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RANKING THE BEST BINARY TREES*

S. ANILY? AND R. HASSIN

Abstract. The problem of ranking the K-best binary trees with respect to their weighted average leaves’
levels is considered. Both the alphabetic case, where the order of the weights in the sequence w,..., w,,
must be preserved in the leaves of the tree, and the nonalphabetic case, where no such restriction is imposed,
are studied.

For the alphabetic case a simple algorithm is provided for ranking the K-best trees based on a recursive
formula of complexity O(Kn3). For nonalphabetic trees two different ranking problems are considered, and
for each of them it is shown that the next best tree can be solved by a dynamic programming formula of
low complexity order.
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1. Introduction. Let wl,’’’, wn be given "weights." This paper deals with the
problem of computing the best, second best,. ., K-best binary trees with respect to
these weights. The problem arises when we want to construct the best tree satisfying
certain constraints, and no efficient algorithm is known to find this tree. We may then
rank the best trees ignoring these additional constraints starting from the best to the
next best until the best tree obeying the constraints is reached.

We consider both the alphabetic case, where the order the weights are given must
be preserved in the leaves of the tree, and the nonalphabetic case where no such
constraints are imposed. The techniques we present can be used however in other
problems of ranking trees. For example, ranking binary search trees is done almost in
the same way as for the alphabetic case.

Ranking alphabetic trees is relatively a straightforward task. The problem is
solvable by dynamic programming, and thus partitioning of the solution set can be
obtained by introducing constraints on the decisions made while executing the computa-
tions. In this regard the problem is similar to the well-solved problem of ranking the
shortest paths between a pair of nodes in a network. In 2 we show how this can be
done efficiently, and the K-best trees can be computed in O(Kn3)-time.

Nonalphabetic trees are useful in the context of binary encoding of a set of words
where each word vi has a given frequency wi in which it appears in the language. In
a given code each word is written as a string of zeros and ones, and the length of a
word is defined as the length of the string. The main objective is to find a binary
encoding of minimum average length. Here we distinguish between two different
problems:

(a) The language is viewed as a collection of n objects (words); we say that two
codes are different if there exists a word vi, <=i<= n that is associated with strings of
different lengths in these codes (see 5).

(b) Here we do not distinguish between words of identical weights, i.e., given a
code for a language containing two words vi and v. for which w w., then exchanging
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RANKING THE BEST BINARY TREES 883

between the strings associated with vi and v. does not induce a new code even if their
lengths (=levels) are different. In other words, the set of words {v, v2,’’’, vn} is
partitioned into disjoint subsets according to their weights. A code is identified by the
corresponding subsets of the strings’ lengths where the order in which the levels of a
particular subset are assigned to the words in that subset, is unimportant (see 3).

We note that if all the weights are different from each other, then the two problems
coincide; otherwise, the number of different codes is larger in the problem defined in
(a). In both cases care must be taken to avoid repetition of solutions (where "repetition"
is defined differently in the two cases), as a solution is uniquely identified by the length
of the words and thus may be represented in many ways by different topological trees
with different orderings of the weights.

Ranking the nonalphabetic trees is not as straightforward as ranking the alphabetic
trees since no order is defined on the problem’s elements. We note that the set of all
alphabetic trees corresponding to a given order of leaves is only a subset (of a much
smaller size) of the set of all nonalphabetic trees with the same number of leaves. (For
example, in all alphabetic trees with three leaves vl, v2, and v3 the second leaf of the
trees is of level two while in the set of nonalphabetic trees using the same leaves, v2
may also be of level one.) Therefore, the task of ranking the nonalphabetic trees cannot
be achieved by applying the corresponding algorithm for alphabetic trees on any
specific order of the leaves. Moreover, since the leaves can be ordered in n! different
ways, a direct application of the ranking procedure for alphabetic trees to the non-
alphabetic case may result in an unefficient algorithm and an enormous number of
repetitions of solutions. The main objective of this paper is in developing efficient
ranking algorithms for nonalphabetic trees.

