfolio sorting is a special case

of non-parametric regression when the number of portfolios approaches infinity. While

a step function is non-smooth and has therefore undesirable theoretical properties as a

non-parametric estimator, we build on this intuition to estimate mt non-parametrically.

Figure 4 – Figure 6 illustrates the intuition behind the relationship between portfolio

sorts and non-parametric regressions. These figures show returns on the y-axis and

book-to-market ratios on the x-axis, as well as portfolio returns and the non-parametric

estimator we propose below for simulated data.

We see in Figure 4 most of the dispersion in book-to-market ratios and returns is

in the extreme portfolios. There is little variation in returns across portfolios 3 to 5 in

line with empirical settings (see Fama and French (2008)). Portfolio means offer a good

approximation of the conditional mean function for intermediate portfolios. We also see,

however, portfolios 1 and 5 have difficulties capturing the non-linearities we see in the

data.

Figure 5 documents a non-parametric estimator of the conditional mean function

provides a good approximation for the relationship between book-to-market ratios for

intermediate values of the characteristic but also in the extremes of the distribution.

Finally, we see in Figure 6 portfolio means provide a better fit in the tails of the

distribution once we allow for more portfolios. The predictions from the non-parametric

estimator and portfolio mean returns become more comparable once the number of

portfolio increases. Therefore, as the number of portfolios grows, portfolio sorts converge

to a non-parametric estimator.
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A. Normalization of Characteristics

We now come back to the normalization we discuss above in equation (3). Empirically, we

estimate a transformation of the conditional mean function mt non-parametrically. We

now briefly discuss the transformation and the advantages.

Define the conditional mean function m for S characteristics as

mt(C1,it−1, . . . , CS,it−1) = E[Rit | C1,it−1, . . . , CS,it−1].

For each characteristic s, let Fs.t(·) be a known strictly monotone function and denote

its inverse by F−1s,t (·). Define C̃s,it−1 = Fs,t(Cs,it−1) and

m̃t(C1, . . . , CS) = mt(F
−1
1,t (C1), . . . , F

−1
S,t (CS).

Then

mt(C1,it−1, . . . , CS,it−1) = m̃t(C̃1,it−1, . . . , C̃S,it−1).

Therefore, knowing the conditional mean function mt is equivalent to knowing the

transformed conditional mean function m̃t and using a transformation is without loss of

generality. Instead of estimating mt, we will estimate m̃t. This transformation naturally

relates to portfolio sorting. We are not interested in the value of a characteristic in

isolation when we sort stocks in portfolios but we care about the rank of the characteristic

in the cross-section. Consider firm size. Size grows over time and a firm with a market

capitalization of USD 1 billion was a large firm in the 1960s, but is not a large firm today.

Our normalization considers the relative size in the cross section rather than the absolute

size similar to portfolio sorting.

Therefore, we choose Fs,t(·) to be a rank transformation of Cs,it−1 such that the

cross-sectional distribution of a given characteristic lies in the unit interval, i.e., Cs,it−1 ∈

[0, 1]. Specifically, let

Fs,t(Cs,it−1) =
rank(Cs,it−1)

N + 1
.

Here, rank(mini=1...,N Cs,it−1) = 1 and rank(maxi=1...,N Cs,it−1) = N . Therefore, the α

quantile of C̃s,it−1 is α. We use this particular transformation because portfolio sorting
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maps into our estimator as a special case. The general econometric theory we discuss below

(model selection, consistency, etc.) also applies to any other monotonic transformation

or the non-transformed conditional mean function.

While knowing mt is equivalent to knowing m̃t, in finite samples, the estimates of

the two typically differ,

ˆ̃mt(C1, . . . , CS) 6= m̂t(F
−1
1,t (C1), . . . , F

−1
S,t (CS)).

In numerical simulations, we found m̃ yields better out-of-sample predictions than m.

The transformed estimator is less sensitive to outliers thanks to the rank transformation,

which could be one reason for the superior out-of-sample performance.

In summary, the transformation does not impose any additional assumptions, nicely

relates to portfolio sorting, and works well in finite sample as it is robust to outliers, which

is a concern in linear regressions as stressed in Cochrane (2011).

B. Multiple Regression & Additive Conditional Mean Function

Both portfolio sorts and regressions theoretically allow us to look at several characteristics

simultaneously. Consider small (S) and big (B) firms and value (V ) and growth (G) firms.

We could now study four portfolios: (SV ), (SG), (BV ), (BG). However, portfolio sorts

quickly become unfeasible as the number of characteristics increases. For example, if we

have 4 characteristics and partition each characteristics into 5 portfolios, then we end up

with 54 = 625 portfolios. First, it would be impractical to investigate 625 portfolio returns.

