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We study how collaboration and internal resources drive knowledge creation and application in university research
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with industry partners drives knowledge application. Nevertheless, contrary to prior research that has underscored the merits
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Introduction
How does collaboration contribute to knowledge cre-
ation and application? Do internal resources comple-
ment or substitute for its effects? Scholars have often
underscored the value of collaborative ties that furnish
access to network resources that reside beyond organiza-
tional boundaries (Gulati 1999, 2007; Lavie 2006). They
have also alluded to the complementary value of inter-
nal resources that generate synergies when leveraged in
collaboration with partners (Dyer and Singh 1998, Lee
et al. 2001, Teece 1987). Less attention has been paid to
the trade-offs and contingencies that drive these effects
and may undermine knowledge creation and application.
We seek to shed more light on the boundary conditions
for the positive performance effects of collaboration. We
also draw more attention to the interplay between collab-
oration and internal resources by suggesting that internal
resources can not only complement but also substitute
for collaboration, depending on the extent of collabora-
tion. Specifically, we argue that the availability of inter-
nal resources devalues the contribution of collaboration
to knowledge creation at moderate levels of collabo-
ration yet enhances it once the extent of collaboration
exceeds a certain threshold.

We concentrate on nascent science-driven indus-
tries, where collaborative knowledge creation is essen-
tial. Studies of established industries that adopt the

firm as the unit of analysis often consider interfirm
alliances as a primary form of collaboration. However,
in nascent science-driven industries, new knowledge
often emanates from universities and entails collabora-
tion among teams of scientists (McFadyen and Cannella
2004). Moreover, prior research has rarely distinguished
between knowledge creation and application. Most stud-
ies consider either the former outcome or the latter,
while implicitly or explicitly assuming a positive asso-
ciation between the two (DeCarolis and Deeds 1999,
Gambardella 1992, Zucker et al. 2002). Nevertheless,
this positive association may not hold because of the
potential tension between exploration and exploitation
(Levinthal and March 1993). Certain trade-offs may
emerge as university research programs weigh the pur-
suit of new scientific knowledge against the leverag-
ing of existing knowledge. Collaboration that facilitates
knowledge application may not promote knowledge cre-
ation, and vice versa. Hence, the question of how col-
laboration distinctively drives knowledge creation and
application remains open, with further ambiguity con-
cerning the role of internal resources in shaping its
effects.

We anchor our study in the resource-based view
and knowledge management literature, adopting the
university research program as our unit of analysis.
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We claim that the extents to which a research pro-
gram engages academic and industry collaborators cor-
respondingly affect knowledge creation and application,
and that the availability of internal resources moder-
ates these effects. Specifically, academic collaboration
contributes to knowledge creation, whereas industry
collaboration independently drives knowledge appli-
cation. Nevertheless, excessive academic collaboration
and industry collaboration correspondingly undermine
knowledge creation and application. Furthermore, inter-
nal resources limit the value of collaboration as long as
the number of collaborators is not excessive. Once this
number exceeds a certain threshold, internal resources
can enhance its diminished contribution to knowledge
creation and application.

A sample of 268 nanotechnology research programs
at Israeli universities serves as a setting for testing these
ideas. The nanotechnology industry is at its embryonic
stage (Avenel et al. 2007), with most of the scientific
progress being made at university research centers.
This industry exhibits interdisciplinary collaboration,
technological agglomeration, and diversity of cumula-
tive knowledge (Robinson et al. 2007) that is embed-
ded in cross-institutional linkages (Zucker et al. 2007).
Reliance on interdisciplinary knowledge prompts col-
laboration among scientists who contribute de novo
inventions as well as specialized knowledge that stems
from their respective disciplinary domains (Mehta 2002,
Meyer and Persson 1998). Nanotechnology is therefore
an appropriate context for studying the underlying forces
that drive knowledge creation and application. Our find-
ings reveal that academic collaboration and industry col-
laboration correspondingly generate inverted U-shaped
effects on knowledge creation and application. In addi-
tion, internal program resources attenuate the effect of
academic collaboration.

Our study offers a nuanced account of the impli-
cations of collaboration and sheds light on the com-
plex interplay of collaboration and internal resources. It
calls attention to the contingent value of collaboration
and its contribution to scientific research and innova-
tion in nascent industries. We uncover how excessive
collaboration can undermine both knowledge creation
and application, thus advancing research on knowledge
creation that has previously considered only the extent
and strength of collaborative relationships (McFadyen
and Cannella 2004). By distinguishing academic col-
laboration from industry collaboration, we complement
mainstream literature that has focused on the structure
of interfirm alliances and knowledge networks with-
out alluding to the distinctive nature of these relation-
ships (Ahuja 2000, Bae and Gargiulo 2004, Dyer and
Nobeoka 2000, Reagans and McEvily 2003, Schilling
and Phelps 2007, Shan et al. 1994, Shipilov 2006).
Thus, we advance emerging research on multimode net-
works that simultaneously considers multiple types of

interorganizational ties (Lee et al. 2001, Rosenkopf and
Almeida 2003). Moreover, we question the assumption
that knowledge creation drives knowledge application
by identifying contingencies and potential trade-offs
while demonstrating that different types of collaboration
independently shape these two processes. In addition,
whereas prior research has traditionally underscored the
synergies arising from complementarities between inter-
nal resources and network resources (Dyer and Singh
1998), we study the conditions under which inter-
nal resources substitute for collaborative relationships.
Finally, by studying knowledge creation and applica-
tion from the perspective of university research pro-
grams, we complement prior research on collaboration
between university scientists and industry partners that
has focused on knowledge transfer from the perspective
of firms that leverage their ties to universities (Agrawal
2001, Cohen et al. 2002, Gittelman and Kogut 2003,
Rothaermel and Thursby 2005). We demonstrate that ties
that serve industry partners do not necessarily benefit
university research programs, and we reveal the contin-
gent value of collaboration from the latter’s standpoint.

Theory and Hypotheses
The creation and application of knowledge are funda-
mental organizational processes (DeCarolis and Deeds
1999, Grant 1996). Knowledge creation corresponds
to exploration, whereas knowledge application is asso-
ciated with exploitation (Levinthal and March 1993).
Specifically, knowledge creation involves searching for,
discovering, and integrating knowledge (Kogut and
Zander 1992, Nonaka and von Krogh 2009); developing
innovative ideas and new practices (Nonaka 1994); and
learning from newcomers and parties that furnish exter-
nal knowledge (Argote and Ophir 2002). Newly created
knowledge can be then codified and disseminated for
subsequent application (Garud and Nayyar 1994, Zahra
and George 2002). Knowledge application concerns the
exploitation and transformation of knowledge into com-
mercial technologies and products (DeCarolis and Deeds
1999, Yli-Renko et al. 2001).

In nascent science-driven industries, the distinction
between knowledge creation and application is essential
because the locus of knowledge creation is often found
in research universities, yet its application is led by firms
that commercialize innovations. Besides the inherent
tension between exploration and exploitation that cor-
respondingly guides knowledge creation and application
(March 1991), conflicting value systems serve for assess-
ing their outcomes. Specifically, university scientists are
evaluated based on their publication records rather than
on contributions to technology development and transfer.
Patenting and committing to industry partners consume
research time, may delay publication, and restrict knowl-
edge dissemination, thus challenging the traditional mis-
sion of universities (Cohen et al. 1998, Florida and
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Cohen 1999). Emerging industries benefit from scien-
tific discovery, yet new knowledge judged as important
by the scientific community may not produce immedi-
ate valuable applications (Gittelman and Kogut 2003).
Given this distinction between knowledge creation and
application, we expect their outcomes to be associated
with different forms of collaboration. Academic collabo-
ration is likely to influence knowledge creation, whereas
industry collaboration can affect its application. Never-
theless, although university scientists are mostly con-
cerned with knowledge creation, their contribution to
knowledge application is essential. Furthermore, indus-
try requirements may instigate new knowledge creation,
with prospective knowledge application ultimately serv-
ing the mission of universities by granting support and
relevance to newly created knowledge.

The Ambivalent Role of Collaboration in Driving
Knowledge Creation and Application
Scholars often recognize the merits of collaboration, not-
ing that embeddedness in social networks can influence
economic outcomes depending on the nature of dyadic
ties and the overall network structure (Granovetter 1985,
Podolny 1994, Powell 1990, Uzzi 1996). In particular,
the strategic alliance literature has examined the bene-
fits of collaboration, relating them to trust, compatibility
between the partners, knowledge sharing, and effective
governance (e.g., Dyer and Singh 1998, Gulati 1995,
Kale et al. 2000, Madhok and Tallman 1998, Saxton
1997, Zaheer et al. 1998). Nevertheless, the contribu-
tion of collaboration to knowledge creation in nascent
science-driven industries requires careful attention. In
particular, it is often collaboration between teams of
university scientists rather than interfirm alliances that
promotes knowledge creation in this context. Academic
collaboration takes place when teams of scientists work
together to produce scientific knowledge. Academic col-
laborators promote research at several stages, including
research design, provision of equipment, experiments,
analysis, and the write-up of scientific reports (Katz and
Martin 1997). This collaboration advances knowledge
creation by building social capital, enhancing creativ-
ity, integrating specialized skills, pooling resources, and
improving efficiency.

First, as the number of academic collaborators
increases, scientists build their social capital in the form
of weak and strong ties, which can facilitate idea gen-
eration, furnish information on research opportunities,
and enhance reputation (Nahapiet and Ghoshal 1998).
Second, interactions with fellow scientists stimulate cre-
ativity and learning of tacit knowledge, and they pro-
vide access to recent scientific advances that cannot
be inferred from published work. Third, intellectual
exchange and cross-fertilization with an increasing num-
ber of academic collaborators enable research programs

to tap into external knowledge bases and combine com-
plementary skills. In this sense, each team can contribute
its strongest skills while relying on the strengths of col-
laborators for other skills (Lee and Bozeman 2005).
Fourth, an increase in the number of academic collabora-
tors enables university research programs to share costs
by pooling resources, including research funding, facil-
ities, equipment, and materials. Fifth, academic collab-
oration enables division of labor and expertise, which
enhances the efficiency of performed research tasks
(Katz and Martin 1997). Thus, collaboration between
teams of scientists can enhance scientific productiv-
ity (Defazio et al. 2009, Landry et al. 1996, Lee and
Bozeman 2005) so that knowledge creation initially
increases with the number of academic collaborators.