We show that the best nonalphabetic tree (i.e., the "Huffman tree") can be
computed by any algorithm for alphabetic trees. We then extend this property to rank
nonalphabetic trees using ranking schemes for alphabetic trees: in 3 we introduce
another algorithm for alphabetic trees (with a higher complexity order-O(kn4)) that
is modified in 4 to rank the solutions for the nonalphabetic problem (b) defined
above. In 5, we present an O(kn3) algorithm that ranks the solutions for the nonal-
phabetic problem (a) by combining a procedure for ranking solutions for the assignment
problem.

We assume that the reader is familiar with the basic concepts involved with binary
trees as described, for example, in [K].

2. Alphabetic trees: Algorithm A. An alphabetic tree with n leaves vl,..., vn is
represented by the sequence of levels of its leaves, ordered from left to right. We denote
this sequence by (1,..., In). For a given sequence of weights we define the cost of
the tree T (I, , In) as C (T) i= wili. The optimal tree, i.e., the one of minimum
cost, can be found in O(n log n)-time by the algorithm of Hu and Tucker [HT];
however, we do not know of any method that will use this algorithm to rank the K-best
trees. In this section and in the next we describe, instead, two methods for ranking
the best trees that are based on the recursive algorithm suggested by Gilbert and Moore
[GM]. The first computes the K-best trees in O(Kn3)-time by modifying the above
algorithm in a way similar to that used by Dreyfus [Dre] and Lawler [L2] to rank the
K shortest s-t paths in a network. The second requires O(Kn4)-time and will serve
later to rank the best (nonalphabetic) binary trees.

Let T/ and C k denote the k-best tree and its cost for a problem consisting of the
=0 i--1 n, andweights Wi, Wi+l, w and define W0 "--f’Jr=i Wr" Then Cii

(1) C!j min {Cir-11- Cr+,}+ W/j, <j.
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884 s. ANILY AND R. HASSIN

For k> C is given by Cir+Cr+..j!j + W for some < r<j and u, v < k. Thus

C. is fully characterized by the triple (r, u, v) and we denote T (r k,..i, u, vij).
Let

U(i, j, r, K) max {u[ri=rand u ij=u, forsome k=l,...,K-1},

LAST i, j, r, K, u) max v[ v k k
i=v, ui=u, ri=rforsome k=l,...,K-1}.

Both U and LAST are set to zero when the maximization is over an empty set. U and
LAST focus on the subset of the (K- 1)st-best solutions for vi, vi+l,’", v in which
the left subtree consists of the leaves vi, vi+,’", Vr and the right subtree consists of
the leaves vr+,..., vj, i.e.,theset{T[ T (r, u, v), k 1,..., K- 1}. The operator
U provides us with the maximum u in the set that represents the rank value of the
worse left subtree used among these solutions. The operator LAST, on the other hand,
has an additional parameter u and is applied on a subset of the above set, namely,
{T]T (r, u, v),.k 1,..., K- 1} consisting only of those solutions using the uth
best tree for v, v+,. vr as their left subtree. LAST is assigned the maximum v 0
in this set, i.e., the rank value of the worse right subtree consisting of the leaves
vr+," , v.i used together with Tier among the (K- 1)st-best solutions for vi," , v.
The operators U and LAST are used in the design of Algorithm A.

Let

n n-I/

be the number of distinct alphabetic binary trees with n leaves [RH]. For a given
sequence of weights w,. ., w and K <_- M, we propose an algorithm, based on a
dynamic programming formulation that we explain in the sequel, for computing the
K-best trees"

ALGORITHM A.
-_<j n using recursion (1).Compute C for all _-<

For rn 1,. ., n- do begin
For i=l,...,n-m do begin
For k 2, , min (K, M,,+) do

(2) {C i+m Wi i+m -J7 min min
i<=r<i+m l<=uU(i,i+m,r,k)+l

C iUr -- cLAST(i’i+m’r’k’u)+l}}r+l,i+m
end
end

kIn (2) it is assumed that C g for k> M._i+l. It is also assumed that some
tie-breaking rule is applied whenever C+1 Ck

i j. For example, we may require in such
a case that either r/< r/+1 / k+l / k+l / rk+, k k+, andor r =ru and u <u a or r !j u u=u a
/k k+l

