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ABSTRACT

This paper generalizes results of former papers on the assignment of students to dormitories, under an
entrance criterion, by allowing students to apply in groups. A group-application means that its applicants
ask to be assigned to the same dormitory, and otherwise they prefer living off-campus. The underlying
assumption in our model is that the dormitories share a common preference over the student-groups,
which is given by a strictly increasing ranking of their credit scores. The definition of a quasi-stable
outcome is adjusted in order to incorporate student-group applications, and we prove that such an out-
come always exists. Furthermore, a polynomial-time algorithm that finds all the quasi-stable outcomes
is proposed. Apparently, not all properties of the single students’ model continue to hold under group-
applications. Finally, we consider the incentive compatibility property of the proposed algorithm, and de-
scribe a specific quasi-stable outcome for which no subset of student-groups can gain by misrepresenting

their preferences over the dormitories.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Housing is a major factor in determining the quality of life
that students experience during their college/university years.
Providing students with on-campus good housing often results
in making higher education institutions more attractive for
potential students, and hence has been a major goal in the man-
agement of many of them (see https://www.spartnerships.com/
colleges-and-universities-prefer-schools-with-attractive-student-
housing-options/; Roche, Flanigan, & Copeland, 2010). It is of-
ten the case that on-campus housing in dormitories is avail-
able but supply is limited, and as a consequence the demand
is higher than the supply. Moreover, there are many types
of accommodations, which may differ in their location, size,
quality, and fitness to special needs. See, for example, the
detailed information on different types of dorms at the Uni-
versity of Illinois at Urbana Champaign (https://www.unigo.
com/colleges/university-of-illinois-at-urbana-champaign/reviews|
describe-the-dorms), which were designed to meet various stu-
dents’ preferences. Besides the room/apartment itself, a major
factor that affects the quality of academic life of the students
is the dormmates/roommates they are assigned with (see, for
example Araujo & Murray, 2010; Khan, Shekili, Badi, & Khanbashi,
2020). In fact, the dorms’ assignment is one of the consid-

* Corresponding author.
E-mail addresses: nitsan.perah@gmail.com (N. Perach), anily@tauex.tau.ac.il (S.
Anily).

https://doi.org/10.1016/j.ejor.2021.12.048
0377-2217[© 2022 Elsevier B.V. All rights reserved.

erations taken by students while choosing a university (see
Khozaei, Hassan, & Razak, 2011; Reynolds, 2020 as well as the
blogs on factors to consider while choosing a dormitory (https:
/[www.grace.edu/10-things-to-consider-when-choosing-a-dorm/)).

In many campuses the implementation of the assignment
mechanism is an important event that generates a lot of anxi-
ety among students. Therefore, it becomes necessary to develop
a matching method for assigning students to dormitories. At the
Technion - Israel Institute of Technology (hereafter, abbreviated
to the Technion), decisions about the assignment of students to
dormitories are based on a three-step process. The first step de-
termines eligibility for on-campus housing. The second step al-
locates the eligible students to dormitory categories, thereafter
called dormitories, where each defines a certain type of accom-
modation. Finally, in the last step, students are assigned to spe-
cific rooms/apartments. Different criteria are used for these steps:
socio-economic and personal data are the main factors for deter-
mining the merit score of each student for the first step, aca-
demic seniority and academic excellence are the main factors
for determining the students’ credit scores for the second step,
and finally students’ preferences over roommates, as for example,
smoking/non-smoking or religious/no-religious partners, are taken
into consideration in the third step.

In the three-step process described above, the preferences of
the students over their roommates are considered only in the
final (third) step. At all institutions of higher education that offer
dorms, many appeals and withdrawals occur due to frustrated
students that were not assigned with their friends to the same
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dormitory. The process of forming groups of roommates is often
not sufficiently transparent and might generate feelings of an-
noyance, as reflected by the following post Who gets quadded in
Harvard housing (https://medium.com/harvard-open-data-project/
harvard-housing-part- 1-who-gets-quadded-a50221ae62c5). The
objective of this paper is to generalize the current practice of
submitting a separate housing application for any individual
applicant, by allowing the submission of housing applications by
general-sized groups of students, where the students of each such
group ask to be assigned together to the same dormitory. More
precisely, each applicant is included in exactly one group applica-
tion, where a group consists of at least one student, meaning that
applicants can also apply as singletons. A group-application should
contain the individual socio-economic and academic achievements
of each of its applicants, as well as a mutual ranking of a subset
of the dormitories, which is acceptable by all members of the
group. The housing department of the institution assigns upon the
receipt of each group-application (i) a joint merit score, which is
based on the respective socio-economic data of the members of
the student-group, and (ii) a joint credit score, which is based on
some aggregative measure of the academic scores of the students
in the group.

There exist several techniques that generate a joint merit
(credit) score for non-singleton groups based on the individual
scores of its members, as for example, by using an order statistic of
the individual scores like their minimum, or a certain percentile of
the individual scores. We do not consider in this paper the tech-
niques used for ranking the student-groups, so from now on we
assume that the merit and credit scores of the student-groups are
part of the input of our model.

We follow the paper of Perach et al. (see Perach, Polak, & Roth-
blum, 2007) that focuses on applications submitted by individu-
als to the housing department of the Technion. The paper incor-
porates an “entrance criterion”, that is, a threshold value on the
merit scores, where only applications whose merit score is not
lower than the threshold value, are eligible for housing. The pa-
per describes a matching algorithm that generates an assignment
that has some desirable properties. In this paper, we consider, as in
Perach et al. (2007), the case where all dormitories share a com-
mon ranking over the applications, which is based only on the
credit scores associated with the applications.

In Perach & Rothblum (2010), the authors generalize the model
and the algorithm proposed in Perach et al. (2007) to the case
where the ranking of the dormitories over the individual students
is not necessarily common. See Section 2 for more details.

Similarly to Perach et al. (2007), Perach & Rothblum (2010), this
paper is based on the stable matching model of David Gale and
Lloyd Shapley (GS) (see Gale & Shapley, 1962), hereafter called the
classic matching model, or the GS model. The GS model defines
a notion of stability for two-sided matching in populations where
individuals have preferences over being matched with individuals
of the other side. An algorithm that generates a stable matching in
which no coalition of individuals can improve the fortunes of all of
its members by switching their assignment with the assignment of
other individuals, is proposed in Gale & Shapley (1962). Moreover,
the output of the GS algorithm is optimal for one of the two pop-
ulations that are matched, that is, each member of this population
is assigned to his/her most favourable option among all other sta-
ble assignments. Thus, in the context of a dormitory assignment,
a stable matching is expected to reduce the number of appeals
submitted by students. From the point of view of the institution,
a lower number of appeals submitted to the housing department,
signifies a higher level of satisfaction by the applicants, which is
an important factor in the goodwill of the institute.

Some other implementations with similar traits to the matching
problem of student-groups to dormitories include:
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(1) The assignment of students to graduate business schools,
where students are required to take a GMAT exam (see
Azar & Siwel, 2014): the GMAT scores can serve as the cur-
rent merit scores, while the work experience of candidates,
which is a major determinant in the admission process, can
serve as the credit scores in our model.

(2) The assignment of families registered for apart-
ments in a global lottery (see, for example, the
Buyer's Price  Program  (https://www.gov.il/en/service/
request_for_eligibility_confirmation) in Israel, and the
NYC housing lottery (https://www.nytimes.com/2020/06/
15/nyregion/nyc-affordable-housing-lottery.html)). In such
applications, the lottery generates the merit scores, while
the registration date can serve as the credit scores (early
registration results in a higher score).

(3) The assignment of people infected by the Covid-19
virus to Corona hotels (see, for example, the program
of BC Housing (https://www.bchousing.org/publications/
COVID-19-Isolation-Hotels-Fact-Sheet.pdf)). Infected people
staying in such hotels are positive to the virus but they do
not need special treatment (not like the ones in hospitals).
As everyone in the hotel is positive, people there are not
required to be in quarantine and they can be assigned to
a room with other people. Infected people are eligible for
accommodation in a Corona hotel if some of their family
members living with them at the same house are negative
to the virus, and the house is not suitable for separating
the healthy family members from the infected ones, which
are required to be in quarantine. The merit scores of the
infected people are based on the unsuitability of their house
to separate them from the non-infected people living at the
same house. The hotel ranks the infected people that are
qualified for a Corona hotel accommodation according to
the proximity of the hotel to their residence.