Nevertheless, some boundary conditions limit the
contribution of collaboration to knowledge creation.
As the number of academic collaborators increases
beyond a certain threshold, collaboration can under-
mine knowledge creation as a result of mounting coor-
dination and monitoring costs, diluted relationships,
constraints on internal learning, and operational chal-
lenges. First, excessive collaboration consumes manage-
rial attention and investments of time and effort needed
to maintain relationships and coordinate joint activi-
ties (Ocasio 1997). Additional costs can be ascribed to
searching for suitable partners, negotiating and craft-
ing contracts, and monitoring the progress of uncer-
tain research tasks (Williamson 1983). These costs
become exorbitant when a research team engages numer-
ous academic collaborators (McFadyen and Cannella
2004). Second, excessive collaboration limits the inten-
sity of each tie to a fellow scientist, thus undermining
the exchange of tacit knowledge, the ability to jointly
resolve complex problems, and the interaction needed
for generating new insights (Uzzi 1996). Third, the
excess time invested in collaboration may come at the
expense of independently pursuing promising research
avenues, nurturing internal research skills, and carrying
out internal activities that are also essential for knowl-
edge creation (Arora and Gambardella 1994, Kogut and
Zander 1992). Finally, given bounded rationality and
limits to absorptive capacity (Cohen and Levinthal 1990,
Cyert and March 1963), excessive collaboration strains
the ability to coordinate multiple relationships, handle
emerging conflicts among collaborators, and integrate
knowledge flows from collaborators, resulting in less
fruitful knowledge creation. Accordingly, the marginal
cost of academic collaboration is likely to exceed
its contribution to knowledge creation (McFadyen and
Cannella 2004). Overall, we expect knowledge creation
to initially increase with the extent of academic collabo-
ration and then decline as the research program features
an excessive number of academic collaborators, resulting
in an inverted U-shaped effect of academic collaboration
on knowledge creation.
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Hypothesis 1. Knowledge creation will initially
increase and then decrease with the extent of academic
collaboration.

Whereas knowledge creation is associated with aca-
demic collaboration, we expect collaboration with
industry partners to influence knowledge application.
University–industry collaboration takes various forms,
including corporate visits, consultation, licensing of tech-
nology, commercialization, agreements with prospective
customers and suppliers, and involvement in research
consortia (Perkmann and Walsh 2007, Schartinger
et al. 2002). Commercialization efforts and collabora-
tion between university research programs and industry
partners have increased with the advancement of legisla-
tion such as the Bayh-Dole Act, which granted intellec-
tual property rights to universities (Mowery et al. 2001).
Yet the distribution of industry collaborations is skewed,
with a few research programs involved in the majority
of collaborations (Agrawal and Henderson 2002). Col-
laboration with industry partners is a common channel
for knowledge transfer, especially in nascent science-
driven industries (Meyer-Krahmer and Schmoch 1998,
Schartinger et al. 2002).

Collaboration with industry partners can promote
knowledge application by providing complementary
resources for commercialization. In the early stages
of knowledge application, industry partners can share
information on technological developments, market
requirements, and practical problems that necessitate sci-
entific solutions. At later stages, they can grant access
to essential research and development (R&D) experi-
ence and skills that support knowledge application. For
example, they can offer access to qualified engineers,
production facilities, and marketing support for prod-
uct development. Hence, industry collaboration institutes
a division of labor between university research pro-
grams that focus on exploration and industry partners
that facilitate exploitation (Lavie and Rosenkopf 2006,
Rothaermel and Deeds 2004). Unlike passive knowl-
edge transfer, whereby firms license patents and study
scientific publications, industry collaboration furnishes
complementary assets such as equipment and skilled
personnel (Dyer and Singh 1998, Perkmann and Walsh
2007). It also enhances the absorptive capacity of uni-
versity research programs (Cohen and Levinthal 1990)
that is needed to assess opportunities for knowledge
application.

Moreover, industry partners offer R&D funding that
can be used for hiring personnel or purchasing labora-
tory equipment and materials. These resources encour-
age university research programs to become involved in
technology development and commercialization by moti-
vating change in behavior and modifying organizational
routines, norms, and systems (Benner and Sandstorm
2000, Markman et al. 2008). Industry resources are

often accompanied by expectations or formal contracts
that commit university research programs to the objec-
tives and deliverables of industry partners (Bozeman and
Gaughan 2007). Commitments to an increasing number
of industry partners facilitate technology development
and commercialization. Indeed, entrepreneurial outputs
such as patents and commercial products can be related
to the availability of industry resources (Gulbrandsen
and Smeby 2005). Accordingly, we expect knowledge
application to initially increase with the number of
industry partners involved in the research program.

Counterintuitively, as the number of industry part-
ners exceeds a certain threshold, we expect a decline
in knowledge application. First, industry collabo-
ration often involves integrating unique knowledge
assets of the university research program with generic
resources of industry partners. Hence, the complemen-
tary resources and skills of industry partners are likely
to become redundant as the number of partners becomes
excessive (Baum et al. 2000). Second, given limits to
their capacity and managerial attention, scientists at uni-
versity research programs are less likely to achieve
progress when spreading their efforts across a large
number of industry engagements. This strain is exac-
erbated because industry partners often divert priorities
from knowledge creation to its application, which forces
scientists to learn new skills and expertise needed for
knowledge application. Third, involvement with multiple
industry partners may result in coordination problems
and conflicts of interest because different partners expect
their projects to receive priority. Unlike knowledge cre-
ation, which often produces a public good, knowledge
application assigns intellectual property rights to indus-
try partners, which can impose conflicting requirements
when involving a large number of partners with com-
mercial interests (Cohen et al. 2002). Thus, juggling
numerous industry partners can undermine knowledge
application.

Moreover, an initial increase in the number of indus-
try partners advances knowledge application. However,
given the inherent uncertainty of innovation (Van De Ven
1986, von Krogh et al. 2000), few projects are likely to
reach a stage of commercialization, at which point uni-
versity research programs are less motivated to invest
in various other industry collaborations. Thus, an inter-
mediate degree of industry collaboration is optimal for
knowledge application. Indeed, universities can facilitate
innovation with partial embeddedness whereby they are
not isolated from the industry nor held captive by self-
interested industry partners (Owen-Smith and Powell
2003). Consequently, knowledge application is likely to
initially increase with the number of industry partners
but then decrease as an excessive number of indus-
try partners become involved, resulting in an inverted
U-shaped effect of industry collaboration on knowledge
application.
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Hypothesis 2. Knowledge application will initially
increase and then decrease with the extent of industry
collaboration.

The Interplay Between Internal Resources
and Collaboration
The implications of collaboration for knowledge cre-
ation and application are not independent of the inter-
nal resources available to the research program. The
resource-based view underscores the synergies emanat-
ing from combinations of internal resources and network
resources furnished by partners (Dyer and Singh 1998;
Lavie 2006, 2007; Teece 1987). Sharing knowledge and
integrating complementary assets of university research
programs and their partners can thus contribute to both
knowledge creation and application. In addition, the
availability of social capital in the form of collabora-
tions with academic or industry partners increases the
range of opportunities for leveraging internal resources
(Lee et al. 2001). Moreover, the internal knowledge base
needs to be sufficiently developed to assess, internalize,
and apply external knowledge in related domains (Cohen
and Levinthal 1990). To the extent that the research pro-
gram possesses diverse expertise and technologies it can
absorb external knowledge more effectively (Mowery
et al. 1996). Hence, the prevalent supposition in the
literature underscores the complementarity of internal
resources and network resources made available via
collaboration.

Nevertheless, few scholars have alluded to the possi-
ble substitution between internal resources and collabo-
ration, indicating that resource-poor firms are most likely
to benefit from collaboration with resource-rich partners.
In particular, the technological and marketing resources
furnished by partners are most valuable to young and
small ventures that have limited access to such resources
and strive for legitimacy in light of their liabilities of
newness (Stinchcombe 1965, Stuart 2000). In addition,
affluent partners can endorse an entrepreneurial venture
and contribute to its reputation and legitimacy in the eyes
of external stakeholders (Pfeffer and Salancik 1978).
More generally, the smaller the scale and scope of inter-
nal resources relative to network resources shared by
partners, the greater the expected benefits of collabora-
tion (Lavie 2006). The availability of internal resources
can thus limit the value of network resources furnished
by partners. The larger the pool of internal resources, the
weaker the contribution of collaboration to the research
program. This alternative perspective implies substitu-
tion between internal resources and collaboration when
studying the implications for knowledge creation and
application.

Seeking to reconcile these conflicting perspectives on
complementarity versus substitution, we claim that the
interplay between collaboration and internal resources

depends on the extent of collaboration. When a univer-
sity research program engages a relatively small number
of collaborators, its internal resources become critical
for carrying out R&D activities. As the number of col-
laborators increases, available internal resources support
internal operations while restricting the dependence of
the research program on partners. This leads to reduced
investment in collaboration, which eventually limits the
benefits of collaboration (Khanna et al. 1998). The larger
the stock of internal resources, the smaller the contri-
bution of each added collaborator to knowledge cre-
ation and application. Yet as the number of collaborators
becomes excessive, the availability of internal resources
mitigates some of the negative implications of excessive
collaboration. Specifically, university research programs
can use internal resources such as administrative assis-
tance and laboratory personnel to effectively manage a
very large number of collaborations. These resources
help overcome cognitive constraints, relax trade-offs that
emanate from diverse priorities and objectives, facili-
tate coordination, and resolve emerging conflicts (Kale
et al. 2002).

Considering knowledge creation, when the number of
academic collaborators is small yet increasing, internal
resources available to the research program attenuate the
knowledge-creating benefits of collaboration. In partic-
ular, internal resources can be used for hosting visiting
scholars and employing postdocs and junior scientists as
part of the research team. Such resources can be used
for procuring equipment and conducting activities typ-
ically performed by collaborators. To an extent, inter-
nal resources obtained by winning prestigious grants
can also substitute for the reputation of respected col-
laborators. Hence, availability of internal resources is
likely to devalue the contribution of academic collabo-
ration to knowledge creation at a moderate level of col-
laboration. At that level, internal resources restrict the
dependence of the research program on academic col-
laborators. Consequently, the intensity of collaborative
relationships is likely to decline (Gulati and Sytch 2007),
and the resource endowments of academic collaborators
may be inefficiently deployed given their redundancy
with internal resources. Therefore, as long as academic
collaboration advances knowledge creation, availability
of internal program resources is likely to undermine its
contribution.

