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Abstract. Problem definition: We consider the parallel machine scheduling (PMS) under 
job-splitting game defined by a set of manufacturers where each holds uniform parallel 
machines and each is committed to produce some jobs submitted to her by her clients 
while bearing the cost of the sum of completion times of her jobs on her machines. An effi
cient algorithm for this scheduling problem is well known. We consider the corresponding 
cooperative game, where the manufacturers are players that want to join forces. We show 
that collaboration is profitable. Yet, the stability of the cooperation depends on the cost allo
cation scheme; we focus on the core of the game. Methodology/results: We prove that the 
PMS game is totally balanced and its core is infinitely large, by developing a sophisticated 
methodology of linear complexity that finds a line segment in its symmetric core. We call 
this segment the basic core of the game. Managerial implications: This PMS game has the 
potential for various applications both in traditional industry and in distributed computing 
systems in the hi-tech industry. The formation of a partnership among entrepreneurs, com
panies, or manufacturers necessitates not only a plan for joining forces toward the achieve
ment of the ultimate goals, but also an acceptable agreement regarding the cost allocation 
among the partners. Core allocations guarantee the stability of the partnership as no subset 
of players can gain by defecting from the grand coalition.

Funding: This work was supported by the Henry Crown Israeli Institute for Business Research, the Col
ler Foundation, and the Israel Science Foundation [Grant 1489/19]. 
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1. Introduction
In this paper, we deal with a cooperative game where 
several players own similar machines that process the 
same type of jobs, but they may differ in their speeds. 
Clients submit jobs to the players in order to process 
them. The goal of each player, if she works indepen
dently of the others, is to process her jobs on her 
machines so that the sum of completion times of her 
jobs is minimized. The type of jobs that we consider 
here allows for job splitting (i.e., any job can be split into 
parts that can be processed simultaneously on different 
machines). Our goal is to investigate the profitability of 
cooperation in such systems.

Because of the simplicity and generality of the sys
tem described, it has a potential for various interesting 
applications in both traditional and hi-tech industries. 
For a recent collaboration in the production industry, 
consider the pharmaceutical giants Sanofi and Novartis, 
which used their manufacturing capabilities to produce 
the mRNA vaccine developed by Pfizer and BionTech 
during the coronavirus disease 2019 pandemic. In ser
vice systems, capacity sharing among firms is a common 

practice that helps manufacturers and service providers 
to cope with fluctuations in demands, maintain their cli
ents, and increase their sales; see Yu et al. (2015). These 
two applications allow for job splitting of the type dis
cussed here (i.e., where the parts of a job can be pro
cessed simultaneously).

The modern hi-tech world requires analysis of vast 
amounts of data. To carry this out effectively, one must 
achieve the goals of maximizing throughput while mini
mizing latency and response time. Analyses of large 
amounts of data are employed in machine learning 
models as well as in comparing implementations of 
an algorithm and in verifying software and hardware 
implementations. In the last two decades, as a result of 
the development and spread of high-bandwidth net
works, distributed computing systems have evolved, 
consisting of multiple computers (processors) working 
together in order to accomplish a single task. These sys
tems offer the most effective way to reach the goals. The 
processors, each having its own memory, are connected 
by high-bandwidth networks and may therefore be 
located far away from one another, possibly in different 
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continents, and they may be owned by different entities. 
Load-balancing algorithms determine the load alloca
tion among the various processors in order to minimize 
the completion time of the tasks. Our model can be ben
eficial for pooling of resources in distributed computing 
systems. For example, pooling the processors of a multi
division hi-tech company or of a university with several 
departments will accelerate the accomplishment of tasks 
as described. For a review of load-balancing schemes 
for distributed computing systems, see Kushwaha and 
Gupta (2015). For the use of cooperative and noncooper
ative game theory in modeling load-balancing problems 
in distributed computing systems, see Penmatsa and 
Chronopoulos (2011) and the references therein.