In this paper we prove that a stable matching of student-
groups to dormitories, exists. The paper is organized as fol-
lows: A literature review on related matching problems is de-
scribed in Section 2. In Section 3 we present the group assign-
ment model discussed here. Section 4 presents some properties of
group assignment referring to the classic matching model, where
dormitories’ preferences over the student-groups are common.
Section 5 describes the properties of the groups' assignment in a
matching model which incorporates an entrance criterion: a sta-
ble assignment for any instance is shown to exist and an algo-
rithm that generates all possible stable assignments, is proposed.
In addition, we elaborate on the properties of the assignment of
individual students, discussed in Perach et al. (2007), Perach &
Rothblum (2010), and verify which properties continue to hold
for the student-group matching model. In Section 6, we discuss
the existence of the incentive compatibility property for any set
of student- groups, namely, the property that it is impossible for
all the student-groups in the set to gain by misrepresenting their
preference-lists. In Section 7 we allow ties in the common ranking
of the dormitories over the student-groups, and discuss some of
the properties of this generalized model. Section 8 includes some
conclusions and comments. Algorithms and examples are deferred
to the Appendix, which is concluded in Section A.2.2 by a simula-
tion study of the algorithm proposed in Section 5: we use real data
on the 11 Technions’ dormitories and their forecast for the num-
ber of single students’ housing applications for the academic year
2021/22. Using this forecast, we randomly form the student-groups
and their attributes, and then apply the algorithm and analyse its
output.
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2. Literature review

Various applications of the stable matching problem are de-
scribed in the literature, as for example:

(1) The assignment of students to schools: students’ satisfaction
has improved upon replacing the existing assignment mech-
anism by the one that generates a student-optimal GS stable
assignment (see Abdulkadiroglu, Pathak, & Roth, 2005a; Ab-
dulkadiroglu, Pathak, & Roth, 2005b; Abdulkadiroglu & Son-
mez, 2003; Balinski & Sonmez, 1999).

(2) The assignment of interns to hospitals, where hospitals com-
pete over interns, and each intern has preferences over the
hospitals (see Roth, 1984; Roth, 1996; Roth, 2003).

(3) Kidney transplants from live donors: the number of success-
ful transplants has greatly increased by implementing a vari-
ant of the GS algorithm (see Roth, Sonmez, & Unver, 2007).
Some practical matching models are described in Bird et al.
(2021).

The classic GS matching model and its extensions involve di-
verse types of mathematical analysis (see, for example, Knuth,
1976; Manlove, 2013; Roth & Sotomayor, 1990).

This paper is closely related to Perach et al. (2007), which pro-
poses a stable matching model for the problem of assigning in-
dividual students to dormitories at the Technion. The proposed
matching model incorporates an entrance criterion: each applicant
is assigned a unique merit score based on her personal socio-
economic data. A threshold value on the merit scores is deter-
mined according to the total capacity of the dormitories. The eligi-
ble applicants are the ones whose merit score is above this thresh-
old value. The ranking of the applicants by the dormitories is based
on their credit scores, and hence is common and complete. Each
applicant submits a preference-list over a subset of dormitories.
The actual assignment of eligible students takes into account the
students’ preferences over the dormitories as well as the common
preference-list of the dormitories over the applicants. A stable as-
signment in this model, fulfills at least one of the following two
conditions: either all the dormitories are at full capacity, or all ap-
plicants are found eligible. The paper proposes an algorithm that
generates, for any instance, a stable matching that satisfies some
desirable properties.

The framework of Perach et al. (2007) is generalized in Perach
& Rothblum (2010), by relaxing the assumption of a common and
complete preference-list of the dormitories over the applicants. In
particular, each dormitory is allowed to use its own evaluation cri-
teria for stating its preference-list over the applicants. The pro-
posed algorithm for the generalized model preserves most of the
properties of the original algorithm. Moreover, Perach & Rothblum
(2010) demonstrates that the outcome of the new algorithm satis-
fies the incentive compatibility property for a single student, which
means that a single applicant cannot improve her assignment by
misrepresenting her preference-list while all other applicants state
their true preference-lists.

In this paper, we extend the above student assignment model
to allow for group applications, where the students of any group
ask to be assigned to the same dormitory. The group assignment
problem has initially been studied in Roth (1984) in the context of
matching between residents and hospitals, motivated by the need
to assign not only individual residents but also couples of residents
who want to be assigned to the same hospital or to nearby hospi-
tals. Each individual resident submits a preference ranking over the
hospitals and each couple submits a preference ranking over pairs
of hospitals. Finally, each hospital ranks the residents as individu-
als. The paper proves that a stable assignment does not necessar-
ily exist. Moreover, the problem of deciding whether there exists
a stable assignment for a given instance has been proved to be
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NP-complete even if there are no single residents and each hospi-
tal has only one position (see Ronn, 1990). Several papers point
out special cases where a stable assignment exists (see, for ex-
ample, Cantala, 2004; Dutta & Masso, 1997; Klaus & Klijn, 2005;
Klaus & Klijn, 2007; Kojima, Parag, & Roth, 2013 and references
therein). The natural restriction where the preference-list of any
couple is consistent with the preferences of its members is dis-
cussed in McDermid & Manlove (2010): the paper provides a poly-
nomial time algorithm that finds a stable assignment or reports
that none exists.
Other applications of group-assignment include:

(1) The matching problem of children to schools, see Ashlagi
& Shi (2014), where the input of the model is a non-strict
ranking of children over the schools and vice versa. The
objective is to assign as many children as possible from
the same neighbourhood to the same school in order to
strengthen the community cohesion in schools.

(2) The problem of assigning students to projects under con-
straints is discussed in Chiarandini, Fagerberg, & Gualandi
(2019): students rank project-topics and the goal is to assign
students to groups and groups to projects, while satisfying
side constraints in a fair way.

3. Preliminaries and notations

In this section we present a modification of the stable match-
ing model with an entrance criterion (as presented in Perach et al.,
2007; Perach & Rothblum, 2010), which incorporates “group appli-
cations”.

The data for our model includes two disjoint finite sets G and
D, referred to as the set of student-groups and the set of dormi-
tories, respectively. Let |G| =n, |D|=k, G={gy.....g,} and D=
{dy,....d,}. Note that any applicant belongs to a single group
2 e G, which is possibly a singleton. Each student-group ge G is
associated with three nonnegative independent numbers gz € N,
mg € N and cg € RT, where qg is the size of the group, mg is
its merit score, and cg is its credit score. The special case where
2_g=c g = n refers to singleton student-groups, which is considered
in Perach et al. (2007). Throughout the paper we assume that:

(1) Each of the sequences my,,..., Mg, and Cg,....,Cg, consists
of distinct numbers, that is, for g # g": mg # My and Cg # Cy.

(2) W.Lo.g, student-groups in G are indexed in a decreasing or-
der of their credit scores.

In addition, each student-group g € G is associated with a non-
empty set ¥ C Dg €D, and a ranking -g of D¢ U (g}, where g is
the least preferred element by student-group g We refer to »¢ as
the preference of student-group g over the set of dormitories in
Dg and over being unassigned to any dormitory in its preference-
list, where the latter case is represented by g. We say that dormi-
tory d < D is acceptable by student-group g € G if and only if d € Dg.
Similarly, d ¢ Dy means that student-group g€ G finds dormitory
d € D unacceptable and it prefers to be assigned to g, which means
living off-campus, rather than living in dormitory d. The ranking of
the student-groups by the dormitories is common and complete,
and is based on the groups’ credit scores. Each dormitory is asso-
ciated with a capacity, which is the number of beds that it offers.
However, in order to avoid the case of having unnecessary beds
that no student-group is interested in, we consider the “effective
capacity” by of each dormitory d, to be the minimum between the
number of beds in d and 3y, gep,) ds. Where the second term
stands for the total number of students that accept dormitory d.
For simplicity, in the sequel we assume that the effective capacity
of a dormitory equals its given capacity. In addition, we assume
that for any student-group g € G and any dormitory d € Dg, qg < by.
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An assignment j of a set A C G over the dormitories in D is a set
of pairs, 1 = {(g,d)|g € A, d € Dg}, where (i) the student-groups in
different pairs are distinct, and (i) 3 g. (4 4y, 0z = by for each d € D.
Assignment ;¢ can also be interpreted as a function () :A—D
having 14(g) =d for g € A. Under this interpretation, [t represents
the assignment of student-groups in the set A to dormitories, while
the student-groups in G\A are not assigned.