However, once a threshold is reached beyond which
an excessive number of academic collaborators con-
strains knowledge creation, the availability of internal
resources mitigates some of the impediments associ-
ated with extensive academic collaboration. For instance,
internal resources can be used for appointing dedicated
administrative personnel to coordinate multiple collab-
orative relationships (Kale et al. 2002), thus facilitat-
ing efficient exchange of knowledge, swift resolution of
emerging conflicts, and the meeting of joint milestones
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(Dyer and Singh 1998). Overall, we expect available
internal resources to attenuate the effect of academic
collaboration on knowledge creation—that is, limit the
benefits of collaboration at the lower bound and mitigate
its negative effects at the higher bound.

Hypothesis 3. The curvilinear (inverted U-shaped)
association between knowledge creation and academic
collaboration will become weaker with the availability
of internal resources.

In the same vein, university research programs often
collaborate with industry partners to promote knowl-
edge application. The availability of internal program
resources can substitute for the beneficial endowments of
industry partners as long as such endowments facilitate
knowledge application. In particular, internal resources
can be used for acquiring materials, conducting experi-
ments, developing prototypes, applying for patents, con-
ducting market research, and subcontracting production.
Allocating internal resources to such uses diminishes the
contribution of industry partners that often furnish equiva-
lent services. Hence, as long as industry collaborators pro-
mote knowledge application, internal program resources
are expected to mitigate their contribution.

However, to the extent that industry collaboration
becomes excessive and undermines knowledge appli-
cation, internal resources can be used for overcoming
some of the impediments associated with a complex
portfolio of industry partners. For instance, liaisons and
support staff can be hired to manage the relationships
of the research program with industry partners, thus
relaxing constraints on managerial attention and improv-
ing coordination across industry partners that furnish
various network resources. The research team can be
expanded to enhance the capacity for involving a large
number of industry partners in joint R&D projects. Inter-
nal resources can be also used for retaining intellectual
property rights, thus avoiding potential conflicts among
multiple partners with overlapping appropriation claims.
Therefore, the availability of internal program resources
can mitigate some overembeddedness costs (Uzzi 1997)
associated with an excessive number of industry part-
ners. In sum, internal resources are expected to attenuate
the effect of industry collaboration on knowledge appli-
cation, thus limiting the benefits of collaboration at the
lower bound and mitigating its negative effects at the
higher bound.

Hypothesis 4. The curvilinear (inverted U-shaped)
association between knowledge application and industry
collaboration will become weaker with the availability
of internal resources.

Research Methods
Research Setting and Sample
We study research programs affiliated with nanotech-
nology centers in Israeli universities. Nanotechnology

is an emerging field of research and development, nur-
tured primarily in university research centers. Accord-
ing to the U.S. National Nanotechnology Initiative
(NNI), nanotechnology refers to understanding, control-
ling, and organizing matter at dimensions of roughly
−1 to 100 billionths of a meter. It calls for integra-
tion of physics, chemistry, biology, materials science,
and engineering disciplines. Applications include new
cancer therapies, pollution-eating compounds, durable
consumer products, and detectors for biohazards such
as anthrax. Nanotechnology is considered a revolu-
tionary method of inventing and has the potential
for transforming traditional industries (Bozeman et al.
2007, Zucker et al. 2007). Several governments pro-
mote national nanotechnology research. In particular, the
NNI, which coordinates the U.S. government’s efforts
in nanoscale science, engineering, and technology, oper-
ates with an annual budget of $1.3 billion. In Israel,
the Israel National Nanotechnology Initiative (INNI)
supports $230 million in funding of nanotechnology
research in universities through 2011. Still, it is unclear
what direction this nascent industry may take or whether
it will live up to its promise (Bozeman et al. 2007).

The Israeli nanotechnology industry has witnessed
major progress in recent years. According to the INNI
(http://www.nanoisrael.org/nanoisrael.asp, accessed May
6, 2011), the standardized number of Israeli nanotech-
nology publications and patents were ranked second
and third in the world in 2002. As of 2009, 301 lead
scientists were affiliated with six nanotechnology cen-
ters at Bar-Ilan University, Ben-Gurion University, the
Hebrew University, Technion, Tel Aviv University, and
the Weizmann Institute. Although each of the lead scien-
tists is employed by a disciplinary faculty at one of these
universities, the nanotechnology center in that university
is responsible for supporting individual nanotechnology
research programs. This responsibility typically includes
recruiting faculty, administering research grants, raising
funds for procuring and maintaining infrastructure, ini-
tiating educational programs, and introducing and sup-
porting new research directions, as well as facilitating
collaboration with other academic institutions and indus-
try partners. By 2009, 75 Israeli firms had initiated
development of nanotechnology products, most of which
were start-up firms with core missions in the nanotech-
nology field. The rest were established corporations that
engaged in nanotechnology R&D, either independently
or in collaboration with academic or industry partners.
The increasing focus on nanotechnology commercializa-
tion has been supported by government agencies such
as the Israeli Academy of Science and Humanities, the
Office of the Chief Scientist at the Ministry of Indus-
try and Trade, and the Technological Incubator Program.
Structured investment programs have furnished matching
funds from universities and the government, thus tripling
the potential value of a benefactor’s donation to Israeli
nanotechnology centers.
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Given that knowledge creation in nanotechnology has
been concentrated primarily in university research cen-
ters, for our purposes, we focus on research programs
conducted at these centers. Each research program is led
by a senior scientist whose team may involve also junior
scientists, graduate students, engineers, and technicians
that together engage in multiple research projects in the
field of nanotechnology. Although each project assumes
a distinctive research question or objective, all projects
associated with a research program are related to the
lead scientist’s research interests and often share facil-
ities, equipment, funding, and personnel. For this rea-
son, the research program served as our unit of analysis,
with lead scientists acting as respondents who provided
information on their respective programs. We managed
to gather data on all research centers and the most active
research programs in Israel’s nanotechnology sector.

We obtained the endorsement of the INNI’s board and
contacted the directors of the six Israeli research cen-
ters as well as individual scientists to compile a list
of active nanotechnology scientists and their respective
research programs. After accounting for newly appointed
scientists and delisting retired scientists, dependent junior
scientists, and scientists not directly involved in nan-
otechnology research, our initial sample included 298
research programs affiliated with Bar-Ilan University
(30 programs), Ben-Gurion University (37 programs),
the Hebrew University (34 programs), Technion (107
programs), Tel Aviv University (55 programs), and the
Weizmann Institute (35 programs). Our final sam-
ple included 268 usable responses. Respondents were
affiliated with the following disciplinary faculties: chem-
istry (25.37%), physics (21.64%), electrical engineering
(10.07%), chemical engineering (8.21%), materials engi-
neering (7.09%), biology (5.60%), biomedical engineer-
ing (5.60%), medicine (5.22%), mechanical engineering
(4.85%), biotechnology (4.85%), mathematics (1.11%),
and aerospace engineering (0.37%). The research pro-
grams focused on several areas: materials (49.47%), elec-
tronics and photonics (38.06%), biotechnology (30.60%),
test and measurement tools (19.03%), filtration and mem-
branes (6.72%), and other research fields (23.51%).
On average, a research program employed 2.21 senior
and junior scientists with Ph.D.’s, 2.88 researchers with
M.S.’s, 2.02 M.S. students and engineers, and 0.74 tech-
nicians and other staff. On average, a research program
involved 3.79 nanotechnology projects and operated for
9.95 years.

Data Collection
We incorporated multiple data sources including per-
sonal interviews, questionnaire responses, and archival
data. We first conducted in-depth personal interviews
with key informants in the Israeli nanotechnology sector,
including the deputy chief scientist at the Ministry of
Industry, Trade and Labor; the operating manager of the

Forum for National R&D Infrastructures; the president
of the Israel National Academy of Sciences and Human-
ities; INNI board members; directors of nanotechnology
research centers; senior scientists; entrepreneurs; and
executives of start-up firms. These interviews generated
profound insights into the nanotechnology industry and
the roles of various actors in driving knowledge creation
and application. We leveraged these insights in our ques-
tionnaire, whose items referred to the field of nanotech-
nology research, the type and nature of research, the
number of research projects, the availability and quality
of laboratory equipment, the composition of the research
team, the duration and progress of the research pro-
gram, institutional affiliation, the number and types of
academic collaborators and industry partners, and fund-
ing sources. We sought objective information that can
be used to develop nonreactive measures that are unsus-
ceptible to perceptual biases. Before issuing the ques-
tionnaire, we conducted a pretest study involving several
scientists who provided additional feedback that helped
refine the questionnaire design.

We issued the questionnaire to the population of 298
lead scientists who were invited to complete it on a
secured website between May 2007 and January 2008.
On average, it took respondents less than 15 minutes
to complete a questionnaire. To maximize the response
rate, we took several precautionary steps: (1) prior to
our issuing the questionnaire, the INNI board of direc-
tors contacted directors of research centers to explain
the objectives and importance of our research and ask
for their cooperation; (2) the INNI board endorsed our
questionnaire by including a cover letter that encour-
aged scientists to complete the questionnaire; (3) we
assured respondents that their responses would be kept
anonymous and confidential; (4) we offered to send them
a report with findings and conclusions of the study;
and finally (5) we issued three waves of the question-
naire, including e-mail and phone reminders. Moreover,
between January 2008 and May 2008, we initiated per-
sonal meetings with reluctant scientists and encouraged
them to complete the questionnaire. During that time
frame, we also conducted follow-up phone interviews
with scientists to update their records and complete
missing information. In addition, we validated responses
based on information documented in their resumes.