Second, as the number of characteristics increases, we will only have very few observations

in each portfolio. In non-parametric regression, an analogous problem arises. Estimating

the conditional mean function mt(c) ≡ E(Rit | Cit = c) fully non-parametrically, results

in slow rates of convergence with many regressors. This is often referred to as the “curse

of dimensionality” (see Stone (1982) for a formal treatment). Nevertheless, if we are

interested in which characteristics provide additional information for expected returns

given other characteristics, we cannot look at each characteristic in isolation.

If the number of characteristics S was small, we could estimate the conditional mean
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function consistently and obtain an estimator with good finite sample properties. The

optimal rate of convergence in mean square (assuming the conditional mean function mt

is twice continuously differentiable) is N−4/(4+S), which is always smaller than the rate of

convergence for the parametric estimator of N−1. The rate of convergence decreases as

S increases, i.e., we get an estimator with poor finite sample properties if the number of

characteristics is large.

As a simple example suppose the number of stocks is N = 1, 000 and the number of

characteristics is S = 1. Then N−4/(4+S) = 1, 000−4/5. Now suppose, instead, we have 10

characteristics and choose the number of stocks N∗ such that

(N∗)−4/(4+10) = 1, 000−4/5 ⇒ N∗ = 1, 00014/5 ≈ 251, 000, 000.

Therefore, we need 251 million stocks to get similar finite sample properties of

an estimated conditional mean function for 10 characteristics and a one dimensional

conditional mean function with 1, 000 stocks.

Conversely suppose that N = 1, 000 and S = 10. Then N−4/(4+S) = 1, 000−4/14. Now

find N∗ such that

(N∗)−4/(4+1) = 1000−4/14 ⇒ N∗ = 10005/14 < 12.

Therefore, estimating a 10 dimensional function with 1000 observations is similar to

estimating a one dimensional function with less than 12 observations.

A natural solution in the regression framework is to assume an additive model. To

get around the curse of dimensionality, we make the following assumption:

m̃t(C̃1, . . . , C̃S) =
S∑

s=1

m̃st(C̃s).

The main theoretical advantage of this specification is that the rate of convergence is

N−4/5, which does not depend on the number of characteristics S (see Stone (1985),

Stone (1986), and Horowitz et al. (2006)).
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An important restriction (of the additive model) is

∂2m̃t(C̃1, . . . , C̃S)

∂C̃s∂C̃s′
= 0

for all s 6= s′. The additive model does not allow for interactions between characteristics.

For example, the predictive power of the book-to-market ratio for expected returns does

not depend on firm size. A simple fix is to add certain interactions as additional regressors.

We could interact every characteristic with size to see if small firms are really different.

An alternative solution is to estimate the model separately for small and large stocks.

While the assumption of an additive model is somewhat restrictive, it provides

desirable econometric advantages and is far less restrictive than assuming linearity right

away as we do in Fama–MacBeth regressions. Another major advantage of an additive

model is that we can jointly estimate the model for a large number of characteristics, select

important characteristics, and estimate the summands of the conditional mean functions,

m̃t, simultaneously.

C. Time Invariant Conditional Mean Function

We now discuss one last assumption before we discuss estimation. Assume the conditional

mean function, m̃t, as a function of the rank of the characteristic does not depend on time,

t.

Assumption: m̃t does not depend on t.

This assumption is not necessary for non-parametric estimation, but speeds up

estimation, facilitates the interpretation, and maintains portfolio sorts as a special case of

our estimator.8 In our empirical tests in Section V, we estimate our model over subsamples

and also estimate rolling specifications, i.e., allow for variation in the conditional mean

function over time. Again, the analogy to portfolio returns is apparent. We often estimate

portfolio mean returns over subsamples and rolling over time.

8We implicitly make this assumption whenever we look at 10 portfolios sorted on size, for example.
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With the assumption of a time invariant conditional mean function, we can write

E(Rit | Cit−1) = m̃(C̃it−1).

We now briefly discuss the assumption. First, similar to portfolio sorting, we focus

on the rank of a characteristic in the cross-section, rather than the numerical value. Take

firm size as an example. The assumption says once we look at the relative size in the cross

section of firms, the relationship between size and expected returns does not depend on

time t.

Second, if the distribution of a characteristic does not depend on time, i.e., is time

stationary, then the conditional mean function does not change over time. The book-to-

market ratio is a good example.

Third, some characteristics might lose their predictive power for expected returns

over time. The size effect is a recent example. McLean and Pontiff (2016) show for 97

return predictors predictability decresases by 58% post publication.

D. Adaptive Group LASSO

We use a group LASSO procedure suggested by Huang et al. (2010) for estimation and to

select those characteristics which provide incremental information for expected returns,

i.e., for model selection. The group LASSO estimates the conditional mean function

non-parametrically using splines and sets the summand of the conditional mean function

for a given characteristic to 0 if the characteristic does not help predict expected returns.