Formula (2) can be explained as follows. TKi,i+m can be viewed as combined of
two subtrees emanating from its root; the left one consisting of the leaves vi, vg+l, ", vr
and the right one consisting of the leaves vr+l, , Vi+m for some --< r < + m. Among
the (K- 1)st-best trees for the leaves v,..., vi+m consider only those combined of
two subtrees in which vr is the highest indexed leaf in the left subtree. The best such
solution is, of course, consisting of the subtrees Tr and Tlr/l,+m. The second best
such solution may either consist of the subtrees Ti2r and Tr+l,i+m or the subtrees Tr
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RANKING THE BEST BINARY TREES 885

Kand T2r+l,i+m, etc. By the same reason with respect to Ti,i+m we distinguish between
the following cases"

(a) TK consists of a subtree Ti that already has been used in one of the treesi,i+m

Ti,i+m, l<-k<-K-1, i.e., u < U(i, i+m, r, K). In that case the right subtree must be
the best tree for Vr+l," ", Vi+m that has not been used previously together with Tier in
one of the solutions Tk <k <K-1 thus the right subtree is given byi,i+
LAST i,i-+-m,r,K,u )+
r+ l,i+rn

(b) If the left subtree TirU has not been used in one of the solutions Ti, i+mk
=< k _-< K 1, then it is easily verified that u must be equal to U(i, i+ m, r, K)+ and

Tr+l,i+. We observe that for u > Uthe right subtree must be the optimal one i.e.,
the operator LAST is equal to zero by definition. In addition, since the costs of Ti%

Cr+l,i+mand TVr+l,i+m, i.e., Cir and are computed relative to their roots, we must adjust
the leaves’ levels that results in adding the sum of the weights W/,i+,, to Ci + Cr+l,i+.

Formula (2) follows immediately from the above observations.
LAST(i,i+rn,r,K,u)+lMaintaining an appropriate data structure of {Cir+Cr+l,i+m r

i," ", i+ m- 1, u 1,. ., K} for each (i, m) pair, the O(K) minimizations in the
inner loop require O(n + K log (n + K))-time. Since log K =< log Mn O(n), the overall
complexity of the algorithm is O(Kn3).

3. Alphabetic trees: Algorithm B. We do not know of any efficient modification
of Algorithm A to solve for the best binary (nonalphabetic) trees. Next we describe
an O(Kr/4) algorithm for alphabetic trees, for which such a modification is possible
as will be described in the next section. This algorithm that we call Algorithm B uses
a partitioning procedure of the solution set, similar to that of Murty [M] and Lawler
ILl]. (See also [KIM2], [KIM3] and the extensive bibliographies on ranking the
K-best shortest paths.)

Let An be the set of alphabetic trees with n leaves.
Let T= (l,..., 1) be the K-best tree in An. Suppose that T1 is known. For

i= 1, n-1 let Si(SI) be the subset of An satisfying 11 1, li_l i-1, li<
(li> I). The union of all these sets is An-{T1}, so that if we can solve for the best
tree in each set then we can obtain T by comparing these trees and selecting the one
with minimum cost.

Suppose, without loss of generality, that T Si. To compute T we first partition
Si-{T2} to subsets Rj(R:).! J i,... n-1 satisfying new constraints in addition to
those defining Si. Specifically,

Ri {TAnlll 11 li li_ li < li},1, -1

R’ li- =I_ li<li<l}, and forj=i+l,.., n-1i={T6An[ll=ll, 1,

Rfi T An ll 11, 1i-1= 1-1, li 12i, 1-1 1-1,/> lj2. }.

If we could solve for the best tree in each of these sets, then we could compute
T as the tree of minimum cost among these trees and the best trees of SI, S, and

S j i. By repeating this procedure K- times we could compute the K-best trees
in

To apply such a procedure we need an algorithm that computes the best tree
satisfying constraints of the following type: l 11,’", li-1 li-1, D1 <= li <= D2. We
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886 s. ANILY AND R. HASSIN

denote the set of trees satisfying these constraints by G. All these trees share a common
left part consisting of the paths from the root to the (i 1)st most left leaves v, , vi_.