After discarding three responses with incomplete data,
our final sample included 268 research programs (a 90%
response rate). Our t-tests comparing the response
and nonresponse groups revealed no significant differ-
ences in the mean number of issued patents (t = 1006,
p = 0030) and patent applications (t = 0082, p = 0042) in
fields related to nanotechnology. A multinomial logistic
regression analysis showed only a marginally significant
difference between the disciplinary faculty affiliations of
scientists in the two groups (�2

df=12 = 19090, p = 0007).
These statistics establish the representativeness of our
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sample and attenuate concerns of nonresponse bias. To
further assess nonresponse bias, we split our sample
to early versus late respondents (Armstrong and Over-
ton 1977), finding no significant differences between
these groups. To mitigate concerns of common method
bias, we incorporated archival data on the publica-
tion records of lead scientists instead of relying on
self-reported measures. Unless noted otherwise, all the
reported questionnaire-based measures correspond to the
time frame since the initiation of the research program
until May 2008.

Measures

Knowledge Creation (Dependent Variable). Our inter-
viewees identified publication counts as the most relevant
indicator of knowledge creation for university research
programs. Scientific publications are considered highly
relevant channels for knowledge dissemination in indus-
tries that leverage basic science and university research
(Cohen et al. 2002). Regardless of whether scientific
knowledge is produced via theoretical modeling, simula-
tion, or laboratory experiments, the resulting knowledge
is documented in scholarly publications. We have lim-
ited our focus to scientific journal articles that subject
contributions to peer review prior to dissemination. We
excluded books, which are considered a less relevant out-
let for publishing new knowledge and which leverage a
weaker and less transparent peer review system.

Our interviews suggested that the lead scientists are
designated as authors in all the publications result-
ing from their respective research programs. We used
Thomson’s ISI Web of Knowledge database to extract
their journal articles published since the initiation of
the current research program until January 2009. We
considered name variations of authors and verified
their university affiliations by matching their publica-
tion records to their employment history. Following prior
research that advocates keyword search for tracking sci-
entific output in evolving technology fields (Mogoutov
and Kahane 2007, Porter et al. 2008), we adopted an
established and commonly used algorithm that isolates
publications in the field of nanotechnology by searching
the titles, keywords, and abstracts of publications for rel-
evant keywords associated with nanotechnology (Huang
et al. 2003, Rothaermel and Thursby 2007).1 We ver-
ified that the publication years correspond to years in
which the research programs were active. Overall, the
268 lead scientists published 25,124 articles, of which
3,919 (15.60%) were counted in the field of nanotech-
nology during the lifespan of corresponding research
programs prior to January 2009. We measured knowl-
edge creation by counting the nanotechnology publica-
tions associated with each research program.2

Knowledge Application (Dependent Variable). Apply-
ing scientific knowledge in new product development
involves sequential progress from early research to

development, manufacturing, and marketing (Cohen
et al. 1996, Knudsen 2007). Our interviewees identified
four stages of knowledge application in nanotechnology
research programs: preliminary studies, prototype, test-
ing, and commercialization. Preliminary studies involve
initial exploration of ideas to determine the viability of
technological concepts and to identify probable solutions
to a scientific problem. Prototypes are then constructed
for selected solutions to facilitate subsequent design and
testing. At the testing stage, prototypes are subject to
a range of conditions to verify robustness and final-
ize the product design. Subsequently, commercialization
entails engineering, large-scale manufacturing, and mar-
keting to introduce the new product to designated mar-
ket segments. Respondents were asked to indicate the
current progress of their research programs as of May
2008 using one of the following values: 1 for prelim-
inary studies, 2 for prototype, 3 for testing, and 4 for
commercialization. When the research program involved
multiple projects at different stages, we coded the most
advanced stage of knowledge application.3 We preferred
this measure to patent counts that only partially capture
the innovative output of early-stage research and fail to
reveal the extent to which knowledge has been practi-
cally applied.4

Academic Collaboration (Independent Variable). Any
nonmember university scientist who had been working
with members of the nanotechnology research program
to produce new knowledge was considered a collabora-
tor (Katz and Martin 1997). We measured the extent of
academic collaboration with the cumulative number of
all collaborators ever associated with each research pro-
gram, as reported by the lead scientist. Based on these
reports, 94.78% of the research programs involved aca-
demic collaboration. To enhance the accuracy of this
measure, we prompted respondents to list the names
and affiliations of their collaborators. Following prior
research that underscores the differences between sci-
entific collaboration and coauthorship (Bozeman and
Corley 2004, Katz and Martin 1997), we preferred this
measure to an alternative measure based on counts of
coauthors listed on joint publications.5

Industry Collaboration (Independent Variable). Indus-
try collaboration was measured with the cumulative
number of industry partners ever involved in the nan-
otechnology research program as reported by the lead
scientist. Industry partners included start-up firms and
established corporations, and domestic as well as inter-
national firms. Industry partners were involved in the
research program in various roles and to different extents.
Nevertheless, only 46.27% of the research programs
engaged industry partners. To enhance the accuracy of
this measure, we asked respondents to identify their
industry partners.
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Internal Resources (Moderator). We focused on the
research program’s funding as a primary resource that
serves for garnering all types of internal resources
employed by the research program, including personnel,
laboratory equipment, and materials. Program funding
is critical in science-driven industries given the capital
intensity of laboratory equipment and scientific oper-
ations as well as the need for highly qualified per-
sonnel. It can serve as a source of both tangible and
intangible resources because prestigious research grants
regenerate resources and bestow recognition (Benner
and Sandstorm 2000). We asked respondents to indi-
cate the cumulative funding available for their nan-
otechnology research programs. Given the sensitivity of
this information, we used a categorical variable indi-
cating the range of available funding: 0 for no fund-
ing, 1 for less than $100,000, 2 for $100,000–$500,000,
3 for $500,000–$1 million, 4 for $1 million–$5 mil-
lion, and 5 for funds larger than $5 million. To enhance
the accuracy of this measure, we also asked respon-
dents to identify their funding sources, which included
the host institution, Israeli/international scientific funds,
Israeli/international government programs, independent
funds/donors, Israeli/foreign corporations, and venture
capital investors. Internal resources was incorporated as
a moderator of the associations between knowledge cre-
ation and academic collaboration and between knowl-
edge application and industry collaboration.

Control Variables. We included several control vari-
ables that may affect knowledge creation and applica-
tion. First, we considered research program resources,
including internal resources in the form of program
funding, the research team’s size and seniority, and
the quality of laboratory equipment. Internal resources
serves for obtaining dedicated personnel, equipment, and
materials needed for carrying out scientific research. We
measured research team size as the number of full-time
equivalent personnel involved in the nanotechnology
program, including the lead scientist, junior scientists,
graduate students, engineers, and technicians. We also
accounted for the qualifications of team members by
coding research team seniority as the mean value of
members’ most recent degrees: 4 for a Ph.D., 3 for an
M.S., 2 for a B.S., and 1 for other professional degrees.
The team’s composition may affect knowledge creation
and application given the distinctive roles of team mem-
bers. Also, equipment quality may affect the ability to
run experiments that contribute to knowledge creation
and application. Lab equipment quality was measured as
the mean value of available equipment: 3 for state-of-
the-art equipment, 2 for standard equipment, and 1 for
below-standard equipment.

Additional controls refer to the nature of the research
program. We included dummy variables describing the
field of research: materials (e.g., particles, lubricants,

bio materials, metals, polymers), test and measurement
tools (e.g., positioning, metrology, surface analysis, opti-
cal test and measurement), biotechnology (e.g., disease
treatment, genomics, antimicrobial agents, drug deliv-
ery), electronics and photonics (e.g., quantum comput-
ing, quantum dots, lithography and inspection), filtration
and membranes (e.g., desalination, water purification),
and other research field. A research program may
involve multiple research fields. We also controlled
for applied research (1 for applied research, 0 for
basic research, and 0.5 for a combination), which is
geared toward knowledge application. When studying
the effects on knowledge application, we also accounted
for theoretical modeling with a self-reported dummy
variable, because research programs of theoreticians typ-
ically involve limited knowledge application.

Finally, we incorporated several control variables that
may directly affect knowledge creation and application,
such as the number of projects and program duration,
which are likely to be positively related to the produc-
tivity and progress of the research program. We also
included a count of non-nano projects because lead sci-
entists who split their efforts between nanotechnology
research and other research projects in their disciplinary
fields are likely to contribute less to knowledge cre-
ation in nanotechnology, although such projects may or
may not complement their efforts of knowledge appli-
cation. Another categorical variable served for indicat-
ing the nanotechnology center with which the research
program was affiliated (Bar-Ilan University, Ben-Gurion
University, the Hebrew University, Technion, Tel Aviv
University, or the Weizmann Institute). Such affiliation
fixed effects may be relevant to the extent that particu-
lar institutions offer incentives and facilities that are not
captured by other control variables.

Analysis
We measured knowledge creation with publication
counts that are bounded at zero and assume integer
values. We address the discrete nature of this depen-
dent variable by using negative binomial regression with
maximum likelihood estimation. The negative binomial
model is a generalization of the Poisson model that
adjusts for overdispersion that occurs when the variance
of the estimated number of events exceeds its mean. This
model corrects for overdispersion by including a vary-
ing error term that captures the overdispersion effects
(Barron 1992). A comparison of our negative binomial
models and the corresponding Poisson models using the
Bayesian information criterion, the Akaike information
criterion, and likelihood ratio tests revealed that the neg-
ative binomial models provide better fit to the data.

Our knowledge application variable is based on ordi-
nal data describing the progress of the research pro-
gram. Preliminary studies must be completed before
the research program progresses to the prototype stage,



Lavie and Drori: Collaborating for Knowledge Creation and Application
Organization Science 23(3), pp. 704–724, © 2012 INFORMS 713

which in turn leads to testing and finally to commer-
cialization. Thus, we implemented continuation ratio
logit models for knowledge application, using maxi-
mum likelihood estimation. Such models are appropri-
ate when the ordered categories represent progression
through stages, whereby one must pass through each
preceding stage before moving to the subsequent one
(Allison 1999). The continuation ratio model relies on
conditional incremental cut points in which outcomes
are omitted at a given stage following comparison to
subsequent stages. To mitigate potential multicollinear-
ity, we standardized all variables to have zero sample
mean and unit variance. The variance inflation factor
indexes ranged between 1.61 and 2.46 for the knowl-
edge creation models and between 1.73 and 6.86 for the
knowledge application models, both below critical val-
ues (Kleinbaum et al. 1998).