An outcome is a triplet (p, W, R) where p is the assignment of
the student-groups of a set A € G, while the student-groups that
are not assigned are partitioned into two disjoint sets W and R,
namely, G\A = W UR: the student-groups in the set W are called
waiting student-groups, while those in R are called refugees.! The
set W contains student-groups that currently are not considered
for a dormitory assignment because their merit scores are not suf-
ficiently high, while the student-groups in the complement set
G\W = (AUR) have all been considered: each student-group in
A has already been assigned to a dormitory in its preference-list,
where for any student-group in R, no dormitory in its preference-
list with sufficient vacancy is left.

Next, we present a definition of plausibility that generalizes the
corresponding definition in Perach et al. (2007), Perach & Rothblum
(2010) for student-groups of size one.

Definition 1. An outcome (¢, W, R) is said to be plausible if:

(@) W] =1 implies that mg < my for any two student-groups
geW and g € G\W;

(b) either W =# or Y 4.pbg — X (g.a) Gz < dg. Where g is the
student-group whose merit score is the highest among the
student-groups in W.

Condition (a) of Definition 1 asserts that the maximum merit
score of a student-group in W is strictly lower than the minimum
merit score of a student-group in the complement set, namely
G\W. For a given outcome (., W, R), the only student-groups that
are not considered by the assignment process are the ones in the
set W.

It follows immediately that if (e, W,R) and (p/, W', R") are two
outcomes that satisfy condition (a) of Definition 1, then W and W'
are ordered by set inclusion.? Condition (b) of Definition 1 asserts
that either all student-groups are processed, or the total number
of free beds that are left in all dormitories is smaller than the
size of the student-group with the highest merit score among the
student-groups in W.

Note that Definition 1 has not made any use of the credit
scores, which next play a central role in the determination of the
final outcome.

Definition 2. A pair (g, d) € (G\W) x D is a blocking pair of an out-
come (ut, W, R) if the following conditions hold:

(a) d € Dg.

(b) g€ R or d =g p(g) (which implies (g, d) ¢ p).

(©) Qg+ > iayep i — Ziqu g; < by, where Gp={g'|(g/.d) e
pandcg > cy}.

In other words, according to Definition 2, a blocking pair of a
specific outcome consists of a student-group that is not in the set
of waiting student-groups, and a dormitory such that the two are
not assigned one to the other, though each of them prefers be-
ing assigned to the other rather than to its current state in the
outcome. Note that item (c) implies that after removing from dor-
mitory d student-groups whose credit scores are lower than the

! The term refugees is used to emphasize the uncertainty of the status of these
applicants. This term has also been used in earlier publications of the first author,
see Perach et al. (2007), Perach & Rothblum (2010).

2 That is, exactly one of the following holds: (1) W =W’ (2) W c W', or (3) W' ¢
W.
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credit score of student-group g, the dormitory has sufficient va-
cancy for student-group g.

Definition 3. An outcome (p, W,R) is said to be internally stable
if no blocking pairs exist, and it is said to be quasi-stable if it is
plausible and internally stable.

The following example demonstrates the four possible combi-
nations regarding plausibility and internal stability of outcomes.

Example 1. Let G={g.%.23.8). D={d1.dy}. Qg =2.qg, =
Qg =gy, = 1 and by, = by, = 2. Recall that ¢ > Cg; for i < j. Sup-
pose that mg, > mg, > Mg, > Mg, and each student-group of G
prefers dormitory dy over dormitory d,. Consider the following
four outcomes:

o (01, W1, Ry) = ({(81. d2). (82, d1)}, {g3. 84}, ¥): this outcome is
not internally stable as the pair (gq, dq) blocks it. In addition it
is not plausible as there is a free bed in dormitory d;, while the
highest merit scored student-group in Wy, namely g3, is single-
ton.

(12, W, Ry) = ({(g1. da). (83, d1), (84.d1)}. {g2},9): this out-
come is not internally stable as the pair (g{,d;) blocks it.
However, this outcome satisfies both conditions of plausibility.
(3. W5, R3) = ({(g1.d1). (g3.d3). (82.d3)}. {4}, ¥):  this out-
come is internally stable, but it is not plausible. Student-group
g3 ¢ W3 has a higher merit score than student-group g, which
is not in Ws.

(114, Wg, Rg) = ({(g1.d1). (g3, d1), (84, d1)}. {82}, 9):  this out-
come is internally stable and plausible, and hence it is
quasi-stable. o

As a side remark note that if all the student-groups were of
equal size g = 2, then this size could be scaled down to 1 while
scaling down by g also the capacities of all the dormitories. This
would have generated a model that is equivalent to the one with
single students, a case that has been considered in Perach et al.
(2007), Perach & Rothblum (2010). Thus, here we assume that the
student-groups are of non-identical general size.

4. A stable assignment for a given W

This section presents some properties of internally stable out-
comes. We first fix a set W of waiting student-groups that con-
sists of the x (0 <x <n) student-groups whose merit-scores are
the lowest among the n merit-scores of the student-groups in G.
We then restrict ourselves to the subset G’ c G that consists of the
student-groups that are not in W. In what follows, the pair (G', D)
is referred to as a market.

In the sequel we prove that for any given market (G’, D) there
exists a unique internally stable outcome. The proof starts by pre-
senting a constructive algorithm, called the SD(G) algorithm, that
follows the Serial Dictatorship (SD) principles (see Abdulkadiroglu
& Sonmez, 1998), and is an adaptation of the Greedy-SMI-1ML
algorithm (see Section 2 of I[rving, Manlove, & Scott, 2008) for
student-group assignment. Recall that the student-groups are in-
dexed in a decreasing order of their credit scores. The algorithm
scans the student-groups of G’ according to an increasing order
of their indices, and assigns each student-group its most preferred
dormitory that still has enough beds to accommodate it. If such
a dormitory does not exist, the student-group is classified as a
refugee.

The algorithm calls the function f(>,), which returns the cur-
rent most preferred dormitory of student-group g;, that is, the first
element in the preference-list >,. If such a dormitory does not ex-
ist, then f(>g) =0.

The algorithm uses the following data-structure:

» g; - the current student-group scanned by the algorithm.
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> - the current preference-list of student-group g;, which con-
tains the dormitories in Dg, that have not yet rejected it.

. d;gﬁ - the most preferred dormitory in =g,.

* C - a Boolean variable that signifies if the current student-group
of G’ has been assigned to a dormitory.

* R - the current set of unassigned student-groups of G’. which
could not be assigned to a dormitory in their preference-list.

o i - the current assignment of student-groups in G’\R to dor-
mitories.

The output (i, R) consists of the assignment ., which is a set
of pairs (g, d) € G’ x D that are matched, and a set R € G’ that con-
sists of the refugee student-groups that could not be assigned by
the algorithm. Note that all students in G'\R are assigned a dormi-
tory under .

Algorithm 1: Serial Dictatorship for groups (SD(G)) algorithm.

Input: market (G, D) where G’ £ @
OQutput: (i, R), where ( is an assignment, and R is a
refugee set

10« @R«0i<1,c<«"true”;
2 while i <n+1 do
3 | if g; € G’ then
4 ;gi = g ;
5 ¢ <" false”
6 d;gi <« f(=g):
7 | whiled:, #¢andc =" false” do
1
8 if baﬁgj - Z{j\(gj‘d;g‘_ yeu) dg; = Gg; then
9 poepuligds, )k
10 c <" true”
11 else
12 remove dormitory de, from =g
1
3 dﬁg‘. <~ f(;g,)

if ¢ =" false” then

14
15 | R<Rufg)
16 _i&erl

-

7 output (i, R)

Comment 1: The complexity of the SD(G) algorithm is of or-
der O(¥y-¢ |Dgl) as each student-group in G’ and its preference-
list are scanned at most once. Thus, the complexity is O(|G'|k).,
where k = |D|, as the maximum length of the preference-list of
each student-group is bounded by the number of dormitories.