The formation of a partnership among companies or 
other entities necessitates not only a plan for joining 
forces toward the achievement of the ultimate goals 
but also an agreement regarding the revenue, cost, or 
load allocation among the partners. Here is where the 
theory of cooperative games can be helpful as it pro
vides a number of revenue and cost allocation schemes 
that guarantee the stability of the partnership or satisfy 
some fairness properties that players would like to 
have. The decision regarding the allocation scheme to 
be used must be acceptable by all players as otherwise, 
the alliance is put at risk.

A cooperative game is defined by a set of players and 
a characteristic (coalitional) function that returns a cost for 
any coalition of players. The main tasks while analyz
ing a cooperative game are (i) to predict the formation 
of coalitions and then, for any possible coalition, (ii) to 
propose an allocation of its total cost among its mem
bers. If it turns out that all players cooperate, then a sin
gle coalition called the grand coalition, which contains 
all the players, is formed. In such a case, the next ques
tion that arises is how to allocate the total cost among 
the players. Several cost allocation mechanisms have 
been proposed in the literature, such that either fairness 
or stability of the cooperation is achieved. Here, we 
focus on the core, a notion proposed by Gillies (1953); 
the core guarantees the stability of the grand coalition 
by requiring that (i) the total cost incurred by the grand 
coalition is allocated among all the players and (ii) the 
total cost allocated to the members of any proper sub
coalition does not exceed the cost that the subcoalition 
would have paid if it defected from the grand coalition. 
Thus, the set of core cost allocation vectors is defined by 
2n linear constraints, where n is the number of players in 
the grand coalition. Researchers usually face a real chal
lenge to (partially) characterize the core or even to prove 
that the core is nonempty, in view of the exponential 
number of constraints that define the core.

In this paper, we consider the cooperative game of a 
parallel machines scheduling (PMS) problem under job 
splitting, where the characteristic function is to mini
mize the scheduling cost, which is proportional to the 

sum of completion times of the jobs. The game is 
defined by a set of players, where each player is a man
ufacturer that owns a nonempty set of machines. All 
machines have the same capabilities, although their 
speeds may be machine dependent. Each manufacturer 
is also associated with a possibly empty set of jobs (i.e., 
orders submitted to him by clients). All machines are 
capable of producing any job. The jobs differ in their 
processing requirement time. The jobs can be partitioned 
into any number of disjoint segments that can be pro
duced on different machines at any order and even 
simultaneously. Such jobs are called splitting jobs, and 
the respective PMS problem is said to allow for job split
ting. There are interesting applications for splitting jobs 
in the industry, where the procedure of splitting a job is 
called lot sizing and the split parts are also called sublots; 
see Potts and Van Wassenhove (1992), which considers 
the case where a job consists of many identical items. 
An application of scheduling looms in the textile in
dustry where splitting jobs is allowed is described in 
Serafini (1996). The most prevalent application of job 
splitting is in the hi-tech industry in distributed data 
processing, which is discussed above.

We prove that in the PMS under the job-splitting 
game, it is most probable that all manufacturers will join 
forces and form the grand coalition and that the core of 
the game and the core of any of its subgames are all 
nonempty. If the management of the cooperation allo
cates the total scheduling cost among the manufacturers 
by using any core cost allocation, then it is most probable 
that the stability of the cooperation will not be put at risk 
as no coalition of manufacturers is able to gain by defect
ing from the grand coalition. The only assumption that 
is needed in our proof regarding the problem’s para
meters is that the speeds of all the machines are positive 
rational numbers.