DEFINITION. The front of the trees in Fi consists of the subgraph of a tree T G
induced by the paths from the root to the leftmost leaves, where the path to v is
extended from the leaf so that its total length is D2. This extended path is called the
stem of the front.

We note that the front is uniquely defined and is independent of the choice of
the tree T. The front is also independent of D, so that it is characterized by the level
sequence (-,..., l_, D2).

The nodes on the front, except those on the stem, are either leaves or parents to
two sons. The nodes on the stem fall into three categories:

(i) Parents to two sons. We call them closed nodes.
(ii) Parents to a single son. We call them open nodes.
(iii) The leaf. We classify it also as an open node.
We name the open nodes in order from the leaf to the root by O,. ., O,, as in

Fig. 1, and denote their levels by l(O),..., l(Om), respectively.
Let q=max {jll(Oj) >- D and there are no closed nodes below Or}, i.e., Oq is the

open node closest to the root whose level is at least D such that all the closed nodes
on the stem have lower levels. In other words, the ith leaf of the trees in Fi must be
one of the nodes Oq, Oq_,..., 0.

FIG. 1. The front (3, 4, 4, 4, 9).
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RANKING THE BEST BINARY TREES 887

Any tree in Fi is constructed from the front of Fi by assigning vi to an open node
Op, p<= q, deleting O1,"’, Op-1, and joining v/l,’", vn to Op+l,’", Om through
nonempty alphabetic trees whose leaves are consecutive subsequences of
and whose roots are connected to the open nodes. For example, suppose F
{ T An Ill 3, 12 4, 13 --4, 14--4, 5-_< Is_-< 9}. Then the front of F is as in Fig. 1, and
Oq 05. Figure 2 illustrates the construction of a member of Fi from the front of F.

We now show how to solve the problem of computing the best tree in Fi by
dynamic programming.

Let V;, j>_-1, l_-> 1 denote the minimum cost involved with attaching leaves
Vi, V to subtrees connected to Ol," ", Or. Let Cr; denote the cost of an optimal
alphabetic tree with leaves Vr, Vr+l," ", Vi. Note that if we attach this tree to the front
through an edge from O to its root, then the actual cost is Cr + Wrl(l(Or) + 1). Therefore,

bl min { Vj_ ,, -- Cr+ ,,! "+" Wr+ l,l( Oj 21- 1)),
iNr<=l--1

l> i, j> 2,

Vli (x), 1> i,

(3) V, { wfl( Oj)’ <=j <- q’

o, j> q.

The costs Cry, <= r < <-n can be computed in O(n3)-time by (1). Then (3) can
be computed for a given front and q (determined by a lower bound D1) and for all
relevant j and in O(n3).

To apply (3) we must first determine the levels of the open nodes on the stem.
For this purpose we make the following definitions:

8\

FIG. 2. A possible completion for the tree in Ng. 1.
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888 s. ANILY AND R. HASSIN

For a sequence al,’’’,an let k=min{i[ai_l=ai}. Then the sequence
a l, , ai-2, ai- 1, ai+, , an is the reduction from the left of the original sequence.
The left-reduced sequence for al,’’’, an is obtained by repeating the process of
reduction from the left until ai_ ai, i= 2," ", n. For example, the sequence (3, 4, 4, 4)
generates (3, 3, 4) and then (2, 4). No further reduction is possible and thus (2, 4) is
the left reduced sequence.

LEMMA’ [HT]. A sequence ll,"" ", In defines a tree in An if and only if its left
reduced sequence is (0).

In a similar way we can prove the following theorem.
THEOREM 2. Let l*l l’p) be the left reduced sequence of (l-i,’",/-1). Then
(a) F is nonempty if and only if D l*p and max {D1, lp*} -p _-< n + 1.
(b) If F is nonempty then the stem of the front of the trees in Fi, defined by

11," ", 1-1, D2), contains exactly p closed nodes, at levels l*- 1,. ., l*p- 1.
The costs Crl<-r<l<-n used in (3) can be computed in O(n3)-time by (1). For

a given front the open nodes can be computed with the aid of Theorem 2, and q is
determined by the front and the lower bound D1. Then (3) can be computed for all
relevant j and in O(n3)-time. For each value of k, _-< k_-< K we apply (3) at most
2n times using the above partitioning procedure, and then select the best of the solutions
obtained for the O(Kn) subsets of the partition. Therefore the time required to compute
the next best tree is O(n4 _[_ n log Kn) O(n4), and the overall complexity of computing
the K-best trees is O(Kn4).