To recap, we are interested in modeling excess returns as a function of characteristics,

i.e.,

Rit =
S∑

s=1

m̃s(C̃it−1) + εit, (4)

where m̃s(·) are unknown functions. The adaptive group LASSO is a two-step

procedure to achieve model selection, that is, to discriminate between the m̃ss, which
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are constant, and the m̃ss, which are not constant.9

Let Ĩl for l = 1, . . . , L be a partition of the unit interval for a transformed

characteristic. To estimate m̃, we use quadratic splines, i.e., we approximate m̃ as a

quadratic function on each interval Ĩl. We choose these functions so that the endpoints

are connected and m̃ is differentiable on [0, 1]. We will approximate each m̃s by a series

expansion, i.e.,

m̃s(c̃) ≈
L+2∑
k=1

bskpk(c̃), (5)

where pk(c) are basis splines. The number of intervals L is a user-specified smoothing

parameter, similar to the number of portfolios. As L increases, the precision of the

approximation increases, but also the number of parameters we have to estimate and

hence the variance.

In the first step of the adaptive group LASSO, we obtain estimates of the coefficients

as

β̃s = arg min
bsk:s=1,...,S;k=1,...,L+2

(
T∑
t=1

N∑
i=1

Rit −
S∑

s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+λ1

S∑
s=1

(
L+2∑
k=1

b2sk

) 1
2

, (6)

where β̃s is an (L + 2) × S vector of bsk estimates and λ1 is a penalty parameter

to minimize Bayes Information Criterion (BIC). The first part of equation (6) is just the

sum of the squared residuals as in ordinary least squares regressions; the second part

is the LASSO group penalty function. Rather than penalizing individual coefficients,

bsks, it penalizes all coefficient associated with a given characteristic. Thus, we can set

the point estimates of an entire expansion of m̃ for a given characteristic to 0 when the

characteristic does not provide independent information for expected returns, i.e., the

function associated with the characteristic is constant.10 However, as in the linear model,

the first step of the LASSO selects too many characteristics. Informally speaking, the

LASSO gets all the non constant function right, but it does not get all the constant

9As in the linear model, the “adaptive” part indicates a two-step procedure, because the LASSO
selects too many characteristics in the first step and is therefore not model selection consistent unless
restrictive conditions on the design matrix are satisfied; see Meinshausen and Bühlmann (2006) and Zou
(2006) for an in-depth treatment of the LASSO in the linear model.

10A constant function means the characteristic has no predictive power for expected returns.
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functions right. To address this problem, a second step is needed. To describe the second

step, we first define the following weights

ws =


(∑L+2

k=1 β̃
2
sk

)− 1
2

if
∑L+2

k=1 β̃
2
sk 6= 0

∞ if
∑L+2

k=1 β̃
2
sk = 0.

(7)

In the second step, the adaptive LASSO solves

β̃s = arg min
bsk:s=1,...,S;k=1,...,L+2

(
T∑
t=1

N∑
i=1

Rit −
S∑

s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ2

P∑
j=1

(
ws

L+2∑
k=1

b2sk

) 1
2

,

(8)

where λ2 is again chosen to minimize BIC. Huang et al. (2010) show the estimator

from equation (8) is model selection consistent, i.e., it correctly selects the non-constant

functions with probability approaching 1 as the sample size grows large.

Theoretically, the LASSO can deal with highly correlated regressors. The procedure

is, therefore, well suited for our empirical application in which many firm characteristics

are highly correlated. The matrix of regressors does not even have to have full rank, i.e.,

the number of regressors could be larger than the sample size. A linear model cannot

handle these situations and a standard t-test does not work if the matrix is close to

singular. In practice, the LASSO might still have difficulties to distinguish between highly

correlated characteristics.

Consider two highly correlated characteristics and only one of them has predictive

power for expected returns. It is possible the LASSO selects either one or none, because

they are so highly correlated, but it will not select both. A linear model cannot handle

this situation because the matrix of regressors is close to singular and the standard theory

does not apply.

E. Confidence Bands

We estimate confidence bands for the conditional mean function m̃(c̃), which we

approximate by
∑L+2

k=1 bkpk(c̃), and estimate by
∑L+2

k=1 b̂kpk(c̃). Let p(c̃) be a vector of

splines p(c̃) = (p1(c̃), . . . , pL+2(c̃))
′ and Σ be the L + 2 × L + 2 covariance matrix of

17



√
n(b̂ − b). We define Σ̂ as the heteroscedasticity-consistent estimator of Σ and define

σ̂(c̃) =

√
p(c̃)′Σ̂p(c̃).

The uniform confidence band is of the form[
L+2∑
k=1

b̂kpk(c̃)− dσ̂(c̃) ,
L+2∑
k=1

b̂kpk(c̃) + dσ̂(c̃)

]
.