The outline of the paper is as follows. Section 2 pre
sents the relevant literature. Section 3 introduces some 
notations and preliminaries. Section 4 defines the PMS 
under the job-splitting game. Section 5 presents the 
methodology of proving the total balancedness of the 
PMS game in a number of subsections, where each is 
devoted to a specific step. The general idea behind our 
proof is to split the players of the game into job players, 
resulting in a constrained PMS game in which each job is 
a player, called a job player, where only certain coali
tions of job players are feasible. Based on the con
strained PMS game, we generate as many constrained 
basic PMS games as the number of job players, whose 
processing requirement vectors are linearly indepen
dent zero-one vectors. The constrained PMS game is 
then shown to be equal to a nonnegative linear combi
nation of the constrained basic PMS games. Thereafter, 
each job player of any constrained basic PMS game is 
split into a number of unit-speed job players, each hav
ing a processing requirement of zero or one, resulting 
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in a respective unit-speed constrained basic game whose 
only feasible coalitions are those that consist of all des
cendants of feasible coalitions of job players in the con
strained PMS game. We show that even under the tighter 
assumption where all coalitions of unit-speed job players 
in any unit-speed constrained basic game are feasible, the 
symmetric core of the game is infinitely large. In fact, we 
identify a closed form nondegenerate line segment in the 
symmetric core of any unit-speed constrained basic game 
and therefore, also in the constrained basic game to which 
it is associated. By working backward, using the presenta
tion of the constrained PMS game as a nonnegative linear 
combination of constrained basic games, we derive a sub
set of the symmetric core of the constrained PMS game. 
We complete the proof by merging back the job players of 
the constrained PMS game into the players of the PMS 
game while generating a subset of the symmetric core of 
the PMS game. Section 6 concludes the paper, and it pro
poses some future research directions.

2. Literature Review
There is a vast literature on scheduling; see Pinedo (2016) 
for a state-of-the-art review on the subject. The literature 
on cooperative scheduling games is divided into three 
types. The first type is called permutation games; see Curiel 
(2010, chapter 3 and the references therein). A permuta
tion game is defined by n jobs, which need to be pro
cessed on a single machine, where all jobs share the same 
processing time. The underlying assumption in such 
games is that given a certain processing sequence of the 
jobs, the cost of processing job i, 1 ≤ i ≤ n, depends only 
on its location in the sequence, and the total cost is addi
tive in the jobs. Thus, the data of such a game consist of 
the cost parameters, which are given by a square nonneg
ative matrix with n rows; see Tijs et al. (1984). Another 
game that is closely related to permutation games is the 
assignment game, where the data matrix is not necessarily 
a square matrix (Shapley and Shubik 1972).

The second type of scheduling games is called sequenc
ing games; see Curiel (2010, chapter 4 and the references 
therein). The class of sequencing games generalizes the 
class of permutation games by allowing the jobs to be 
associated with job-dependent processing times, and the 
cost of each job depends on its completion time, which 
consists of its waiting and service times. This stream of 
research was initiated in Curiel et al. (1989), which con
siders a game where each player has a single job and a 
player-dependent linear cost function of its completion 
time. Given an initial sequence of the jobs, the profit of 
any coalition is defined as the maximum possible sav
ings that the coalition can get by reordering the jobs in 
the connected parts of the coalition, implying that the 
completion times of the jobs that are not members of the 
coalition are not affected. Reordering the jobs is done 
iteratively, where at each iteration, two consecutive jobs 

in a connected part of the coalition are switched. The 
gain achieved by any such switch is equally divided 
between the two players that own the jobs that were 
switched. Accordingly, the algorithm is called the equal 
gain splitting (EGS) rule. For a generalization of this 
paper to general additive weakly increasing cost func
tions, see Curiel et al. (1994). Other sequencing games 
vary by their characteristic function; the set of require
ments regarding the jobs, like ready times and due dates; 
and/or allowed actions while forming coalitions. For 
more details, see Curiel et al. (2002). Although the vast 
majority of papers on sequencing games deal with 
single-machine models, there are also some papers that 
consider the parallel machines case; see Hamers et al. 
(1999) and Slikker (2006).

The third type of scheduling games is called coopera
tive PMS games, where players are manufacturers that 
own machines. In addition, each manufacturer is com
mitted to produce a (possibly empty) set of jobs. The 
machines of all manufacturers have the same capabili
ties (i.e., each can produce any job), and they differ only 
in their speeds. PMS games allow the manufacturers to 
collaborate in order to lower their production cost. Such 
games differ in their characteristic function and the 
type of jobs. In this paper, we consider the characteristic 
function that returns, for any coalition of manufac
turers, the minimum sum of completion times of their 
jobs by using their machines. The jobs are assumed to 
fulfill the job-splitting property (i.e., they can be split 
into any number of disjoint segments that can be allo
cated to the machines in any possible order and even 
simultaneously on a number of machines). For polyno
mially solvable PMS problems allowing job splitting, 
see Xing and Zhang (2000) and Tahar et al. (2006).