Table 1 Descriptive Statistics and Correlations (N = 268)

Variable Mean Std. dev. 1 2 3 4 5 6 7 8 9 10 11

1. Knowledge creation 14062 25056
2. Knowledge application 1072 0094 0006
3. Academic collaboration 6051 5076 0045∗∗∗ 0008
4. Industry collaboration 1032 2014 0036∗∗∗ 0028∗∗∗ 0046∗∗∗

5. Nano Center 1 0014 0035 −0002 −0011† 0014∗ −0004
6. Nano Center 2 0012 0032 0005 0014∗ 0003 −0002 −0015∗

7. Nano Center 3 0035 0048 −0009 0005 −0008 0004 −0029∗∗∗ −0027∗∗∗

8. Nano Center 4 0017 0038 −0007 0009 −0007 −0006 −0018∗∗ −0017∗∗ −0033∗∗∗

9. Nano Center 5 0011 0032 0009 −0016∗∗ −0003 −0006 −0014∗ −0013∗ −0026∗∗∗ −0016∗∗

10. Nano Center 6 0011 0032 0010† −0003 0006 0013∗ −0014∗ −0013∗ −0026 −0016∗∗ −0013∗

11. Field: Materials 0058 0049 0017∗∗ 0011† 0017∗∗ 0020∗∗∗ 0008 −0004 0004 −0001 −0006 −0003
12. Field: Test and 0019 0039 0010† 0009 0017∗∗ 0018∗∗ −0008 −0003 0005 0008 −0002 −0002 0028∗∗∗

measurement tools
13. Field: Biotechnology 0031 0046 −0012∗ 0015∗ 0001 0005 0004 0001 −0011† 0013∗ −0016∗∗ 0012∗ −0007
14. Field: Electronics 0038 0049 0007 −0012∗ 0005 −0004 0002 −0005 −0000 0007 0006 −0011† −0006

and photonics
15. Field: Filtration 0007 0025 −0004 0005 0002 0008 0015∗ −0001 0002 −0008 −0000 −0010 −0014∗

and membranes
16. Other research field 0024 0042 −0003 −0000 −0007 0001 −0012∗ 0009 0002 0005 −0000 −0006 −0024∗∗∗

17. Applied research 0039 0033 0000 0034∗∗∗ −0006 0023∗∗∗ −0014∗ 0002 0015∗ −0002 −0016∗∗ 0009 0004
18. Number of projects 3079 3006 0050∗∗∗ 0022∗∗∗ 0045∗∗∗ 0053∗∗∗ 0010 0001 −0009 0002 −0008 0007 0018∗∗

19. Program duration 9095 7049 0023∗∗∗ 0015∗ 0025∗∗∗ 0016∗ 0000 0008 −0007 −0013∗ 0008 0009 0001
20. Lab equipment quality 2033 0081 −0002 0016∗∗ 0003 0016∗∗ −0018∗∗ −0011† 0007 0013∗ 0011† −0006 0022∗∗∗

21. Research team seniority 2093 0044 0003 −0009 −0010 −0016∗∗ −0002 −0005 −0004 0001 0018∗∗ −0005 −0017∗∗

22. Research team size 7035 5000 0033∗∗∗ 0032∗∗∗ 0034∗∗∗ 0048∗∗∗ −0006 0013∗ 0016∗∗ 0005 0001 0011† 0011†

23. Internal resources 2038 1015 0025∗∗∗ 0032∗∗∗ 0040∗∗∗ 0040∗∗∗ 0006 0012∗ −0010† 0006 −0006 −0003 0010
24. Non-nano projects 2009 2043 −0020∗∗∗ 0006 −0022∗∗∗ −0012∗ −0019∗∗ 0001 0004 0008 −0001 0004 −0015∗

25. Theoretical modeling 0007 0026 0002 −0014 −0000 −0011† 0017∗∗ 0003 −0003 −0009 −0006 −0001 −0013∗

Variable 12 13 14 15 16 17 18 19 20 21 22 23 24

13. Field: Biotechnology 0001
14. Field: Electronics 0007 −0017∗∗

and photonics
15. Field: Filtration and 0006 0005 −0006

membranes
16. Other research field −0007 −0012∗ −0022∗∗∗ −0004
17. Applied research −0003 0013∗ 0001 0018∗∗ −0001
18. Number of projects −0020∗∗ 0006 −0000 0003 0007 0004
19. Program duration 0007 −0004 −0012∗ 0004 −0008 −0008 0021∗∗∗

20. Lab equipment quality 0011† 0001 −0002 −0002 −0008 0016∗∗ 0011† −0003
21. Research team seniority −0017∗∗ −0016∗∗ 0006 0001 0013∗ −0005 −0019∗∗ −0009 −0024∗∗∗

22. Research team size 0014∗ 0016∗∗ −0005 0008 0002 0019∗∗ 0062∗∗∗ 0025∗∗∗ 0019∗∗ −0030∗∗∗

23. Internal resources 0016∗ 0010 −0000 0002 −0011† 0001 0044∗∗∗ 0027∗∗∗ 0015∗ −0024∗∗∗ 0049∗∗∗

24. Non-nano projects −0005 0002 −0019∗∗ 0002 0014∗ 0012∗ −0015∗ −0013∗ −0000 0005 −0003 −0023∗∗∗

25. Theoretical modeling −0014∗ −0016∗∗ 0007 −0008 0008 −0018∗∗ −0003 0002 −0073∗∗∗ 0027∗∗∗ −0012∗ −0009 −0003

†p < 001; ∗p < 0005; ∗∗p < 0001; ∗∗∗p < 00001 (two-tailed).

Results
Descriptive statistics including means, standard devi-
ations, and correlations are reported in Table 1. On
average, a research program produced 14.62 publica-
tions in the field of nanotechnology, with 55.97% of
the programs operating at the preliminary studies stage,
22.39% at the prototype stage, 15.67% at the testing
stage, and 5.97% reaching commercialization. No sig-
nificant correlation was observed between knowledge
creation and knowledge application. This result is con-
sistent with prior research that reports no association
between entrepreneurial activities and the traditional sci-
entific work of university scientists (Gulbrandsen and
Smeby 2005, Van Looy et al. 2004). Whereas knowledge
creation precedes commercialization efforts, such efforts
also consume resources otherwise invested in knowledge
creation, so that the overall association is ambivalent.
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On average, a nanotechnology research program fea-
tured 6.51 academic collaborators, of which 2.37 were
from the same university, 1.34 were from other univer-
sities in Israel, and 2.80 were from foreign universi-
ties. A research program engaged 1.32 industry partners,
with high correlation between industry collaboration and
academic collaboration (r = 0046, p < 00001). Internal
resources are positively related to the research team size
(r = 0049, p < 00001), which is correlated with industry
collaboration (r = 0048, p < 00001).

Table 2 reports the results of negative binomial models
for knowledge creation. The baseline model (Model 1)
shows the effects of our control variables, revealing no
significant heterogeneity across nanotechnology research
centers. Nevertheless, we found significant differences in
knowledge creation across nanotechnology fields, with
a greater number of publications in the fields of mate-
rials (� = 0032, p < 00001) and electronics and pho-
tonics (� = 0024, p < 00001), and fewer publications
in biotechnology (� = −0023, p < 0001). As expected,
knowledge creation is positively related to available
internal resources (� = 0020, p < 0005), the number of
nanotechnology projects (� = 0018, p < 0005), and pro-
gram duration (� = 0030, p < 00001), but negatively
related to the number of non-nano projects (�= −0020,
p < 0001).

Table 2 Negative Binomial Models for Knowledge Creation (N = 268)

Dependent variable: Knowledge creation Model 1 Model 2 Model 3 Model 4

Nano Center 1 −0008 (0.09) −0006 (0.09) −0009 (0.09) −0008 (0.09)
Nano Center 2 0003 (0.08) 0006 (0.08) 0006 (0.08) 0007 (0.08)
Nano Center 3 −0012 (0.11) −0008 (0.10) −0010 (0.10) −0009 (0.10)
Nano Center 4 −0010 (0.09) −0004 (0.09) −0005 (0.09) −0005 (0.09)
Nano Center 5 0009 (0.09) 0011 (0.08) 0009 (0.08) 0007 (0.08)
Field: Materials 0032∗∗∗ (0.07) 0032∗∗∗ (0.06) 0030∗∗∗ (0.07) 0029∗∗∗ (0.07)
Field: Test and measurement tools 0002 (0.07) 0001 (0.07) 0001 (0.06) 0004 (0.07)
Field: Biotechnology −0023∗∗ (0.07) −0023∗∗ (0.07) −0025∗∗∗ (0.07) −0026∗∗∗ (0.07)
Field: Electronics and photonics 0024∗∗∗ (0.07) 0023∗∗∗ (0.07) 0021∗∗ (0.06) 0019∗∗ (0.06)
Field: Filtration and membranes −0007 (0.07) −0006 (0.06) −0005 (0.06) −0006 (0.06)
Applied research −0000 (0.07) −0001 (0.07) −0002 (0.07) −0003 (0.07)
Number of projects 0018∗ (0.08) 0010 (0.08) 0016† (0.08) 0011 (0.08)
Program duration 0030∗∗∗ (0.07) 0029∗∗∗ (0.07) 0028∗∗∗ (0.07) 0027∗∗∗ (0.07)
Lab equipment quality −0012† (0.07) −0010 (0.07) −0008 (0.07) −0008 (0.07)
Research team seniority 0003 (0.07) 0001 (0.06) 0001 (0.06) 00003 (0.06)
Research team size 0011 (0.09) 0011 (0.09) 0009 (0.09) 0011 (0.09)
Internal resources 0020∗ (0.08) 0014† (0.08) 0012 (0.08) 0003 (0.08)
Non-nano projects −0020∗∗ (0.07) −0016∗ (0.07) −0016∗ (0.07) −0016∗ (0.07)
Academic collaboration 0005∗∗ (0.01) 0007∗∗∗ (0.02) 0008∗∗∗ (0.02)
Academic collaboration2 −00002∗ (0.001) −00003† (0.002)
Academic collaboration × Internal resources −0005∗∗ (0.02)
Academic collaboration2 × Internal resources 00003∗ (0.001)
Dispersion 0.85 0.80 0.78 0.76
LL −908.51 −902.26 −899.47 −895.45
Pseudo-R2 0.076 0.082 0.085 0.089
2ãLL 12.51∗∗∗ 18.09∗∗∗ 26.14∗∗∗

Note. Standard errors are in parentheses.
†p < 001; ∗p < 0005; ∗∗p < 0001; ∗∗∗p < 0 (two-tailed).