The following theorem provides a characterization of the out-
come generated by the SD(G) algorithm. The theorem extends The-
orem 2.1 of Irving et al. (2008) for the student-group assignment:

Theorem 1. For any market (G, D), G’ C G, there exists a single in-
ternally stable outcome of the form (u, G\G', R).

Proof. We start by showing that for any market (G’,D), G’ CG,
the SD(G) algorithm terminates and generates an internally stable
outcome of the form (u, G\G', R). Thereafter, we show uniqueness.
Termination of the algorithm is immediate as each student-group
is scanned exactly once, and the preference-list of each student-
group is of bounded length. Let (1, G\G’, R) be the outcome gener-
ated by the SD(G) algorithm on market (G’, D). Note that in assign-
ment ¢ each student-group is assigned to a dormitory only if the
dormitory is acceptable by the student-group and it has enough
beds to accommodate it. Now, assume by contradiction that the
pair (g, d) is a blocking pair in the outcome (u, G\G', R). Consider
the time of addressing student-group g during the algorithm. At
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this time, all dormitories in D contain only student-groups whose
credit scores are higher than . If at this point of time, there
were enough beds to accommodate student-group g in a dormitory
d’ # d, which student-group g prefers better than d, then student-
group g would be assigned to a dormitory that it prefers better
than d, and therefore the pair (g, d) will not be a blocking-pair
as item (b) of Definition 2 is not satisfied. Otherwise, if d had
enough beds to accommodate g, then the pair (g, d) would be a
member of assignment g, and again the pair (g, d) will not be a
blocking pair. Finally, if dormitory d did not have enough beds to
accommodate student-group g, then the pair (g, d) would not be
a blocking pair as item (c) of Definition 2 is not satisfied, namely
the student-groups that have been assigned to dormitory d up to
this point of time, have higher credit scores than ¢g, as according
to the SD(G) algorithm no student-group leaves a dormitory once
it was assigned to it.

Next, we show that the outcome (p, G\G’,R) is a unique inter-
nally stable outcome for market (G’,D). Also this part is proved
by contradiction: assume that in a given market (G/,D) there
were two different internally stable outcomes (jt1.G\G'.R;) and
({2, G\G',Ry). W.Lo.g., let g € G’ be the student-group with the
highest credit score such that ji1(g%) =g J15(g*) or g € Ry\Ry, im-
plying that g* ¢ R;. Thus, there exists a dormitory d; € D such that:

dy = [11(8") =g H2(g") or g eR; (1)

Consider the outcome (3, G\G'.Ry): let Ggr = {g'|p2(g) =
dy and ¢g < Cg,} be the set of student-groups that have been as-
signed by [t» to dormitory d;i and their credit scores are higher
than the credit score of student-group g*. As student-group g* is
the highest credit-scored student-group whose assignment differs
between the outcomes (w1, G\G',Ry) and (u,, G\G', Ry), and since
student-group g* is assigned to dormitory dy under jtq, clearly,

Qg+ Y i < by,
igﬁga

(2)

Note that (1) and (2) imply that the pair (g*, d;) blocks outcome
(ft2. G\G', Ry), in contradiction to the assumption on the internal
stability of (5, G\G',Ry). O

To conclude this section, we propose for the group assignment
of market (G, D), a variant of the GS algorithm that has been pro-
posed for matching two sets of individuals (see Gale & Shapley,
1962; Roth & Sotomayor, 1990). The student-group assignment ver-
sion of the GS algorithm, thereafter denoted by GS(G), starts by
having all the student-groups of G’ unassigned, and all beds of
D are free. In each step of the algorithm, each student-group ap-
proaches its most preferred dormitory, that has not yet rejected
it. As a consequence, the new assignment of each dormitory con-
sists of the maximum number of the highest credit scored student-
groups among those that have approached it and those that were
assigned to it in the previous assignment, without exceeding its
capacity. Student-groups that were previously assigned to a dor-
mitory but are excluded from the new assignment, are considered
as being rejected by this dormitory. The algorithm reiterates until
each student-group is assigned to a certain dormitory or is rejected
by all of them. A student-group that is rejected by all the dormi-
tories in its preference-list, is classified as a refugee. For a more
detailed algorithm and its complexity, see the Appendix.

The following example demonstrates a market (G,D), where
the output of the SD(G) algorithm and the output of the GS(G) al-
gorithm do not coincide. Moreover, the outcome (jtgs(cy, 9, Ros(c)):
where (f4¢s) Resg)) 1s the output of the GS(G) algorithm on that
market, is not necessarily internally stable. An illustration of the
algorithms on the following example is presented in Section A.1 of
the Appendix.
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Example 2. Llet G=1{g1,22.83.8}, D={d1.d2}, Qg =qg =
2,qg, =0qg, =1 and by = by, =2. Recall that cg > cg; for i<
The preference-lists of the student-groups are given in the follow-
ing table:

g1 g2 23 g4
d d dy dq
d d d;

The output of the SD(G) algorithm on market (G,D) is
(1sp(G)> Rspcy): where  pegpc) = {(g1. d2). (&2, d1), (84.d1)} and
Rsp(cy = {g3}. The output of the GS(G) algorithm on market (G, D)
is (Kcs) Ros)). where gy = {(€1,d2). (€2.d1)} and Rescy =
{g3, 84}

Thus, (1L¢sicy: Resey) # (specy Rsp(gy)- Moreover, the outcome
(IGsiG)s ¥ Rgs(g)y) 1s not internally stable, as the pair (g4, dy) blocks
it (dormitory dy has an additional free bed under this outcome). o

5. Quasi-stability

The previous section has determined the unique internally sta-
ble assignment under a certain market. In this section, we consider
the general model with merit scores, and elaborate on some of its
properties. We first note that unlike the model with single stu-
dents (see Section 3 in Perach et al., 2007 and Perach & Rothblum,
2010), in the general-sized student-groups’ model there may exist
outcomes, (£, W.R) and (u/.W' R'), W c W, which fulfill condi-
tion (a) of plausibility, where (i, W, R) is plausible, but (', W', R")
is not.

Example 3. let G=1{g1.82.83}, D={d1}, Qg =qg, = 1.4, =2,
by, =2, and mg < myg, < my,. Assume that dormitory d; is accept-
able by all the student-groups, and recall that ¢g, > Cg, > Cg,. Con-
sider the following outcomes:

e (;t,W,R), where ;t = {(g3,dy)}, W = {g1,82} and R = 0.
o (W W' R'), where i/ = {(g2.dy)}, W' = {g1} and R" = {g3}.

Clearly, (jt.W,R) is a quasi-stable outcome, but (u/,W'.R") is
not as it does not satisfy condition (b) of Definition 1. o

In Section A.2 of the Appendix, we propose an algorithm that
finds all the quasi-stable outcomes for any given sets G and D. In
sub-Section 5.1 we shortly describe the idea behind the algorithm,
and some of its properties. In Sections 5.2 and 5.3, we focus on a
specific quasi-stable outcome and elaborate on some of its proper-
ties.

5.1. Finding all quasi-stable outcomes

An algorithm that finds all stable matchings for the classic
matching model, is presented in Gustfield & Irving (1989). In
Section A.2 we present an algorithm, called the QSO algorithm,
that finds all quasi-stable outcomes for a given set of student-
groups G and a given set of dormitories D, and discuss its complex-
ity. More specifically, for any possible set of waiting student-groups
that satisfies condition (a) of plausibility, the algorithm finds an
internally stable outcome, by running the SD(G) algorithm while
filtering out outcomes that do not satisfy condition (b) of plausi-
bility. A simulation study of the QSO algorithm over real data ob-
tained from the Technions’ dormitory management, is presented in
Section A.2.2.