We choose the constant d such that the band has the right coverage asymptotically.

Write,

P

(
L+2∑
k=1

b̂kpk(c̃)− dσ̂(c̃)√
n
≤ m(c̃) ≤

L+2∑
k=1

b̂kpk(c̃) +
dσ̂(c̃)√
n

for all c̃

)

≈ P

(
L+2∑
k=1

b̂kpk(c̃)− dσ̂(c̃)√
n
≤

L+2∑
k=1

bkpk(c̃) ≤
L+2∑
k=1

b̂kpk(c̃) +
dσ̂(c̃)√
n

)

= P

sup
c̃

∣∣∣∣∣∣
∑L+2

k=1

√
n
(
b̂k − bk

)
pk(c̃)

σ̂(c̃)

∣∣∣∣∣∣ ≤ d for all c̃


≈ P

(
sup
c̃

∣∣∣∣∣ Z ′p(c̃)√
p(c̃)′Σp(c̃)

∣∣∣∣∣ ≤ d for all c̃

)
,

where Z ∼ N(0,Σ). The first approximation follows because m̃(c̃) ≈
∑L+2

k=1 bkpk(c̃).

The underlying assumption is a standard undersmoothing condition, which says the

approximation error decreases faster than the standard deviation. For the second

approximation, we use the fact that
√
n(b̂ − b) →d N(0,Σ) and that Σ̂ is a consistent

estimator of Σ. We now replace Σ by Σ̂ and find d such that conditional on Σ̂,

P

sup
c̃

∣∣∣∣∣∣ Z ′p(c̃)√
p(c̃)′Σ̂p(c̃)

∣∣∣∣∣∣ ≤ d for all d

 = 0.95.

We can find this constant using simulations.

As a technical aside, the dimension of Z increases as the sample size increases.

Nevertheless, our construction is valid (see Belloni, Chernozhukov, Chetverikov, and Kato

(2015)).
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F. Interpretation of the Conditional Mean Function

Let αs be constants such that they sum to 0 across characteristics

S∑
s=1

αs = 0.

Then,

m̃(C̃1, . . . , C̃S) =
S∑

s=1

m̃s(C̃s) =
S∑

s=1

(
m̃s(C̃s) + αs

)
.

Therefore, the summands of transformed conditional mean function, m̃s, are only

identified up to a constant. The model selection procedure, expected returns, and the

portfolios we construct do not dependent on these constants. However, the constants

matter when we plot an estimate of the conditional mean function for one characteristic,

m̃s.

Let C̄s,t−1 be the median of a given transformed characteristic s, C̃s,it−1. Then,

m̃(C̃1, C̄st−1 . . . , C̄St−1) = m̃1(C̃1) +
S∑

s=2

m̃s(C̄st−1),

which is identified and a function of C̃1 only. This function is the expected return as a

function of the first characteristic when we set all other characteristics to their median

values. When we set the other characteristics to different values, we change the level of

the function, but not the slope. We will report these functions in our empirical section,

and we now can interpret both the level and the slope of the function.

An alternative normalization is such that m̃1(0.5) = 0, i.e., the conditional mean

function for a characteristic takes the value of 0 for the median observation. Now,

we cannot interpret the level of the function. This normalization, however, might be

easier to interpret when we plot the estimated functions over time in a three-dimensional

surface plot. Changes in the slope over time now tell us the relative importance of the

characteristic in the time series. The first normalization has the disadvantage that in

years with very low overall returns, the conditional mean function is much lower. Hence,

interpreting the relative importance of a characteristic over time from surface plots is
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more complicated when we use the first normalization.

G. Comparison of Linear & Non-parametric Models

We discussed above the relationship between portfolio sorts, linear regressions, and non-

parametric estimation. We now want to compare a linear model with non-parametric

models. The comparison helps us understand the potential pitfalls from assuming a linear

relationship between characteristics and returns and gain some intuition why we might

select a different number of characteristics in our empirical tests in Section V.

Suppose we observe excess returns Rit and a single characteristic, C distributed

according to Cit−1 ∼ U [0, 1] for i = 1, . . . , N and t = 1, . . . , T . Returns are generated by

Rit = m(Cit−1) + εit,

where E(εit | Cit−1) = 0.

Without knowing the conditional mean function m, we could sort stocks into

portfolios according to the distribution of the characteristic. Let stock i be in portfolio l at

time t if Cit−1 ∈ Ilt. C predicts returns if mean returns differ across portfolios, i.e., e(l, l′)

is significantly different from 0. For example, we could construct 10 portfolios based on

the intervals Ilt = [(l − 1)/10, l/10] and test if e(1, 10) is significantly different from 0.