4. Nonalphabetic trees: Algorithm C. In this section and the subsequent one, we
describe two algorithms for computing the K-best binary trees for the leaves
vl, v2,’.., vn. In contrast to the previous section, the order of the leaves is not
prespecified. The optimal tree can be computed in O(n log n)-time by the algorithm
due to Huffman [Huf]. Alternatively, the leaves can be numbered in ascending order
of their weights wl," ", wn and then the best alphabetic tree for vl, v,. ., vn can
be computed by the Hu-Tucker Algorithm [HT] that also requires O(n log n) time.
It is known that the resulting tree is indeed optimal.

As mentioned in we consider two different ranking problems on the set of
nonalphabetic trees. In this section we provide a ranking algorithm of complexity
O(Kn4) according to (b) defined in 1. In this problem a solution (/1, l,..., ln) is
characterized by the set {(l, w)[1 _-< _-< n}, i.e., interchanging the levels of two words
with identical weights will not create a new solution.

We first modify the partitioning algorithm of 3 to rank nonalphabetic trees. To
reduce the time complexity we modify the partitioning scheme so that when computing
the next best solution each subset is replaced by just two new ones, rather than O(n)
new ones. As in [G], [Der], [KIM1] and [KIM3] this requires knowledge of both the
best and the second-best solution in each subset of the partition.

Without loss of generality we assume that wl --< w-<. -<_ wn and let li denote the
level of v. A tree is uniquely defined by the sequence (11,"" ", ln) for which there
exists a permutation (1’1,"" ", l’n) defining an alphabetic tree. It is well known that a

necessary and sufficient condition for integers (11,." ", ln) to define a tree is that

(4) 2 ,=1.
i=1

The cost of the tree (11, ln) is [i=1 wili. Trees (11 ln) and (1’1, "’’, l’n) are said
to be isomorphic if one sequence is a permutation of the other. Trees T (11,. ", ln)
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RANKING THE BEST BINARY TREES 889

and T’= (l,..., l’) are distinct if the ordered sequences (11,’’", ln) and (/’l,""", 1’,)
are different. As before, we denote by Tk= (lk, I,k) the k-best tree.

Clearly there exists an optimal binary tree (ll, 12, , ln) satisfying 11 _--> 12
and without loss of generality we call it T1. The next lemma shows that T is also the
best alphabetic tree with respect to the nondecreasing weight sequence Wl,’",

and thus can be computed by the Hu-Tucker Algorithm or by (1).
LEMMA 3 [Has]. Any noninereasing sequence (/1,"" ", l,) satisfying (4) represents

an alphabetic tree.
The following theorem uses this property and will be used to compute the

second-best tree in every subset of the partition.
THEOREM 4. Either T2 is the second-best alphabetic tree with respect to wl, ,

or T is isomorphic to T and (121 lZn) l -2, lr, lr_, lr+, ln) for some
r >--_ 2 such that/lr_l > lit and wr wr-1.

Proof Clearly if T and T2 are not isomorphic then l >- l >-_. >-_ 12n. By Lemma
3, T2 is an alphabetic tree, thus it is the second-best alphabetic tree. Suppose now that
T and T2 are isomorphic. Since l[ _-> ll_-->. _-->/in, there must exist indices j < r such
that l)> ll and 12r l). Moreover, we can assume llr_ > llr and Wr- < w. Then T2 is
the best tree satisfying lr--1), which means that except for lr the levels are non-
decreasing: ll _-> 12 _->... >_- lEt_ _->/2r+ _->... _-> 12,. Consequently, (l,..., 12n)
(l[,..., l)_l, l)+,..., llr, l),/1+1,... ln), so that T is obtained from T by a cyclic
permutation of a subsequence (!i,’", lr)" The difference in the costs of T and T is

wi(12i-li) Z wi(li-li+l)--Wr(tj-tlr)
=.j

r--1

--Wr_ ’. (l]--l+l)--Wr(1)--llr)=(Wr--Wr_l)(1)--llr)
i=j

The last term is the change in costs obtained with respect to the tree
(l, .,l’r-z, lr, lr-, l+,...,ln). Hence this tree is the second-best tree as
claimed.