The QSO algorithm starts with an empty set H of quasi-stable
outcomes. It generates a run of the SD(G) algorithm on all markets
of the form (G’, D), where G’ consists of the y, 1 <y < n, student-
groups in G whose merit scores are the highest. More precisely, let
G’ =@. For y = 1...n the algorithm does the following: it removes
the highest merit-scored student-group from G and inserts it into
G'. Then if the output of the SD(G) algorithm on market (G', D),
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where |G’| =y, satisfies condition (b) of Definition 1, the respec-
tive outcome with W/ = G\G', [W'| =n —y, is inserted into the set
H of quasi-stable outcomes. Thereafter, as long as y < n, the high-
est merit scored student-group in W’ is transferred to G’, and the
SD(G) algorithm is called again. The last iteration of the algorithm
is, in fact, the run of the SD(G) algorithm on market (G, D), that is,
when y =n and the set W of waiting student-groups is empty.

The following lemma characterizes the output of the QSO algo-
rithm:

Lemma 1.

1. The output H of the QSO algorithm presented in Section A.2 of the
Appendix, is equal to the set of all quasi-stable outcomes for the
set of student-groups G and the set of dormitories D.

2. The complexity of the QSO algorithm is of order O(n¥ g |Dgl),

or equivalently 0(n2k).
Proof.

1. By definition, any triplet (zt, Wy, Ry) € H generated by the QSO
algorithm is an outcome, and by Theorem 1, any such out-
come is internally stable. Plausibility holds due to the way that
the algorithm determines the sets of waiting student-groups.
The proof that the output H consists of all the quasi-stable
outcomes follows immediately from Theorem 1, and the fact
that the QSO algorithm considers all possible sets of waiting
student-groups for the given data.

2. According to Comment 1, each run of the SD(G) algorithm on
market (G', D) is of complexity O(34.¢’ |Dg|) or O(nk). The QSO
algorithm on G and D considers all possible sets of waiting
student-groups, where a set of waiting student-groups is ei-
ther empty or it contains a proper subset of student-groups of
G whose merit scores are the lowest, implying that condition
(a) of plausibility holds. There is a total of n such possibilities.
For each set of waiting student-groups, the QSO algorithm gen-
erates a run of the SD(G) algorithm. Therefore, the complexity
of the QSO algorithm is of order O(n¥_,.; [Dy|) or, equivalently,
0(n2k).

O

Note that the outcome that is considered in the last iteration
of the QSO algorithm is the result of running the SD(G) algorithm
on market (G,D), whose set of waiting student-groups is empty.
By Theorem 1, such an outcome exists, is unique, and it satisfies
plausibility as its set of waiting student-groups is empty. The fol-
lowing observation, is therefore, straightforward:

Observation 1. For any sets G and D, there exists at least one
quasi-stable outcome, namely the outcome associated with W = (4,
implying that the set H of quasi-stable outcomes is non-empty,
that is |H| = 1.

5.2. Properties of quasi-stable outcomes

Several optimality criteria may be useful in evaluating quasi-
stable outcomes. For example, the one with the least number of
refugee student-groups, the one with the least number of refugee
individual students, the one with the largest number of student-
groups (or individual students) that get assigned to their first
choice dormitory, the one that minimizes the unused capacity
(number of free beds), etc. Note that finding a quasi-stable out-
come under any possible criterion can be done by scanning the set
H generated by the QSO algorithm.

We elaborate here on some properties of the first outcome gen-
erated by the QSO algorithm, denoted by (1, W;,R;y). In the spe-
cial case where all the student-groups are singletons, this outcome
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coincides with the outcome of Dor-AA in Perach et al. (2007), and
all optimality criteria stated above, do hold.

The following claim states that outcome the outcome
(ft1, W1, Ry) has the largest number of waiting student-groups
among all quasi-stable outcomes, and therefore the largest number
of waiting students as individuals. As a consequence, Ry contains
the least number of students. To this end we introduce the func-
tion s:2¢ — {1,..., X7, ¢; — n+ 1}, which returns the number of
students in any subset G’ of G.

Claim 1. Let H be the output of the QSO algorithm on the sets
of student-groups G and dormitories D, and suppose that |H| >
1. Consider the outcome (ftq,W;,Ry) € H. For any other outcome
(¢, Wj,R;) e H, j =1, the following properties hold:

L Wj ¢ Wy (which implies that s(W;) < s(Wp)).
2. S(RJ) > S(R] ).

Proof. The proof of the first part follows immediately from the
way the set H is generated by the QSO algorithm. In order to prove
the second part, let e, be the total number of free beds in out-
come (ptg, Wi.Ry). thatis, ey =3 4.pbg — Z(g‘d)eﬂk qg for k=1, j.
Therefore, s(Ry) = > gco\w, 9 — (Xgep ba — k) for k=1, j. In view
of the first part, G\W; ¢ G\W;. Let g* be the student-group with
the highest merit score in W;. Condition (b) of plausibility asserts
that g > e;. By the definition of the QSO algorithm, g* € G\W;.
Thus,

SR)—sR)= Y qg— > Gg+ej—er>qg+ej—e
2eG\W; geG\W;

(3)

> Qg —e; >0
concluding the proof. O

Note also that Claim 1 guarantees that Ry has the smallest num-
ber of students, but this is not necessarily achieved by the small-
est number of student-groups, as demonstrated by the following
example.

Example 4. let  G=1{g1.27,83.84.85.96.87.838.80}, D=
{di.dy.d3,ds}. qg; =1forie{1,3,.4,58,9}, g5, =2 forie(2,6.7)
and bdg =2 for 1<¢<4. Let Mgy > Mgy > Mgy > Mgy > Mg, >
Mg, > Mg, > Mg, > Myg,. The preference-lists of the student-groups
are given in the following table:

21 8 8 84 85 8 g 8 £
dq dq dq da dy dy dy d3 da
dZ d3 d4

The following two outcomes are quasi-stable: the out-
come (pq,Wq,Ry) generated by the QSO algorithm, where
1 =1{(g2, d1), (8a,d2), (85, d2), (86, d3), (87, da)}, Wi ={gi}, and
Ry =1{g3.88.89}, and the outcome (uy. W5, Ry), where puy =
{(g1,d1), (&2.d2), (g3, d1), (84.d3). (85, d4), (g5, d3), (8o, da)}, W =
¢ and Ry = {g¢, g7}. Thus, in the outcome (i1, Wi, Ry) there are
three student-groups which are determined to be refugees, where
in the outcome (jty, Wy =@, Ry) only two student-groups are de-
termined to be refugees. o

5.3. Optimality criteria

In view of Claim 1, in the set of outcomes H, student-groups in
G\W; are not members of any set of waiting student-groups W;,
Jj=1,...,]H|. In other words, each student-group in G\W; has a
sufficiently high merit score, which guarantees that it will be pro-
cessed by the SD(G) algorithm in all iterations of the QSO Algo-
rithm. Thus, we refer to the student-groups (students) in G\W; as
needy student-groups (needy students).
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5.3.1. Optimality for student-groups and individual students

In this sub-section we first propose a definition of optimality
for needy student-groups, that is those that belong to G\W;, see
Claim 1:

Definition 4. A quasi-stable outcome is said to be optimal for a
needy student-group g if g is not assigned by any other quasi-
stable outcome to a dormitory that it prefers better® according to
its preference-list.

Next we prove that outcome (1, Wy, Ry) is optimal for at least
one student-group.

Theorem 2. let g < G be the student-group with the highest credit
score in G\W,. Then, outcome (jt1, Wi, Ry) is optimal for .

Proof. The proof is immediate since student-group g is scanned
first during the run of the SD(G) algorithm when generating out-
come (ftq, Wy, Ry). Therefore, student-group g is assigned under
(i1, Wy, Ry) to its most preferred dormitory. O

Next, we demonstrate by an example that unlike the case of
singleton student-groups (see Perach et al., 2007; Perach & Roth-
blum, 2010), for general sized student-groups there may be cases
where no outcome that is optimal for all the needy student-groups
exists.