If we knew the conditional mean function m, then we could conclude C predicts

returns if m varies with the characteristic. Moreover, knowing the conditional mean

function allows us to construct portfolios with a large spread in returns. Instead of sorting

stocks based on their values of the characteristic Cit−1, we could sort stocks directly based

on the conditional mean function m(Cit−1). For example, let qt(α) be the α quantile of

m(Cit−1) and let stock i be in portfolio l at time t if m(Cit−1) ∈ [qt((l − 1)/10), qt(l/10)].

That is, we construct 10 portfolios based on return predictions. Portfolio 1 contains the

10% of stocks with lowest predicted returns and portfolio 10 contains the 10% of stocks

with highest predicted returns.

If m is monotone, both sorting based on the value of characteristic and based on

predicted returns, m(Cit−1) results in the same portfolios. However, if m is not monotone,
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the “10-1 portfolio” return is higher when we sort based on m. As a simple example,

suppose m(c) = (c − 0.5)2. Then the “10-1 portfolio” return when sorting based on

characteristic, Cit−1, is 0.

We now consider two characteristics C1,it−1 ∼ U [0, 1] and C2,it−1 ∼ U [0, 1] and assume

returns are generated by

Rit = m(C1,it−1, C2,it−1) + εit,

where E(εit | C1,it−1, C2,it−1) = 0.

We are interested in whether the second characteristic provides independent

information for expected returns conditional on the first characteristic. In this framework,

C2,it−1 does not provide independent information if

∂m(c1, c2)

∂c2
= 0 for all c1, c2 ∈ [0, 1],

which is testable if we knew m(c1, c2).

Again, we can construct portfolios with a large spread in predicted returns based on

the value of the conditional mean function, m. The idea is similar to construct trading

strategies based on the predicted values of a linear model,

Rit = β0 + β1C1,it−1 + β2C2,it−1 + εit.

We will now, however, illustrate potential pitfalls of the linear model and how a non-

parametric model can alleviate them.

Let us assume the following return-generating process

Rit = −0.5 + 0.6
√
C1,it−1 + 0.5C2

2,it−1 + εit.

A regression of returns Rit on the characteristics C1,it−1 and C2,it−1 yields slope

coefficients of around 0.5. The predicted values of a linear model treat C1,it−1 and C2,it−1

almost identically, although they affect returns very differently.

We now compare the performance of the linear and non-parametric model for the

“10-1” hedge portfolio. The table shows monthly returns, standard deviations, and Sharpe
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Figure 1:

ratios from a simulation for 500 stocks and 100 periods for both models.

Linear Non-parametric

Return 0.3506 0.3610

Std 0.0527 0.0539

Sharpe Ratio 6.6516 6.6998

The linear model and the non-parametric model result in similar predicted returns,

standard deviations, and Sharpe ratios. The point estimaties for both characteristics, C1,t

and C2,t, are similar in both models and returns are monotone in both characteristics.

Let us now instead consider the following data-generating process:

Rit = (−0.5 + Φ((C1,it−1 − 0.1)/0.1) + Φ((C2,it−1 − 0.9)/0.1)) /2 + εit,

where Φ denotes the standard normal cdf. The Figure 1 plots the two functions. In

this example, a regression of Rit on C1,it−1 and C2,it−1 yields two slope coefficients of

around 0.25. Hence, the predicted values of a linear model treat C1,it−1 and C2,it−1

identically, although they affect returns very differently. We again report the returns,

standard deviations, and Sharpe ratios of the hedge portfolios:
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Linear Non-parametric

Return 0.1988 0.3090

Std 0.0496 0.0556

Sharpe Ratio 4.0053 5.5612

Predicted returns of the non-parametric model are substantially higher compared to the

linear model, with a similar standard deviations resulting in larger Sharpe ratios in the

non-parametric method.

In a last example, we want to discuss how the linear and non-parametric model treat

non-linear transformations of variables and why a linear model might select more variables

in empirical settings. Consider returns being generated by the following process

Rit = C1,it−1 + C2,it−1 + εit,

with C2,it−1 = C2
1,it−1, i.e., the second characteristic is just the square of the first

characteristics. The linear model would select both C1,it−1 and C2,it−1, whereas the non-

parametric model would only select C1,it. In addition, the penalty term in the LASSO

for the BIC information criterion is proportional to the number of parameters. In the

non-parametric model with 10 knots, the penalty is proportional to 12 times the number

of selected characteristics. In the linear model, the penalty is only proportional to 1 times

the number characteristics. Taken together, we would expect the linear model to select

more characteristics in sample. The out-of-sample performance of the linear model relative

to the non-parametric model is unclear ex-ante and we compare the model performance

in Section V.

IV Data

Stock return data come from the Center for Research in Security Prices (CRSP) monthly

stock file. We follow standard conventions and restrict the analysis to common stocks

of firms incorporated in the United States trading on NYSE, Amex, or Nasdaq. Market

equity (ME) is the total market capitalization at the firm level. LME is the total market

23



capitalization at the end of the previous calendar month. LTurnover is the ratio of total

monthly trading volume over total market capitalization at the end of the previous month.