Model 3 served for testing Hypothesis 1. Consis-
tent with our prediction, knowledge creation is pos-
itively related to academic collaboration (� = 0007,
p < 00001) yet negatively associated with its quadratic
term (� = −00002, p < 0005), suggesting an overall
inverted U-shaped effect of academic collaboration on
knowledge creation. The curvilinear model (Model 3)
achieved better fit to the data than the linear model
(Model 2) (2ã log likelihood (LL) = 5058, p < 0005).
Maximum productivity is within range, so that knowl-
edge creation reaches a peak of 20.096 nanotechnol-
ogy publications for 24 academic collaborators when
other variables are held at their mean values. Next, we
tested Hypothesis 3 by introducing internal resources as
a moderator of the association between knowledge cre-
ation and academic collaboration (Model 4). Consistent
with our prediction, internal resources negatively moder-
ated the positive association between knowledge creation
and academic collaboration (�= −0005, p < 0001) while
positively moderating its quadratic term (�= 00003,
p < 0005). Hence, internal resources attenuated the
inverted U-shaped association between knowledge cre-
ation and academic collaboration (see Figure 1).6

Table 3 reports the results of continuation ratio mod-
els for knowledge application. According to the base-
line model (Model 5), certain nanotechnology research
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Figure 1 Knowledge Creation by Academic Collaboration
and Internal Resources
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centers host research programs at more advanced
stages, yet such differences are only marginally signif-
icant. We found no significant differences in knowl-
edge application across nanotechnology fields with the
exception of electronics and photonics, which show
marginally slower progress. As we expected, knowl-
edge application is positively associated with applied
research projects (� = 0061, p < 00001) and internal
resources (�= 0050, p < 00001). Model 7 served for
testing Hypothesis 2. Consistent with this hypothesis,
the linear term of industry collaboration is positive
(�= 0054, p < 0005), whereas its quadratic term is neg-

Table 3 Continuation Ratio Models for Knowledge Application (N = 268)

Dependent variable: Knowledge application Model 5 Model 6 Model 7 Model 8

Nano Center 1 0002 (0.18) 0005 (0.18) −00004 (0.18) −0001 (0.18)
Nano Center 2 0027† (0.15) 0030† (0.15) 0026† (0.16) 0029† (0.16)
Nano Center 3 0032† (0.19) 0035† (0.20) 0027 (0.20) 0026 (0.20)
Nano Center 4 0031† (0.17) 0035∗ (0.18) 0031† (0.18) 0033† (0.18)
Nano Center 5 −0009 (0.18) −0006 (0.18) −0011 (0.18) −0008 (0.18)
Field: Materials 0016 (0.13) 0014 (0.13) 0013 (0.13) 0013 (0.13)
Field: Test and measurement tools 0002 (0.12) 0002 (0.12) 0001 (0.12) 0002 (0.12)
Field: Biotechnology 0008 (0.12) 0008 (0.12) 0009 (0.11) 0008 (0.12)
Field: Electronics and photonics −0023† (0.12) −0023† (0.12) −0024† (0.12) −0023† (0.12)
Field: Filtration and membranes −0009 (0.11) −0009 (0.11) −0008 (0.11) −0007 (0.11)
Applied research 0061∗∗∗ (0.13) 0059∗∗∗ (0.13) 0058∗∗∗ (0.13) 0057∗∗∗ (0.13)
Number of projects 0006 (0.15) 0004 (0.16) 0010 (0.16) 0011 (0.16)
Program duration 0021† (0.12) 0022† (0.12) 0020† (0.12) 0019† (0.12)
Lab equipment quality 0001 (0.18) 0001 (0.18) −0002 (0.18) −0001 (0.18)
Research team seniority 0017 (0.13) 0016 (0.13) 0018 (0.13) 0016 (0.13)
Research team size 0021 (0.16) 0018 (0.17) 0014 (0.17) 0010 (0.17)
Internal resources 0050∗∗∗ (0.14) 0047∗∗ (0.14) 0046∗∗ (0.14) 0043∗∗ (0.15)
Non-nano projects 0016 (0.12) 0017 (0.12) 0017 (0.12) 0019 (0.12)
Theoretical modeling −0022 (0.19) −0022 (0.13) −0025 (0.19) −0027 (0.19)
Industry collaboration 0014 (0.14) 0054∗ (0.25) 0030 (0.37)
Industry collaboration2 −0048∗ (0.24) −0002 (0.69)
Industry collaboration × Internal resources 0045 (0.32)
Industry collaboration2 × Internal resources −0051 (0.50)
LL −251.28 −250.76 −248.85 −247.80
Pseudo-R2 0.162 0.164 0.170 0.173
2ãLL 1.03 4.85† 6.95

Note. Standard errors are in parentheses.
†p < 0013 ∗p < 0005; ∗∗p < 0001; ∗∗∗p < 0 (two-tailed).

ative (�= −0048, p < 0005), suggesting an inverted U-
shaped association between knowledge application and
industry collaboration. This curvilinear model offered
better fit to the data than the linear model (Model 6)
(2ãLL = 3082, p < 0005). The maximum level of pro-
ductivity fell within range, so that knowledge application
reached a peak at seven industry partners. At this level,
the probabilities of commercialization (probability =

0036) and testing (probability = 0034) were highest,
and those of preliminary studies (probability = 0014)
and prototype (probability = 0016) were lowest (see
Figure 2). We tested Hypothesis 4 by introducing
internal resources as a moderator of the association
between knowledge application and industry collabo-
ration (Model 8). Because the interaction terms with
internal resources are insignificant, we find no evidence
that internal resources moderate the curvilinear associ-
ation between knowledge application and industry col-
laboration. We suspect that this interaction effect is
insignificant because industry partners may sponsor the
research program in exchange for contract research and
consulting (Perkmann and Walsh 2007). Indeed, some
research programs received funding from Israeli firms
(19.78%), foreign firms (12.69%), or venture capital
investors (2.99%), which may obscure the moderating
effect of internal resources.

We conducted several auxiliary analyses to assess the
robustness of our findings. First, we introduced sepa-
rate measures for local collaboration (academic collab-
orators affiliated with the same university), domestic
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Figure 2 Industry Collaboration and the Likelihood of
Knowledge Application
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collaboration (collaborators affiliated with other Israeli
universities), and international collaboration (collabora-
tors affiliated with foreign universities) when studying
the association between knowledge creation and aca-
demic collaboration. This auxiliary analysis revealed
that although knowledge creation increases linearly with
domestic collaboration, its association with the effects
of local collaboration and international collaboration
assumes an inverted U-shaped pattern in accordance
with Hypothesis 1. In particular, knowledge creation
reached a peak of 15.46 nanotechnology publications for
8 local collaborators and a peak of 17.17 publications for
12 international collaborators when all other variables
were held at their mean values. We believe that domestic
collaboration exhibits no diminishing returns because the
mean number of domestic collaborators is significantly
lower than the number of local or international collabo-
rators, so that the maximum values may fall outside of
the observed range. Overall, these results suggest that
the inverted U-shaped association between knowledge
creation and academic collaboration is almost insensitive
to the composition and proximity of collaborators.

Next, we examined whether the effects of collabo-
ration can be ascribed to the diversity of collaborators
rather than to their increasing number. We constructed
a Blau diversity index: D = 1 −

∑

k4ck/C5
2, with C

being the total number of academic collaborators and
ck denoting the number of collaborators of type k,
namely, collaborators from the same university (k = 1),
from other domestic universities (k = 2), or from for-
eign universities (k = 3). When the number of aca-
demic collaborators was replaced with the diversity of
collaborators in Model 4 (Table 2), its effects were
insignificant with the exception of a marginally signif-
icant positive linear effect. Thus, although knowledge
creation may benefit from the diversity of academic
collaborators, such an effect does not account for our
reported inverted U-shaped association between knowl-
edge creation and academic collaboration. Similarly,

we constructed a measure of the diversity of indus-
try partners by counting the types of industry rela-
tionships formed by each research program, including
corporate visits, consultation, licensing of technology,
joint research programs, commercialization, agreements
with customers or suppliers, collaboration with gov-
ernment agencies, and involvement in domestic or for-
eign research consortia. When the number of industry
partners was replaced with the corresponding diversity
measure in Model 7 (Table 3), its effects were insignif-
icant, suggesting that the inverted U-shaped association
between knowledge application and industry collabora-
tion can be ascribed to the number of industry partners
rather than to their diversity.

In addition, we considered an alternative measure
of knowledge creation based on a weighted citation
count for publications in nanotechnology. Consistent
with Hypothesis 1, the results revealed an inverted
U-shaped association between academic collaboration
and citations. Hence, academic collaboration affects not
only productivity but also the quality or impact of
knowledge created. Yet the moderating effect of inter-
nal resources was insignificant, suggesting that although
internal resources affect the amount of jointly cre-
ated knowledge, they do not influence the quality of
such knowledge. Additionally, we found that our results
remained virtually unchanged when excluding publica-
tions documented during years in which researchers were
not affiliated with their home institutions.7 Moreover, we
tested an alternative measure of knowledge application
based on the average progress of projects in the research
program. Consistent with Hypothesis 2, we found an
inverted U-shaped effect of industry collaboration on this
alternative measure, yet the effects were less significant
than our reported results.