Example 5. Let G={g1.82.83}. D={d1.d3}. qg, =g, = 1.qg, =
2, and by, =1,by, =2. Let mg, > Mg, > mg,. The following table

presents the preference-lists of the student-groups:

1 g2 g3
dy d d
d1 d1

The QSO algorithm generates two quasi-stable outcomes. The
first is (i1, W1, Ry), where g =[(g2, dp), (g3, d1)}, Wy = {g1},
implying that the set of needy student-groups is {g;,g3}. Further-
more, Ry =#. The second quasi-stable outcome is (o, W, Ry),
where  py ={(g1,dz2),(g3.d2)}, Wp=0 and Ry={g;}. By
Definition 4, we consider the optimality of an outcome only
for the needy student-groups: Outcome (jtq,Wp,Ry) is optimal
for student-group g, while outcome (9, W5,Ry) is optimal for
student-group g3. o

In addition, unlike the case where all student-groups are sin-
gletons (discussed in Perach et al, 2007; Perach & Rothblum,
2010), the following example shows that there may exist a quasi-
stable outcome (1¢j, W}, Rj) # (j21, W1, Ry), in which most needy
students, and also most needy student-groups, prefer their as-
signment under (p¢, W;, R;) over their assignment under outcome
(pe1, Wi Ry).

Example 6. Let G={g1,82.83.84.85}, D={dy,dy.d3.d4}, qg, =
2,q, =1 for ie{1,3,4,5} and by =2, by, =bg, =bg, =1. Let
Mg, > Mg, > Mg, > Mg, > Mg,. The following table presents the
preference-lists of the student-groups:

21 82 23 g4 243
d & &y v 4y
dy dy dy dy
ds d;  dy  ds
dy dy dy dy

The first outcome generated by the QSO algorithm is

(01, W1, Ry),  where i ={(g2,d1), (g3, d2), (4. d3), (g5, dy)},
Wy ={g1} and Ry =9, implying that the set of needy
student-groups G\W; = {g,,83.84,85}. The quasi-stable out-
come (9, Wy, Ry) is generated for W, =@, where ;=

3 Definition 4 includes the preference of being assigned to a dormitory over being
a refugee.
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{(g1.d1). (g3.d1). (g4.d2). (gs.d3)}. and Ry ={g}. Note that
outcome (i3, W5, Ry) is strictly better than outcome (1, Wy, Rq)
for the three students in student-groups g3, g4, 25 € G\W;, while
for student-group g, that consists of two students, the opposite
holds. Thus, we conclude that outcome (13, W5, R3) is optimal
for more needy students and for more needy student-groups than
outcome (ft1, W1, Rq). o

5.3.2. Optimality for a student-group whose preference-list is
complete

In the case of singleton student-groups it is known that
a student-group that lists all dormitories as acceptable will
never end up as a refugee student-group under (pt1, Wy, Ry), see
Theorem 1(e) in Perach et al. (2007). It turns out that this claim
does not hold for general-sized student-groups: in fact, a singleton
student-group that lists all dormitories as acceptable might end up
as a refugee in outcome (41, Wy, Ry).

Example 7. Let G=1{g.£.23.84}, D={dy.dy}, Qg =2.qg, =
Qg; =g, =1 and by =by, =2. Let my, > my, > My, > my,. The

following table presents the preference-lists of the student-groups:

81 g2 23 g4
dy di dy dq
d dy dy

Consider the only quasi-stable outcome for this data, namely
(141, W1, Ry), where g = {(g1,d1), (g3, d1), (g2, dz)}, Wy =4 and
Ry = {g4]}. Thus, all dormitories are acceptable by student-group g4.
but g4 €Ry. o

6. Incentive compatibility

Incentive compatibility addresses the question of whether each
member of a group of agents can gain by misrepresenting its
preference-list, while all other agents state their true preference-
lists. It is well known that in the implementation of the men
courting version of the GS algorithm in the classic stable matching
model] (see Gale & Shapley, 1962), such a manipulation is not prof-
itable to any group of men. That is, there exists at least one man
in this group that is matched to the same woman or alternatively
prefers his match under the true preference-lists than his match
under the misrepresentation of the preference-lists, see Dubins &
Friedman (1981), and Theorem 4 in Gale & Sotomayor (1985). An
immediate conclusion which follows is that such a manipulation is
not profitable when applying the GS algorithm in the many-to-one
matching models, as in the assignment of residents to hospitals,
since any hospital with p open positions can be presented as p
hospitals, each having a single open position.

In the singleton student-groups model, the SD(G) applied on
a market (G, D) satisfies the incentive compatibility property (see
Theorem 1 of Svensson (1999)). The following theorem demon-
strates that this property holds also for the general-sized student-
groups case.

Theorem 3. Let >g= (¢, »g,) be the vector of true preference-
lists of the student-groups in market (G, D). Let >¢ = (g,, ..., >%,)
be a vector of preference-lists that coincides with the vector =g except
for a non-empty subset of student-groups G C G. Finally, let (1, R)
and (fi, R) be the assignments generated by application of the SD(G)
algorithm on market (G,D) under ~; and under =g, respectively.
Then, there exists a student-group g € G, for which exactly one of the

following holds: (1) j1(g) =g f(g) or (2) p(g) = i(g) or (3) g R.

Proof. Let gj c G be the student-group whose credit score is
the highest in G. Note that the scanning order of the student-
groups of G by the SD(G) algorithm on market (G,D) depends
only on the credit scores and it is independent of the student-
groups’ preference-lists. Consider the time when student-group g;

.....
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is scanned by the SD(G) algorithm. The temporary assignments at
this specific point of time under >¢ and under = coincide, as for
all j <1, g = g Thus, at this point of time, either student-group
g; is assigned the best dormitory that still has a sufficient number
of beds to host it according to its true preference-list, and if none
exists it will be determined as a refugee. Clearly, student-group g;
cannot do better by misrepresenting its preference-list, as at this
point of time all the higher ranked options, if such ones exist, are
non-feasible. The proof follows as during the run of the SD(G) al-
gorithm no student-group is being removed from a dormitory. O

Theorem 3 refers to internally stable outcomes for market
(G, D). Recall that the last iteration of the QSO algorithm is ap-
plied on market (G,D) and the resulting outcome is, by defini-
tion, a quasi-stable outcome, since the respective set W of waiting
student-groups is empty. This outcome is, in fact, the last outcome
added to the set H of all quasi-stable outcomes generated by the
QSO algorithm.

Next, we refer to the first outcome in the set H generated by
the QSO algorithm, namely (g1, W;, Ry). Consider the respective
algorithm, called the 1-QSO algorithm, which boils down to the
first iteration of the QSO algorithm. According to Theorem 2 of
Perach & Rothblum (2010), when applying the 1-QSO algorithm on
singleton student-groups, no student-group can be assigned to a
dormitory that it prefers better if it misrepresented its preferences,
while all other student-groups stated their true preference-lists.
The following example shows that this property does not hold in
the general-sized student-groups case, i.e., a student-group can be
assigned by the 1-QSO algorithm to a better preferred dormitory
by misrepresenting its preference-list.

Example 8. Consider Example 6. The first outcome
of the QSO algorithm is (w@q,W;,Ry). where =
{(g2.d1), (g3, d2), (84,d3), (g5.dg)}, Wy ={g}, and Ry =4 In

particular, student group gs is assigned to d4, which is its least
preferred dormitory in its original preference-list.

Consider the following modification of the original preference-
lists, with respect to student-group gs:

21 g2 & 81 8
d dy dy i dy
dy dy dy dy
ds d; dy d3
dy dy  dy

The first outcome of the QSO algorithm is (zi1. Wi, Ry),
where Iy = {(g1.d1). (23.d1). (€. d2). (g5.d3)}. Wy =@ and Ry =
{g>}. Thus, by manipulating the preference-lists, student-group gs
is assigned to d; under outcome (i1,W;,R;). which is better
preferred than its assignment to d4 under outcome (i1, Wy, Rq).
when the true preference-lists are used. o

Example 8 demonstrates not only that a student-group can get
a better assignment for itself by misrepresenting its preference-list,
but that the assignment may be better for other student-groups as
well. Moreover, in this example, all the students, except the ones in
student-group gz, gain from this “lie”, implying that lying is ben-
eficial for most of the students in G. Example 8 also shows that a
“lie” of a single student-group can influence the size of the set of
waiting student-groups of the first outcome generated by the QSO
algorithm.