The bid-ask spread (spread mean) is the average daily bid-ask spread during the previous

month. We also construct lagged returns over the previous month (cum return 1 0),

the previous twelve months leaving out the last month (cum return 12 2), intermediate

momentum (cum return 12 7), and long-run returns from three years ago until last year

(cum return 36 13). We follow Frazzini and Pedersen (2014) in the definition of Beta

(beta) and idiosyncratic volatility (idio vol) is the residual from a regression of daily

returns on the three Fama and French factors in the previous month as in Ang, Hodrick,

Xing, and Zhang (2006).

Balance sheet data are from the Standard and Poor’s Compustat database. We define

book equity (BE) as total stockholders’ equity plus deferred taxes and investment tax

credit (if available) minus the book value of preferred stock. Based on availability, we use

the redemption value, liquidation value, or par value (in that order) for the book value

of preferred stock. We prefer the shareholders’ equity number as reported by Compustat.

If these data are not available, we calculate shareholders’ equity as the sum of common

and preferred equity. If neither of the two are available, we define shareholders’ equity as

the difference between total assets and total liabilities. The book-to-market (BM) ratio

of year t is then the book equity for the fiscal year ending in calendar year t− 1 over the

market equity as of December t− 1. We use the book-to-market ratio then for estimation

starting in June of year t until June of year t + 1. We use the same timing convention

unless we specify it differently.

AT are total assets, and cash (C) is cash and short-term investments over total

assets. DP is depreciation and amortization over total assets. We define expenses to

sales (FC2Y ) as sum of advertising expenses, research and development expenses, and

selling, general and administrative expenses over sales and investment expenditure (I2Y )

as capital expenditure over sales. Operating leverage (OL) is the ratio of cost of goods sold

and selling, general and administrative expenses over total assets. We define the price-

to-cost margin (pcm) as sales minus cost of goods sold over sales and gross profitability

(Prof) as gross profits over book value of equity. The return-on-equity (ROE) is the ratio

24



of income before extraordinary items to lagged book value of equity. Investment growth

(Investment) is the annual growth rate in total assets. We define operating accruals (OA)

as in Sloan (1996). Free cash flow (free cf) is the ratio of net income and depreciation and

amortization minus the change in working capital and capital expenditure over the book

value of equity. We define Q (q) as total assets plus total market capitalization minus

common equity and deferred taxes over total assets and the HHI as the Herfindahl-

Hirschman index of annual sales at the Fama-French 48 industry level.

We define the net payout ratio (PR) as net payout over net income. Net payout is the

sum of ordinary dividends and net purchases of common and preferred stock. Return on

equity (ROE) is the ratio of income before extraordinary items over lagged book equity.

Sales growth (Sales g) is the percentage growth rate in net sales.

To alleviate a potential survivorship bias due to backfilling, we require that a firm

has at least two years of Compustat data. Our sample period is July 1963 until June 2015.

Table 1 reports summary statistics for various firm characteristics and return predictors.

We calculate all statistics annually and then average over time.

The online appendix contains a detailed description of the characteristics, the

construction, and the relevant references.

V Results

We now study which of the 24 characteristics we describe in Section IV provide

independent information for expected returns using the adaptive group LASSO for

selection and estimation.

A. Selected Characteristics and Their Influence

Table 2 reports average monthly returns and standard deviations of 10 portfolios sorted

on the characteristics we study. Most of the 24 characteristics have individually predictive

power for expected returns and result in large and statistically significant hedge portfolio

returns and alphas relative to the Fama and French three factor model (results in the

online appendix). The vast majority of economic models, e.g. the ICAPM (Merton
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(1973)) or consumption models, as surveyed in Cochrane (2007) suggest that a low number

of state variables can explain the cross section of returns and it is therefore unlikely

all characteristics provide independent information for expected returns. To tackle the

multi-dimensionality challenge, we now estimate the adaptive group LASSO with 5 and

10 knots.11

Figure 7 shows the conditional mean function, m̃(C̃it−1), for Tobin’s Q. Stocks with

low Q have expected returns of around 1% per month. Returns monotonically decrease

with increasing Q to a negative return of 1% per month for the firms with the highest

Q. This result is consistent with our findings for portfolio sorts in Table 2. Portfolio

sorts results in an average annualized hedge portfolio return of more than 14%. Tobin’s

Q is, however, correlated with the book-to-market ratio and other firm characteristics,

and we now want to understand whether Q has marginal predictive power for expected

returns conditional on all other firm characteristics we study. Figure 8 plots m(C̃it−1) for

Tobin’s Q conditional on all other characteristics. The conditional mean function is now

constant and does not vary with Q. The constant conditional mean function implies Q

has no marginal predictive power for expected returns once we condition on other firm

characteristics.