Let Bn denote the set of nonalphabetic trees with n leaves. We now consider the
problem of computing the best tree in Bn satisfying li li, i Q. Let i,. ., ilQ be a
permutation of Q such that li, <- l2-<_" -<- iQ. Let ilQl+," in be a permutation

<. < w. Clearly there exists an optimalof {1 , n}\Q s.uch that WilQ[+,
n.onalph.abetic tree (l,. ., ln) with respect to the constraints l l, i Q .satisfying
lie+, >- lie+ >="" >-- ,,. Theorem 5 below shows that the sequence , li,, defines
an alphabetic tree, and obviously this implies that 1],, , ,,) is the optimal alphabetic
tree with respect to wi,,"’, wi,,. Therefore the best nonalphabetie tree under the
constraints li li, i Q can be computed by applying (3) to wi,,"’, we.

THEOREM 5. A sequence of integers (/1,"" ", 1,) satisfying conditions (a)and (b)
represents an alphabetic binary tree"

(a) Z 2-"=1i=1

(b) For some m, <= rn <- n, ll <- 12 <--" <= lm-I <5. lm, and lm lm+l >--" >- In.
Proof The proof is by induction on n. For n 2 the only sequence (l, 12) satisfying

(a) and (b) is (1, 1), which also represents an alphabetic tree. Suppose the conclusion
holds for a sequence of k elements with k _-< n and assume the sequence (l,. ., ln)
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890 S. ANILY AND R. HASSIN

satisfies (a) and (b). Clearly 1,, =max=j=n/ and as j= 2-J there must exist an
even number of indices for which/ 1,,. Without loss of generality assume l,, l,,+

tin+k, for some odd number k _-> 1. Let j* and j* + 1 be the most left pair of indices
for which /j.=/.+. Clearly, j*<-m. The first step of reduction from the left of the
sequence will generate the sequence (/1,"" ",/.-,/.-1,/*+2,"" ", l,,). It is easily
verified that the last sequence of n- elements satisfies both (a) and (b), thus by the
assumption it represents an alphabetic tree T with n-1 leaves. The alphabetic tree
for the sequence is obtained by adding two sons to the j*th leaf of T. [3

lln) has beenWe now describe the partitioning scheme. Suppose T --(11,
computed. T2 is then either the second-best tree in F1 { T[ ll =/11} or the optimal tree
in F2 { T[ l /1}.

To compute the optimal tree in F2 we could imitate the partitioning procedure
described in 2 also here. However, we do not know how to solve a problem with
constraints of the type li--< D2 except for by solving D2 O(n) problems with li l,

q,. , D2. The scheme requires solving O(Kn) such problems, and each requires
o(na)-time, so the overall complexity is O(KnS). We now describe a modified partition-
ing scheme, relying on our ability to compute the two best solutions to constrained
problems, that results in O(Kn4) time complexity.

The optimal tree in F2 is obtained by solving O(n) problems, each with a constraint
ofthe form I1 ’, for ’ {1," ", n}\{ll}. Altogether the two best solutions are computed
in O(n4) time complexity.

At the beginning of the kth iteration of the algorithm, we have a partition /7 of
B,,\{T, ..., Tk-} into subsets. In each subset F we are given the best and
second-best trees T(F) and Tz(F). We define T(F) to be T1(F) if
TI(F)C_{T,...,Tk-}. Otherwise we define T( F) TZ( F), and in this case
T(F)C:{T Tk-}. The next best tree Tk, is therefore the best of all trees,.
{ T(F)[F F}.