7. General credit scores

In the previous sections, the credit scores of the student-groups
were assumed to be distinct. As this assumption does not necessar-

4 For the singleton student-group case, the 1-QSO algorithm coincides with G-
DorAA, which is presented in Perach & Rothblum (2010).
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ily hold in practice, we consider here the general case. Given the
input of n student-groups, let ¢; > ... > ¢y, 1 =1 < n°, be the r dis-
tinct values that the credit scores assume. Let G5, fori=1,...,T,
be the credit sets, which are non-empty sets of students that share
the same credit score ¢;, and G =U[_,G%. The student-groups in
each set G4, for 1 <i <1, are indexed consecutively and arbitrar-
ily from |U;‘:]] GIl+1 to |Uj.:1 GSi|. Any such assignment of the
indices to the student-groups in each credit set G% ¢ G forms a
permutation of the student-groups over G. Let P® be the set of all
permutations over G, that is, |[P¢| = []\_; |G%|!. In addition, for any
subset G’ € G, let PY be the subset of permutations of the student-
groups of G, that is [PY| = T IG5 N G’'|!. Next, we consider the
following procedure, which is an adaptation of the SD(G) algorithm
for general credit scores.

Procedure Random Serial Dictatorship for groups (Rand-
SD(G))
Input: market (G, D) where G’ # ¢, anda random
permutation p po
Output: (/, R), where p is an assignment, and R is a
refugee set
Call the SD(G) algorithm where the student-groups are
indexed according to p, and return its output.

The following theorem provides a characterization of the out-
comes generated by the Rand-SD(G) procedure.

Theorem 4. For any market (G',D), G’ C G, there exist at most |P% |
internally stable outcomes of the form (p, G\G',R).

Proof. According to Theorem 1, any call to the SD(G) algorithm
generates a unique internally stable outcome for market (G’, D).
Hence, the Rand-SD(G) procedure generates an internally stable
outcome for any permutation p € PY. As there exist |P¢'| permu-
tations that refer to the student-groups of G’, the number of inter-
nally stable outcomes for that market is bounded by |[P¢|. O

The following observation follows immediately from Theorem 3.

Observation 2. The Rand-SD(G) procedure applied on market
(G'. D) satisfies the incentive compatibility property for any sub-
set of student-groups that misrepresent their preference-lists.

Recall that the QSO algorithm generates all the quasi-stable out-
comes for G and D, where the credit scores are distinct. The fol-
lowing ND-QSO procedure calls the QSO algorithm in order to gen-
erate all the quasi-stable outcomes for general credit scores. We
assume here that the elements of P¢ are indexed arbitrarily.

Procedure QSO for general credit scores (ND-QSO)

Input: G#£ @ and D £

OQutput: a set H of quasi-stable outcomes
1 fori=1to |P¢| do
2 H; < QSO(G, D) where the student-groups are indexed

according to permutation p;
pG

3 Return H = ngll H;

Lemma 2.

1. The output H of the ND-QSO procedure is equal to the set of all
quasi-stable outcomes for the set of student-groups G and the set
of dormitories D.

> The case where all credit scores are distinct has been considered in the former
sections.
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2. The complexity of the ND-QSO procedure is of order O(|P| n
Y ec |Dgl) o, equivalently, O(|P¢| « n2k).

Proof. The proof of both parts follows immediately from
Lemma 1 and the fact that the algorithm checks every possi-
ble permutation. [

8. Conclusions and comments

This paper extends the stable matching model with an entrance
criterion to include applications from groups of students who pre-
fer living off-campus over being separated in different dormito-
ries. We adjust the definition of quasi-stable outcomes, explore the
properties of the new model and develop algorithms that generate
outcomes with certain desirable properties. In addition, we show
that some of the properties that hold for the singleton student-
groups model, continue to hold for the generalized model. Finally,
the existence of the incentive compatibility property in the gener-
alized model is discussed.

From a social point of view, the quasi-stable outcomes gener-
ated by the QSO algorithm are not equivalent. The larger is the
set of waiting student-groups in the outcome, the more sensitive
is the respective assignment to the merit scores. The last outcome,
in which the set of waiting student-groups is empty, totally ignores
the merit scores and only credit scores are taken into consideration
in the assignment process. This last outcome is therefore optimal
for the dormitories, but it is the worst from a socio-economic point
of view, as the merit scores do not play any role in generating the
assignment.

The model presented here refers to a situation where the dor-
mitories’ preferences, which are represented by the credit scores
of the student-groups, are common and complete. The existence of
common preferences guarantees that if a student-group is not ac-
ceptable by a certain dormitory, then it is not acceptable by any
other dormitory. Such a student group can be excluded from fur-
ther consideration at the beginning of the assignment process, as
in any quasi-stable outcome the unacceptable student-groups will
either be in the set of waiting student-groups or will end up as
refugees.
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Appendix A.
Al. The assignment of student-groups by the GS(G) algorithm

Recall that the function f(>-g) returns the most preferred dor-
mitory by student-group g. Define the function [(d, ;) to return
the lowest credit-scored student-group that is assigned to dormi-
tory d under assignment p. The algorithm uses the following data
structure:

o P - the current set of student-groups that have not been as-
signed vyet.
* R - the current set of refugees.
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Algorithm 2: The Gale Shapley algorithm for student-groups
(GS(G)).

Input: market (G, D), where G # @

Qutput: assignment [t

1<« @ R« WP+« G, fin=" false” ;
2 while P = ¢ do

3 fori=1tondo

4 if g; € P then

5 P < P\{g}:

6 dgi %f(>gl-) )

7 o< prUf(g dg)}

s | for j=1to|D| do

9 while by, < Yig(gdjep) de do
10 g I(dj, n);

1 remove d; from >z ;

12 o p\{(g dj}

13 if >3= () then

i | R<Ru{g)

15 else

16 | P<PuU{g

17 output i

« /t - the current assignment of student-groups of G\R to dormi-
tories.

The complexity of the GS(G) algorithm is of order O(Y_;.¢ |Dil).
as all the student-groups of G may approach all the dormitories in
D. Thus, the complexity can also be written as O(nk), where n is
the number of student-groups, and k is the number of dormitories.

ALL llustration of the SD(G) and GS(G) algorithms
In the following we execute the algorithms on Example 2.
The SD(G) algorithm:

i I R >_Ei d(gi)
1 4 [7] da, dq dz
1 {(g1,d2)} 4 dy, dy dy
2 {(g1~d2)} @ da, dq d,
2 {(gr.dy)} [ d d
2 (g1, dy), (g2, d1)) a d d
3 {(g1.d2). (g2.d1)} @ di d;
3 {(g1,d2), (g2, d1)) a a o
3 {(g1.d2). (g2,d1)} s} 0 o
4 {(g1,d2), (g2,d1)} (5} didx O
4 {(g1.dy), (&, d1), (ga.d1)} (g5} dindy  dy

The GS(G) algorithm:
Current step P i R g dyi @
initialization {gy.gy.83.24} 9 ? - - -
1 {g1.82.831  {(g1.d2)} 4 gydy - -
1 (g1.22) {(g1.d). (g2.dp)} 4 Gy dy - -
1 {g1} {(g1.d2). (g2.d3). (g3.d)) 4 gdy - -
1 g {(g1.d2). (8. d3). (g3.d1). (g4.d1)} 0 gady - -
2 {2} {(g1.d2). (82.4d). (g3.d1)} 0 - - 1lg
2 122,84} {(g1.ds). (g5.d7)} @ Sl 2g
1 {gs} {(g1.d2). (g2.d1), (g3,d1)} [ g dy - -
1 9 {(g1.d2). (g2.d1). (g3.d1). (g4.d)} P gady - -
2 o {(g1,d2), (g, dy), (84, d2)} (g3} - - 1g
2 4 {(g1.d2), (g2.d1)} lg3.8al- - 2g4

A2. The QSO algorithm

The QSO Algorithm finds all the quasi-stable outcomes. Define
the function m(A) that returns the student-group in a set ACG
with the highest merit score. The following data structure is used
by the algorithm:
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« W - the current set of waiting student-groups.

* H - the up-to-date set of quasi-stable outcomes.

» 1 - the index of the last quasi-stable outcome inserted into H.

« G =G\W.

o ((/,R’) - the current assignment that is generated by the SD(G)
algorithm.