The example of Tobin’s Q shows the importance to condition on other characteristics

to make inference on the predictive power of characteristics for expected returns. We now

study this question for 24 firm characteristics using the adaptive group LASSO.

Table 4 reports the selected characteristics of the non-parametric model for different

number of knots, sets of firms, and sample periods. We see in column (1) the

baseline estimation for all stocks over the full sample period using 5 knots selects 11

out of the universe of 24 firm characteristics. The lagged market cap, turnover, the

book-to-market ratio, the ratio of depreciation to total assets, profitability, investment, the

Herfindahl-Hirschman index, short-term reversal, intermediate momentum, momentum,

and idiosyncratic volatility all provide incremental information conditional on all other

selected firm characteristics.

When we allow for a finer grid in column (2), only eight characteristics provide

11The number of knots corresponds to the smoothing parameter we discuss in Section III.
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independent incremental information for expected returns. The book-to-market ratio,

the ratio of depreciation to total assets, and profitability all lose their predictive power

for expected returns. The penalty function increases in the number of knots. In the

non-parametric model with 10 knots, the penalty is proportional to 12 times the number

of selected characteristics, which is why we select fewer characteristics with more knots.

We estimate the non-parametric model only on large stocks above the 20% size

quintile of NYSE stocks in column (3). Now, the book-to-market ratio again provides

independent information for expected returns. Size, turnover, and the Herfindahl, instead,

lose the incremental predictive power for expected returns once we condition on all other

firm characteristics.

Columns (4) and (5) split the sample in half and re-estimate our benchmark

non-parametric model in both sub-samples separately to see whether the importance of

characteristics for predicted returns varies over time. Size, turnover, the book-to-market

ratio, short-term turnover, intermediate momentum, momentum, beta, and idiosyncratic

volatility are significant predictors in the first half of the sample. In the second half of the

sample, the book-to-market ratio, momentum, beta, and idiosyncratic volatility lose their

incremental information for expected returns. The ratio of depreciation to total assets,

profitability, investment, and the Herfindahl-Hirschman index, instead, gain predictive

power for expected returns.

B. Time Variation in Return Predictors

Figure 9 to Figure 19 show the conditional mean function for our baseline non-parametric

model for all stocks and 5 knots over time. We estimate the model on a rolling basis over

120 months. We normalize the conditional mean function to equal 0 when the normalized

characteristic equals 0.5 or the median characteristic in a given months.

We see in Figure 9 the conditional mean function is non-constant throughout the

sample period for lagged market cap. Small firms have higher expected returns compared

to large firms conditional on all other significant return predictors. Interestingly, the size

effect seems largest during the end of our sample period contrary to conventional wisdom

(see Asness, Frazzini, Israel, Moskowitz, and Pedersen (2015) for a related finding). Figure
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18 shows the momentum crash during the recent financial crisis. Momentum crashed due

to high returns of past losers consistent with findings in Daniel and Moskowitz (2016).

C. Out-of-Sample Performance and Model Comparison

We now want to compare the performance of the non-parametric model with the linear

model out of sample. We estimate the non-parametric model for a period from 1963

to 1990 and carry out model selection with the adaptive group LASSO with ten knots

but also use the adaptive LASSO for model selection in the linear model. We select the

following characteristic in the non-parametric model: lagged market cap, lagged turnover,

the book-to-market ratio, investment, free cash flow, the Herfindahl-Hirschman index,

momentum, intermediate momentum, short-term reversal, beta, idiosyncratic volatility.

The linear model does not select the lagged market cap and free cash flow, but

instead selects the additional following seven characteristics: cash, depreciation and

amortization, operating leverage, return-on-equity, Tobin’s Q, the bid-ask spread, and

long-term reversal. The linear model selects in total five more characteristics than the

non-parametric model. The linear model might be misspecified and therefore select more

variables.

We then create rolling monthly out-of-sample predictions for excess return using ten

years of data for estimation and form two portfolios for each method. We buy the stocks

with 10% highest expected returns and sell the stocks with the 10% lowest predicted

returns. The hedge portfolio of the linear model has an out-of-sample annualized Sharpe

ratio of 0.97. The out-of-sample Sharpe ratio increases by more than 70% for the non-

parametric model to 1.72.

VI Conclusion

We propose a non-parametric methodology to tackle the challenge posed by Cochrane

(2011) in his presidential address: which firm characteristics provide independent

information for expected returns. We study 24 characteristics jointly and find only 6 to

11 characteristics provide independent information depending on number of interpolation
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points (similar to the number of portfolios in portfolio sorts), sample period, and universe

of stocks (large versus small stocks).

We compare our method to portfolio sorts and linear regressions and show it has

superior out-of-sample performance and increases out-of-sample Sharpe ratios by 70%.