Suppose Tk= T(F*). If Tk= T(F*) then we do not change the partition and set
T(F*) T:z(F*). If Tk TZ(F*) then there existj < k such that T TI(F*). Suppose
F*={TB,[ti=t-{,iQ}. Since TkT there exist rnQ such that Ik,,,Pm. We
replace F* by new subsets, Fr {T B, [li l-, i Q, 1,, r} for all r 1, , n- 1.
For each of these new subsets we compute both the best and the second-best solutions
This requires O(n3)-time for each subset.

We note that U "- F* Tr=l Fr and these sets are disjoint. For r lm T(Fr) and
for r Ik,,, T(F) Tk. Thus for these values of r we set T(Fr) to T2(Fr). For the other
sets Fr we set T(F) to TI(F). This requires o(na)-time for each set and O(n4) in
total. Thus the overall complexity per iteration is O(n4) and for ranking K-best trees
it amounts to O(Kn4).

5. Nonalphabetic trees: Algorithm D. In this section we propose an O(Kn 3)
algorithm for ranking the K-best nonalphabetic trees for problem (a) defined in 1.
Here a solution is defined by the sequence (1,. ., 1), i.e., interchanging the lengths
of two words with identical weights will create a new solution of the same cost. The
algorithm uses a two-stage partitioning scheme. First Bthe set of nonalphabetic
treesis partitioned into subsets characterised by the (unordered) level set {1,. ., 1}.
Then these sets are further partitioned by an algorithm for ranking a special type of
transportation problems adopted from that of Murty [M] and Weintraub [W].

Let w,..., w be given in ascending order w <-w=...-< w, and T,, Tff
be the K-best alphabetic trees for w,. ., w. For k 1,. ., K, let S be the set of
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RANKING THE BEST BINARY TREES 891

leaves of T whose level is 1. Let T,..., T, be the subsequence of Ta, TK
obtained by deleting all trees rka for which there exists j < k such that ISjll ISkll,
/=1,’’ ",n--1.

For r 1,..., R consider the following transportation problem Pr that assigns
the weights w,..., Wn to the level sets Srl of T:

Pr) minimize lwiX,
i,!

subject to Xil-- V i,

E x.--ISr,] Vl,

Xil 0 V i, 1.

Let Xkr be the k-best solution to (Pr) and let yk be the k-best solution among
{xJr]j l," ", K, r 1,..., R}. Let T be the tree defined by

THEOREM 6. Tk is the k-best nonalphabetic tree.

Proof X rk defines the k-best solution when the tree is restricted to have the level
sets defined by St1, 1,..., n- 1. Therefore, yk defines the k-best nonalphabetic
tree, under the restriction that it has ISrl] leaves of level l, 1,. , n- 1, for some
re {1, , R}. We now show that this restriction is legitimate. Assume otherwise that
the list T Tk contains a tree that does not obey the above restriction. Let k* be
the smallest index of such a tree. Clearly in Tk* the weights are assigned to leaves in
a nonincreasing order, i.e., l(wi) >- l(w.) for <j. By Lemma 3 there exists an alphabetic
tree with the same level set and where the levels of the leaves are nonincreasing.
Therefore Tk* is an alphabetic tree with respect to wl," ", wn and Tk*= T for some
r, 1-< r_-< R, in contradiction to the assumption.

Each problem (Pr) is a transportation problem that can be reformulated as an
assignment problem (P’r)"

P’r) minimize E E E lwiXie
S,.

subject to Xie-- V

E Xie-- Ve.

The next best solution of (Pr) can therefore be obtained by solving O(n) problems
of this type, as described by Murty [M] and Weintraub [W].

The complexity of producing Tl, ..., T, and deleting trees to obtain
T,. ., T is of order O(Kn3). Weintraub [W] in his interesting paper presents an
O(Kn3) algorithm for ranking the K-best assignments. By using his procedure to rank
the solutions of (P’r) our algorithm for calculating y1,..., yK requires an overall
complexity of O(Kn3).

It is worth pointing out that for the special case where w < wz <. < wn the two
last algorithms solve the same problem. In view of the differences in their order
complexities, we should prefer to use Algorithm D.
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