Algorithm 3: The QSO algorithm.
Input: G#£ @ and D £ 47
OQutput: a set H of quasi-stable outcomes
1 g% < m(G) ;
2 W o« G\{g} ;
3 H <« @ h <« 1,6 «{g}itr < 1;
4 while itr <n do

5 (',R") — SD(G)(G',D) ;

6 | g« m(W);

7 if W =@ or ZdED bd — Z(g.d)eu’ q‘g < Qg* then
8 (e, Wy, Ry) < (/. W, R') ;

9 H < HU {(1tp, Wy, Rp)}

10 h<h+1

n | We—W\g;

12 | ¢ < Gufg}:

13| itr < itr +1

14 output H

A2.1. Illustration of the QSO algorithm
In this subsection we execute the QSO algorithm on Example 6.

itr H h G ' R W
1 @ 1 {g} - - SIS0
1@ 1 {2} ((g2.d1)} 0 BB Eo&
2 8 1 (g.8) ((g2.d1)}  ga—-g—a
2 @ 1 {g2.85} {(g2.d1). (g2, d2)} @ g8+ 8
30 1 {g2.85.81 {(g2.d1).(gs.d2)} 0 g—m
30 1{g.8.8)  {(%.d1).(8.d2). (&.d5)} 0 g —g
4 4 1 {g2.85.84.85) [(%2.d1). (85, d2). (84.d5)} 0 &
4 ((g2.d1). (g3.d2),
a 1 {g2.85.84.85) (84.d3). (g5.ds)} [ 1
5 {(m,Wi.R) = ({(g2.d1). (g3.d2),  {g1.%, {((g1.d1), (g3.d1).
(84.d3). (g5, dp)}. {&1). 0} 2 83,8485 (84.d3). (85, ds)} @ null
5 (. WiR) = ([(82.d1). (g2.d2). (8182 [((g1.d)). (g2.dy).
(ga.d3). (gs.da)}. {g1).8)) 2 g3.84.85) (ga.d2). (g5.d3)) {g2} null
6 {(ma . Wi Ri) = ({(g2. d1). (g, d2), {g1.82.
(g4.d3). (g5.da)}. (g1 ). ). 3 g3.8.85) (((g1.d1), (g3.d1). (g2} null

{(r2, W, Ry) = ({((21. 1), (3. d1),
(g4.4d2). (g5.d3)}. 0. {g2])}

(2s.d5). (g5.d3)}

A2.2. Simulation of the QSO algorithm on real data

In this subsection we report the results of a simulation study
of the QSO algorithm over real data obtained from the dormitory
management of the Technion for the academic year 2021-2022.
The data refers to dormitories that host only single students of
both genders. The assignment process of couples of students at the

Table 1
Dormitories’ capacity.

Dormitory Number of beds
Lower dormitories 589
Renovated dormitories 119
Nations dormitories 144
Senate dormitories 248
Neve America dormitories 289
Shilon dormitories 11
Palm Beach dormitories 15
Undergraduate dormitories 466
Canada dormitories 806
Old East dormitories 214
New East dormitories 770
Total 3671
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Table 2
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Frequency table of the number of quasi-stable outcomes in the 103 iterations.

|Number of quasi-stable outcomes [97]101]102]103[104] 105[106] 107[ 108]109] 110[ 111 112][113] 114][ 115/ 116[ 117[ 118[ 119] 120

|Number of iterations [ 1] 1] s[ 3] 8] 8] 7] of 7[ 11[ 14] s[ 8] 2[ 3] 2 2] 1] 1] 3] 2]
Table 3 the student-groups will tend to accept most (or even all) dor-
Frequency of the number of refugee-groups. mitories, in order to increase their chance to be assigned a
Number of refugee student-groups 1 2 3 4 dormitory. Hence, in order to trim a given preference-list from
Number of iterations 76 24 2 1

Technion is simpler as all of them are assigned to another dormi-
tory with enough capacity.

The data consists of 4000 applications of students and 11 dor-
mitories. Table 1 presents the number of beds in each dormitory.
As our model refers to group applications, where the data refers
to single students, we randomly aggregate individual students into
groups, as described below.

We simulate the algorithm by using the R language. The sim-
ulation study consists of 103 iterations of the QSO algorithm. In
each iteration we first generate the student-groups and their char-
acteristics, and conclude by running the QSO algorithm on the re-
spective input. The average number of student-groups in a single
iteration of the QSO algorithm is about 1300, implying that this is
the number of times that the SD algorithm is run per iteration of
the QSO algorithm. The average running time of a single iteration
of the QSO algorithm is about 20 min, implying that the average
time of running a single iteration of the SD algorithm is %%f‘o%? <1
second. We next describe the way of generating the data for each
iteration.

Fori=1,...,103 do begin:

1. Generate student-groups of size bounded by 5, with a total
of 4000 students, by drawing independent and identically dis-
tributed random variables from a discrete uniform distribution
on {1,...,5}, until the total size of the student-groups is at
least 3995. The size of the last group is determined so that the
total size of the student-groups is 4000. Let y; be the number
of student-groups generated in iteration i.

. Generate two independent complete rankings over the Y,
student-groups: one represents their ranking according to the
merit scores and the other their ranking according to the credit
scores. The student-groups are then indexed in a decreasing or-
der of their credit scores from 1 up to y;.

. For each student-group g, 1 <g <y, generate a complete
preference-list over the 11 dormitories as follows: the dormi-
tory at the top of the preference-list of student-group g is
drawn from a discrete uniform distribution on {1,..., 11}. De-
note it by d‘%. The next dormitory in the preference-list is uni-
formly drawn from the ten integers {1,...,11}\{d§}, etc. The
last dormitory in the preference-list is the only dormitory that
has not been drawn previously.

. The complete preference-lists of the student-groups, generated
in Step 3, are independently and randomly trimmed from the
bottom so that all dormitories that were trimmed are consid-
ered as unacceptable by the respective student-group. We as-
sume that the probability mass function of the length of a
preference-list is increasing in between 1 and 11, as most of

its bottom, we let X be a random variable distributed accord-
ing to a truncated geometric distribution over the integers in
{1,..., 11}, where the size of the respective preference-list is
distributed according to 12 — X. The implementation is done by
applying the following two steps:
(a) Generate a random number &; from the continuous uni-
form distribution on (0,1), which represents the fraction of
student-groups in iteration i that consider the last dormitory
in their current preference-list as unacceptable.
For each student-group g, 1 < g < y;, draw independently a
number from the uniform distribution in (0,1). If the num-
ber is smaller than #; then remove the last dormitory from
the current preference-list. This step is repeated until either
the number drawn is at least &;, or the current preference-
list consists of a single dormitory.
. Apply the QSO algorithm on the data generated by steps 1 —
4 and the dormitories in Table 1. Let H; be the corresponding
output.

(=3

End.

Next, we analyse the number of quasi-stable outcomes obtained
in each iteration, namely the size of the set H; for i=1,...,103.
Table 2 presents the frequency of the number of quasi-stable out-
comes for the 103 iterations of the QSO algorithm.

As Table 2 demonstrates, the two most frequent outcomes are
109 and 110. A possible explanation for this observation is that the
dormitories contain a total of 3671 beds, where the number of ap-
plications is 4000, namely, at least 329 students are not assigned,
independently of the assignment process. The average group size in
our simulation is 3. Thus, approximately 3—;’9 € [109, 110] student-
groups are in the largest possible waiting-list, namely W;. More-
over, it is most probable that after finding the first quasi-stable
outcome, namely (i1, Wi, Ry), most other triplets considered by
the QSO algorithm do not violate plausibility, and hence they are
also quasi-stable outcomes.

Next we consider the refugee set Ry of the first outcome gener-
ated in each of the 103 runs of the simulation. The existence of
refugee students, whose merit score justifies the need to assign
them a dormitory, but no acceptable dormitory can host them, has
raised concerns within the management of the dormitories at the
Technion (see Perach et al., 2007). The following two frequency ta-
bles show the number of refugee student-groups and the number
refugee students as individuals over the 103 iterations of the QSO
algorithm, respectively.

Tables 3 and 4 show that on average there are 1.3 refugee
student-groups and 4.4 refugee students. These numbers are negli-
gible relatively to the number of beds and the number of applica-
tions.

Table 4

Frequency of the number of refugee students.
Number of refugee students 1 2
Number of iterations 7 5

20
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