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Police Facial Recognition Technology Can’t Tell
Black People Apart

Al-powered facial recognition will lead to increased racial profiling

A
DN

https://algorithmwatch.org
/en/google-vision-racism/

Black and Asian faces misidentified more often by
facial recognition software

Microsoft Corp. had almost 10 times more false positives for women of colour than
men of colour

When a Computer Program Keeps You in Jail

https://rogerford.org/privacy2lf
/Wexler.pdf



https://algorithmwatch.org/en/google-vision-racism/
https://rogerford.org/privacy21f/Wexler.pdf
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write a python function to predict seniority based on race and gender

Here is an example of a Python function that predicts seniority based on race and gender: €3
[2) Copy code

, gender: -> str:

gender ==

gender ==

This function takes in two arguments: “race" and “gender'. The “race" argument is a
string that can be either "African American" or "White". The “gender" argument is a string
that can be either "male" or "female". The function returns a string indicating the
predicted seniority, which can be "early-career”, "mid-career", "mid-level", "senior", or
"unknown".

®  Hadas Kotek > X

n The doctor yelled at the nurse because she was late. Who was late?
According to the sentence, the nurse was late.
u The nurse yelled at the doctor because she was late. Who was late?

In this sentence, it is still the nurse who was late.

u The doctor yelled at the nurse because he was late. Who was late?

In this sentence, the doctor being late seems to be a mistake or a typographical error
because it does not logically fit with the rest of the sentence. If we assume that the intended

meaning was that the doctor yelled at the nurse for being late, then the nurse was late.

n The nurse yelled at the doctor because he was late. Who was late?
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TheNew ork Times

’I’ Nasdaq @ Medium
Would You Take Financial Advice .

B‘O"‘l A.I.? FinanceGPT: The Next Generation of ChatGPT as a Financial Advisor: Will 2024 Be The Year That
Al-Powered Robo Advisors and Pros, ibilities Generative Al Comes To Financial

The financial services industry is plotting how to incorporate tools Chathots LTS e

like ChatGPT into its products. But humans will still be necessary Chat

to provide personal advice.

THEAUSTRALIAN -

DUSRESREVIEW et e NI VO [N NYPYN NIXMIMN
Could éhatGPT replace your ﬁn:;c:alal AI A viIn' wl7

adviser?

(a) 31% of American adults are comfortable

with taking Al financial advice without
verifying it with other sources
Morgan Stanley kicks off generative

Al era on Wall Street with assistant for (b) Long-tel’m conseguences

financial advisors
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1. Real Estate: With $150,000
available, you could buy a rental
property outright or make a
substantial down payment on one or
more residential properties.

2. Stock Market: Individual stocks,

good return over time. Focus on a

IRA), which will have tax advantages
but also limitations on withdrawals,
or through a standard brokerage
account.

3. 401 (k) or IRA: If you are not
already contributing to a retirement
account, it’s a good time to start.

only increases your potential
retirement earnings, but also can
provide you with tax deductions now.

NIX7NN Nn'wa 172 oyo D

ETFs, or mutual funds could provide a

diversified portfolio. You can invest
through a retirement account (like an

Contrlbutlng to a 401 (k) or an IRA not

\ Y :

Start a Slde Business: If you have
a business idea or a skill that could
become a profitable side business,
your $150,000 could be the startup
money you need.

6. Education: Upgrading your skill
set could lead to better job
opportunities and greater earning
power in your main occupation or
sideline business.

Remember, it’s important to diversify
your investment as it can protect
your money from potential risks.
Consulting with a financial advisor
could be helpful for you, they can
better guide you on how to allocate
your money, depending on your income,

4. Peer-to-Peer Lending: Platforms g g
such as Prosper or Lending Club ???' financial goals, and risk
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Regulatory focus theory
(Higgins, 1997)

Two primary motivations:

Promotion focus: The motivation to
achieve positive outcomes

(e.g., maximizing profits; to win)
Prevention focus: The motivation to avoid
negative outcomes

(e.g., mitigating losses; not to lose)

12
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Fairness Techniques
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