In addition, we considered alternative measures of
internal resources, such as the availability of laboratory
equipment and the size of the research team. These aux-
iliary analyses revealed that available laboratory equip-
ment negatively moderates the positive effect of industry
collaboration on knowledge application, suggesting that
such equipment substitutes for the endowments of indus-
try partners. Consistent with Hypothesis 3, research team
size negatively moderates the inverted U-shaped relation-
ship between knowledge creation and academic collabo-
ration. To gain further insights, we also tested models in
which we considered the quality of laboratory equipment
and the seniority of the research team as alternative mod-
erators. Consistent with our reported findings, the quality
of these resources does not modify the inverted U-shaped
association between knowledge application and indus-
try collaboration. Yet, whereas research team senior-
ity enhances the contribution of academic collaboration
to knowledge creation, the quality of equipment under-
mines that contribution. These inconsistent findings can
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be ascribed to the fact that each alternative measure cap-
tures a narrow aspect of the research program’s internal
resources and cannot effectively account for unobserved
heterogeneity. These results further support our decision
to measure internal resources with the proxy of accumu-
lated program funding.

In another analysis we studied the effects of alter-
native measures of internal resources on the associa-
tion between academic collaboration and the quality
of knowledge created, captured by a weighted cita-
tion count of nanotechnology publications. With the
exception of the seniority of the research team, which
enhances the positive contribution of academic collabo-
ration to the quality of produced knowledge, other mea-
sures such as the availability of laboratory equipment
and the quality and the size of the research team do not
affect that association. We conclude that the quality of
knowledge developed is not sensitive to the availability
of resources other than those related to the qualifications
of scientists.

Following Wiersema and Bowen (2009), we ac-
counted for the fact that knowledge creation and
knowledge application are operationalized as limited
dependent variables. We examined the marginal effects
of our explanatory variables, which may vary nonlin-
early with the values of the model variables, by using
the sample mean of all variables. Corresponding results
were fully consistent with our reported findings.

Moreover, given the cross-sectional nature of our data,
we tested for reversed causality whereby knowledge
creation and application correspondingly facilitate aca-
demic and industry collaboration. With respect to aca-
demic collaboration, the results of a negative binomial
model revealed a decrease in the explanatory power of
the model when the number of academic collaborators
served as the dependent variable (from pseudo-R2 =

00085 to pseudo-R2 = 00074). Similarly, the explanatory
power of the model declined (from pseudo-R2 = 00170 to
pseudo-R2 = 00132) when industry collaboration served
as the dependent variable. These results are consistent
with our interpretation that collaboration drives knowl-
edge creation and application. Our interviews furnish
further support for this causal relationship:

You seek the best partner to promote your research pro-
gram and maximize synergy. Scientists frequently meet
with their peers in conferences. Everyone knows what is
done at other institutions. Collaborations emerge spon-
taneously. There are no barriers. They are even encour-
aged. For example, a scientist at the Hebrew University
knows how to define unique nanometric particles, and
someone at the Technion knows how to grow lay-
ers of organic molecules that conduct electricity. They
formed a collaboration that enables them to produce laser
and light-emitting systems. Integrating their knowledge
enabled this achievement.

(A director of a nanotechnology research center)

Finally, we examined whether academic collaboration
promotes knowledge application and how industry col-
laboration enhances knowledge creation. In both cases,
we found no significant effects, suggesting that academic
collaboration contributes to knowledge creation but not
to knowledge application, whereas industry collabora-
tion advances knowledge application rather than knowl-
edge creation.

Discussion and Conclusions
Knowledge creation and application are critical to
the evolution of science-driven industries. We study
these processes in the field of nanotechnology, where
technological and market uncertainty, reliance on inter-
disciplinary de novo knowledge base, a weak institutional
environment, and exorbitant investments often call for
collaboration (Mehta 2002, Meyer and Persson 1998). At
its nascent stage of evolution, nanotechnology research
has been carried out mostly in university research cen-
ters, raising intriguing questions concerning the implica-
tions of collaboration for university research programs.
Offering new insights on collaboration in nascent indus-
tries, we find no evidence of the often taken-for-granted
linkage between knowledge creation and application in
established industries. We complement the thriving lit-
erature on the performance implications of collaborative
relationships in alliance networks (e.g., Baum et al. 2000,
Powell et al. 1996, Rothaermel and Deeds 2004, Stuart
2000) and advance knowledge management research
(e.g., Argote and Ingram 2000, Dyer and Nobeoka 2000,
Grant 1996, Hansen 2002, Nonaka 1994). Our main
contribution, however, concerns the delicate interplay
between internal resources and collaboration in driving
knowledge creation and application.

Departing from traditional research that underscored
the benefits of collaboration, our findings reveal bound-
ary conditions for the merits of collaboration in driv-
ing knowledge creation and application. We demonstrate
that collaboration with fellow scientists promotes knowl-
edge creation only up to a point, beyond which knowl-
edge creation is in fact undermined. We show that an
optimal level of industry collaboration is needed for
advancing knowledge application and its manifestation
in commercialized products and technologies. Our field
interviews corroborate this finding:

We actively encourage our industry partners to visit us.
It is not just their money or connections that we seek but
the unique knowledge that they possess. They are more
familiar with the markets and needs. Yet, when it comes
to concrete collaboration, we weigh it very carefully.

(A lead scientist)

Indeed, our findings suggest that collaboration pro-
duces diminishing returns and incurs costs. As the
extents of academic collaboration and industry partner-
ships become excessive, managerial challenges mount,
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and interorganizational trade-offs and conflicts arise
(McFadyen and Cannella 2004, Owen-Smith and Powell
2003), which render collaboration unproductive.

More importantly, we reveal how the contribution
of collaboration to knowledge creation and application
is contingent on the availability of internal resources.
Prior research has emphasized the complementary value
of network resources furnished by partners and the
synergies arising from their combination with internal
resources (Dyer and Singh 1998, Lavie 2007, Teece
1987). Yet few studies have regarded network resources
as potential substitutes for internal resources that are
short in supply (Lavie 2006, Stuart 2000). Our find-
ings reconcile these conflicting views by demonstrating
how the interplay between internal resources and net-
work resources varies with the extent of collaboration.
The availability of internal resources limits the benefits
that research programs extract from academic collabo-
ration but at the same time also mitigates some of the
costs associated with excessive engagements with fellow
scientists.8 In this sense, the sourcing of knowledge is
contingent upon trade-offs between in-house and exter-
nal capabilities (Raflos 2007). At least some internal
resources help facilitate coordination and manage the
otherwise complex portfolio of collaborators. Neverthe-
less, we found no evidence of the attenuating effect of
internal resources on the contribution of industry part-
ners to knowledge application, perhaps because such
partners can offer funding. Collaboration and program
funding may endogenously affect research productiv-
ity (Defazio et al. 2009) so that scientists can enhance
their productivity by strategizing on the extent and type
of collaboration. In sum, our findings discern between
distinctive types of partners and underscore the inter-
play between internal resources and external network
resources, as illustrated by our interviews:

Our initial reaction when it comes to academic collab-
oration or ties to industry partners is to get as much
as we can. This is because we have this perception of
chronic shortage in resources and skilled personnel. Our
tendency as scientists who manage laboratories is to build
empires. However, on second thought, we always make
calculations. Can I incorporate all the resources that I
can get? Can I use them effectively? Do they contribute
to my objective of promoting path-breaking research?
How much will I have to give and for what?

(A lead scientist)

These trade-offs have been often overlooked by main-
stream literature on collaboration that has focused on the
structural properties of alliance networks (Ahuja 2000,
Baum et al. 2000, Stuart et al. 1999, Zaheer and Bell
2005) and their relational mechanisms (Dyer and Singh
1998, Madhok and Tallman 1998).

In addition, our study informs the knowledge man-
agement literature that has traditionally concentrated on
knowledge transfer while paying less attention to knowl-

edge creation and application (Agrawal 2001, Argote
and Ingram 2000, Dyer and Nobeoka 2000, Grant 1996,
Hansen 2002, Nonaka 1994). We uncover the role of
collaboration in driving these processes but, more impor-
tantly, challenge the linear model of innovation accord-
ing to which basic research precedes applied research
that leads to development and diffusion of knowledge-
based products (Holland 1928, Mansfield 1968). We
reveal that university scientists can contribute to knowl-
edge application, even though this is not their primary
objective:

We informed our scientists that we will fund and sup-
port the development of basic knowledge to the point
where the industry can take it. Many scientists engage in
research that generates results but then face a dilemma:
either store everything in the drawer or seek a venture
capital firm and establish a start-up. The second option
demands much more time and attention than many of
them are willing to give.

(A director of a nanotechnology research center)

Hence, whereas the linear model suggests that knowl-
edge creation generates spillovers that drive knowl-
edge application, we find no significant association
between these processes. Instead, we demonstrate that
these processes are driven by distinctive types of col-
laboration. In fact, there may be a trade-off between
knowledge creation and application given the dispar-
ity between scientific research and commercial interests.
Whereas knowledge creation and dissemination are the
primary mission of university research programs, indus-
try partners focus on application and value appropria-
tion by restricting access to intellectual property (Cohen
et al. 2002, Gittelman and Kogut 2003, Rothaermel and
Thursby 2005). The interests of these strange bedfel-
lows meet when scientists seek to validate their work-
ing assumptions and match scientific solutions with
industry requirements (Meyer-Krahmer and Schmoch
1998). Industry partners can help support research pro-
grams because knowledge application indirectly pro-
motes knowledge creation. Still, further research is
needed to establish the prevalence of spillovers in this
direction. We identified unique challenges that university
research programs face when collaborating with industry
partners as opposed to fellow scientists:

We collaborate with colleagues both in our discipline
and in other disciplines. I enter these collaborations
because my partners can do certain things better than
me. Having access to equipment and funding is insuf-
ficient. I also look for real scientific contribution to
my research program 0 0 0 0 I’m responsible for my team,
especially my graduate students and technical personnel.
This forces me to juggle many projects and seek large
funds. In nanotechnology there are many opportunities
for academy–industry collaboration 0 0 0 0 With industry,
it is more problematic since collaboration involves not
only funding but also potential conflict over intellectual
property.