We see our paper as a starting point only. The next questions are: Are the

characteristics we identify to provide information for expected returns related to exposures

to factors? How many factors are important? Can we achieve a dimension reduction

and identify K factors which can summarize the N independent dimension of expected

returns we document with K < N similar to Fama and French (1992) and Fama and

French (1993)?
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Figure 2: Numbers of published Factors
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Figure 2
Factors and publications.

period from 1980 to 1991, only about one factor is discovered per year. This
number has grown to around five for the 1991–2003 period, during which
time a number of papers, such as Fama and French (1992), Carhart (1997),
and Pastor and Stambaugh (2003), spurred interest in studying cross-sectional
return patterns. In the last nine years, the annual factor discovery rate has
increased sharply to around 18. In total, 164 factors were discovered in the past
nine years, roughly doubling the 84 factors discovered in all previous years. We
do not include working papers in Figure 2. In our sample, there are 63 working
papers covering 68 factors.

We obtain t-statistics for each of the 316 factors discovered, including the
ones in the working papers.26 The overwhelming majority of t-statistics exceed
the 1.96 benchmark for 5% significance.27 The nonsignificant ones typically
belong to papers that propose a number of factors. These likely represent
only a small subsample of nonsignificant t-statistics for all tried factors.
Importantly, we take published t-statistics as given. That is, we assume they are
econometrically sound with respect to the usual suspects (data errors, coding
errors, misalignment, heteroscedasticity, autocorrelation, clustering, outliers,
etc.).

26 The sign of a t-statistic depends on the direction of the long/short strategy. We usually calculate p-values based
on two-sided t-tests, so the sign does not matter. From an investment perspective, the sign of the mean return of
a long/short strategy does not matter as we can always reverse the direction of the strategy. Therefore we use
absolute values of these t-statistics.

27 The multiple testing framework is robust to outliers. The procedures are based on either the total number of tests
(Bonferroni) or the order statistics of t-statistics (Holm and BHY).
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Number of discovered factors over time. Source: Figure 2 of Harvey, Liu, and Zhu

(2016).
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Figure 3: Suggested t-stats adjustment
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Recommendation to adjust t-statistics for multiple testing problem. Source: Figure

3 of Harvey, Liu, and Zhu (2016).
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Figure 4: 5 Portfolios sorted on Book-to-Market

Portfolios Sorted on Book{to{Market
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This figure plots expected returns on the y-axis against the book-to-market ratio on

the x-axis as well as portfolio mean returns for simulated data.
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Figure 5: 5 Portfolios sorted on Book-to-Market and non-parametric Estimator
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This figure plots expected returns on the y-axis against the book-to-market ratio

on the x-axis as well as portfolio mean returns and a non-parametric conditional

mean function for simulated data.
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Figure 6: 10 Portfolios sorted on Book-to-Market and nonparametric Estimator
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This figure plots expected returns on the y-axis against the book-to-market ratio

on the x-axis as well as portfolio mean returns and a non-parametric conditional

mean function for simulated data.
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Figure 7: Conditional Mean Function: Q (unconditional)
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Figure 8: Conditional Mean Function: Q (conditional on other characteristics)
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Figure 9: Time-varying Conditional Mean Function: Market Cap

Effect of lagged market cap on average returns (conditional all other selected

characteristics).
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Figure 10: Time-varying Conditional Mean Function: Turnover

Effect of lagged turnover on average returns (conditional all other selected

characteristics).
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Figure 11: Time-varying Conditional Mean Function: Book-to-Market Ratio

Effect of book-to-market ratio on average returns (conditional on all other selected

characteristics).
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Figure 12: Time-varying Conditional Mean Function: Depreciation-to-Assets

Effect of depreciation-to-assets on average returns (conditional on all other selected

characteristics).
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Figure 13: Time-varying Conditional Mean Function: Profitability

Effect of profitability on average returns (conditional on all other selected

characteristics).
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Figure 14: Time-varying Conditional Mean Function: Investment

Effect of investment on average returns (conditional on all other selected

characteristics).
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Figure 15: Time-varying Conditional Mean Function: HHI

Effect of Herfindahl-Hirschman index on average returns (conditional on all other

selected characteristics).
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Figure 16: Time-varying Conditional Mean Function: Short-Term Reversal

Effect of short-term reversal on average returns (conditional on all other selected

characteristics).
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Figure 17: Time-varying Conditional Mean Function: Intermediate Momentum

Effect of intermediate momentum on average returns (conditional on all other

selected characteristics).
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Figure 18: Time-varying Conditional Mean Function: Momentum

Effect of momentum on average returns (conditional on all other selected

characteristics).
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Figure 19: Time-varying Conditional Mean Function: Idiosyncratic Volatility

Effect of idiosyncratic volatility on average returns (conditional on all other

selected characteristics).
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