(A university scientist)
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Interestingly, whereas the transformation of new
knowledge into commercial applications is typically
slow and highly uncertain, knowledge application can
provide immediate and concrete input to knowledge cre-
ation efforts. Hence, the association between knowl-
edge creation and application is not straightforward and
entails a delicate management of trade-offs that transpire
between these two processes. Our findings concur with
research that highlights the complex nature of interde-
pendence between knowledge creation and application.
This often mandates going beyond the linear model of
innovation whereby university research produces knowl-
edge that is then transferred to firms that concentrate
on its commercialization (e.g., Leydesdorff 2000, Stokes
1997). Future research may further examine the condi-
tions that enable university research programs to trans-
fer and commercialize new knowledge. Such research
may also uncover collaborative practices that support
the shift from knowledge creation to its application. In
this regard, our study suggests that university research
programs must reconcile discovery and innovation as
they balance exploration and exploitation (Lavie and
Rosenkopf 2006).

Finally, our findings qualify recent work on sci-
entific research in nascent industries that has high-
lighted the merits of collaboration (Defazio et al. 2009,
Gulbrandsen and Smeby 2005, Landry et al. 1996,
Lee and Bozeman 2005). Government and university
programs often encourage collaboration with fellow sci-
entists and industry partners, yet we uncover some
boundary conditions for the benefits of collaboration,
demonstrating that knowledge creation and application
are best served when university research programs limit
their collaborative relationships and optimize their use
of internal resources and network resources. Condi-
tioning program funding on collaboration (Gulbrandsen
and Smeby 2005) may constrain the ability to opti-
mize the extent and type of collaboration that best suits
the research program. Future research may consider the
appropriate incentives for fostering collaboration because
funding in and of itself cannot bridge the gap between
university programs and their industry partners:

In nanotechnology there is a significant gap between
academy and industry. The academy is working primar-
ily on generic research with a relatively sophisticated and
long-term outlook. The industry, in turn, is interested in
applications and is insufficiently advanced to bridge the
gap between scientific research and its application.

(A director of a nanotechnology research center)

Hence, our study complements the growing literature on
university entrepreneurship (Rothaermel et al. 2007) by
shedding light on how university–industry collaboration
drives commercialization.

Future research may extend our inquiry by juxta-
posing the perspective of university research programs
and that of corporations that are primarily interested
in commercialization (e.g., Gittelman and Kogut 2003,

Rothaermel and Thursby 2005). Our reliance on cross-
sectional questionnaire data limits our ability to demon-
strate the direction of causality between collaboration
and knowledge creation and application. Longitudinal
research can shed more light on the causal mechanisms
that relate collaboration to knowledge creation and appli-
cation, although archival data may offer limited insights
into the internal operations of university research pro-
grams. Scholars may also consider the specific role of
relational mechanisms and cooperative governance in
moderating the effects of collaboration (e.g., Dyer and
Singh 1998, Kale et al. 2000, Madhok and Tallman
1998). Another possible extension would involve a more
careful examination of the diversity of the portfolio of
collaborators (Hoffmann 2007). Perhaps distinctive types
of academic collaborators or industry partners offer
greater potential for knowledge creation and application.
Moreover, field studies can complement our research by
uncovering the particular processes by which collabo-
ration and internal resources enhance knowledge cre-
ation and application. It would be interesting to examine
the extent to which distinctive internal resources substi-
tute or complement collaboration. For instance, program
funding can mitigate the benefits of external resources,
but it cannot fully substitute for intellectual exchange
and the fresh perspective of academic collaborators that
stems from their training and recent discoveries. Field
research can also reveal how collaboration in academia
as well as among academia, industry, and government
contributes to the emergence of science-driven indus-
tries. Finally, studying other nascent and established
industries in various national contexts can serve to gen-
eralize our findings. In an established industry, knowl-
edge application may be more critical than knowledge
creation, and industry partners may contribute more than
universities to industry evolution. Irrespective of such
extensions, our study reveals the contingent value of col-
laboration and makes important strides toward under-
standing the role of collaboration in driving knowledge
creation and application.
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Appendix. Nanotechnology Questionnaire (Selected Questions)
1. Field of Research (Select all that apply)

[ ] Materials [ ] Tools, Test and Measurement [ ] Biotechnology [ ] Electronics and Photonics
[ ] Filtration and Membranes [ ] Other

2. Number of research projects included in the program
3. Research program is affiliated with a dedicated nano center or institute
4. Availability of laboratory equipment for nanotechnology projects in your research program (Select all that apply)

[ ] Available at my university [ ] Available at another Israeli university [ ] Only partially available
[ ] No equipment required for my research program

5. Quality of laboratory equipment (Select all that apply)
[ ] State-of-the-art [ ] Standard [ ] Below standard [ ] No equipment required for my research program

6. Type of research (Select all that apply)
[ ] Basic research [ ] Application research (technology)

7. Number of researchers in my research program including myself
Senior researchers and postdocs (with PhDs) PhD students and researchers (with MSs)
MS students and engineers Other staff Total size of research team in full-time equivalent personnel

8. Your research program in nanotechnology was initiated in year
9. Current progress of nanotechnology projects in your research program (Select all that apply)

[ ] Preliminary studies [ ] Prototype [ ] Testing [ ] Commercial [ ] I am a theoretician who focuses on theoretical modeling
10. Number of collaborators from my own university
11. Number of collaborators from other Israeli universities
12. Collaborators are affiliated with the following universities (Select all that apply)

[ ] Technion [ ] Bar-Ilan University [ ] Tel Aviv University [ ] Ben-Gurion University [ ] Weizmann Institute
[ ] Haifa University [ ] Hebrew University [ ] Other

13. Number of collaborators from foreign universities
14. List names and affiliations of all academic collaborators in connection with the research program
15. Industrial collaboration in connection with the research program (Select all that apply)

[ ] Receiving inquiries and visits from industry companies or venture capital investors [ ] Consultation to industry companies
[ ] Research collaboration with industry companies [ ] Licensing of technology [ ] Commercialization of technology with
industry companies [ ] Collaboration with suppliers of materials, equipment, or technologies [ ] Collaboration with potential
customers [ ] Collaboration with government agencies [ ] Involvement in Israeli research consortia [ ] Involvement in
international research consortia

16. Types of industry partners (Select all that apply)
[ ] Established companies [ ] Start-up companies

17. Origin of industry partners (Select all that apply)
[ ] Israeli companies [ ] Foreign companies

18. Total number of industry partners
19. List names and countries of origin of primary industry partners
20. Total amount of funding raised so far (in US$)

[ ] None [ ] Less than 100K [ ] 100K–500K [ ] 500K–1 million [ ] 1–5 million [ ] More than 5 million
21. Types of funding sources (Select all that apply)

[ ] Host institution [ ] Israeli scientific funds [ ] International scientific funds [ ] Israeli government programs
[ ] Foreign government programs [ ] Independent foundations and donors [ ] Foreign government programs
[ ] Venture capital investors

22. Number of research projects unrelated to nanotechnology you are involved in

Endnotes
1We used the following keywords: atomic force microscopy;
atomistic simulation; biomotor; molecular device; molecular
electronics; molecular modeling; molecular motor; molecu-
lar sensor; molecular simulation; nano∗; quantum computing;
quantum dot∗; quantum effect∗; scanning tunneling micro-
scop∗; self assembl∗; and selfassembl∗.
2The number of journal articles published is a common mea-
sure of scientific productivity (Duque et al. 2005, Lee and
Bozeman 2005, Zucker et al. 2007). We preferred this measure
to alternative measures such as citation counts, which can be
used for assessing the impact of scholarly contributions yet are

less suitable for measuring the productivity of knowledge cre-
ation in the field of nanotechnology (Zucker et al. 2007). In
this setting, citations do not reliably represent a direct linkage
between technologies and the referenced knowledge (Meyer
2000). We also considered patent counts, but these were lim-
ited to certain types of knowledge that can be designated as
intellectual property. In fact, only 37.31% of the scientists in
our sample have applied for or were issued patents in the
field of nanotechnology, as opposed to 89.93% who have pub-
lished articles related to nanotechnology. Indeed, prior research
suggests that patents represent a small fraction of the knowl-
edge created by academic research programs (Agrawal and
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Henderson 2002, Cohen et al. 2002). Furthermore, because
of the gap between the time of knowledge creation and the
time of recorded citations and patent counts, such alternative
measures are less suitable for measuring knowledge creation
in emerging scientific fields characterized by fast-growing and
fluid knowledge development (Bozeman et al. 2007). By count-
ing the accumulated number of publications in a time frame
that extends beyond the questionnaire period, we captured all
relevant knowledge including forthcoming publications.
3We measured the progress of the most advanced project asso-
ciated with each research program rather than the average
progress of all projects in the corresponding research program
to avoid possible right censoring bias that may emerge given
the long lifespan of nanotechnology projects and the fact that
many projects were initiated relatively recently. Furthermore,
our interviews with lead scientists suggested that although they
initiate multiple research projects, when considering knowl-
edge application they tend to focus only on one or a few
projects that show the most promising prospects for commer-
cialization.
4Besides the fact that not all knowledge is patentable, patents
do not necessarily manifest in commercialized products, at least
not in a foreseeable time frame (Griliches 1990, Klevorick et al.
1995, Levin et al. 1987).
5Self-reported measures of collaboration are preferable to coau-
thorship measures that may omit relevant contributors while
including honorary coauthors such as laboratory directors or
authors who merely perform routine tasks or provide funding
or materials (Bozeman and Corley 2004, Cockburn and Hen-
derson 1998, Katz and Martin 1997, Lee and Bozeman 2005).
Bibliometric measures of collaboration based on coauthored
publications are also inherently associated with publication
counts that proxy for the outcomes of collaboration (Duque
et al. 2005).
6Although Figure 1 suggests a reversal of the inverted U-shaped
association, such a pattern occurs at values that fall outside
the applicable range of data. Specifically, for internal resources
with the value 5, the maximum number of academic collabo-
rators was 30, so we do not expect abundant internal resources
to facilitate a positive association between extensive academic
collaboration and knowledge creation as revealed in this figure.
7We identified 20 scientists who moved to their current insti-
tutions after initiating their research programs elsewhere. On
average, scientists spent 96.52% of their time working on their
nanotechnology research programs in their current institutions.
8Our findings confirm that internal resources mitigate the ben-
efits of academic collaboration at the lower bound rather
than simply weaken the propensity to collaborate. Besides
the observed negative moderation effect of internal resources,
its positive correlation with academic collaboration (r = 0040,
p < 00001) suggests that internal resources undermine the
effects of collaboration rather than the tendency to engage in
collaboration.
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