Another PMS game that has been analyzed is the one 
where the characteristic function minimizes the make
span. The makespan of a schedule that starts at time 0 is 
the point of time when the schedule ends. In the single- 
machine case, the optimal makespan is independent of 
the processing order of the segments of the jobs in con
trast to the case where the objective function minimizes 
the sum of the jobs’ completion times, where the cost is 
heavily order dependent, even in the single-machine 
case. Although the PMS game under the makespan 
where job splitting is allowed was not directly men
tioned in the literature, its solution can be deduced 
from another game, which has the same form, namely 
the M=M=1 queueing game analyzed in Anily and 
Haviv (2010). Therefore, we conclude that the PMS 
game under makespan belongs to the class of centraliz
ing aggregation games, which has been proved in Anily 
(2018) to have a nonempty core whose nonnegative 
part is fully characterized. The PMS game under make
span, where the property of job splitting is replaced by 
the more restrictive property of preemptive jobs (i.e., it 
allows for job preemptions but not for simultaneous 
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processing of a job on several machines), is also consid
ered in Anily (2018). The paper proves that this game, 
although is not a centralizing aggregation game, has a 
nonempty core, and a polytope, which is a subset of its 
nonnegative core, is fully characterized. To the best of 
our knowledge, the two versions of the PMS makespan 
game mentioned above are the only cooperative PMS 
games that have been analyzed. Yet, the properties of 
the core of each of these games are different from the 
properties proved here for the PMS under the job- 
splitting game, where the characteristic function mini
mizes the sum of completions times of the jobs. 
Although a subset of the nonnegative core is fully char
acterized for the PMS games under the makespan, the 
nonnegative core of the PMS under the job-splitting 
game analyzed here might be empty, as will be shown 
in Example 4. This difference calls for a different type 
of analysis of the current game.

Interestingly, the property of job splitting also attracts 
the attention of researchers from the perspective of non
cooperative games, where no central controller that 
has complete information on all the players exists and 
issues of incentive incompatibility may arise; consider a 
parallel multiprocessor computing system, where the 
schedule prioritizes jobs according to a monotone order 
of a certain property, like the remaining processing time 
of the jobs. The players, in such a game, may manipu
late the system by splitting, merging, or partially trans
ferring some of their jobs to other players, disabling the 
central controller monitoring the identity of the players. 
See Moulin (2007, 2008) in the context of PMS with job 
splitting.

3. Notations and Preliminaries
This section starts by presenting the PMS under the job- 
splitting model, hereafter called the PMS game. We 
summarize some concepts and preliminaries of the the
ory of cooperative games and add a new definition that 
will be helpful in the sequel.

The input of the PMS problem consists of (i) a given 
set of identical machines, which may differ only in their 
speeds; and (ii) a set of jobs, where each job can be pro
cessed by any machine. The jobs are defined by their 
processing requirement: namely, their processing time on 
a unit-speed machine. In addition, we assume that job 
splitting is allowed (i.e., the jobs can be partitioned and 
even processed simultaneously on different machines). 
The objective function is to minimize the scheduling 
cost, which is proportional to the sum of completion 
times of the jobs on the machines. Thus, in the sequel, 
we refer to the objective function of minimizing the 
sum of completion times of the jobs on the machines. 
We only consider the contribution of the machines 
because of their speed in achieving the ultimate goal of 
minimizing the sum of the completion times of the jobs.

The common notation for PMS problems, proposed 
in Graham et al. (1979), classifies problems by triplets 
of a three-field notation α |β |γ, where (a) α ∈ {P, Q, R}
defines the machines’ environment, where α � P refers 
to identical machines, α �Q refers to the more general 
case of uniform machines where the machines are identi
cal except for their speeds, and α � R refers to the most 
general case of unrelated machines. (b) β describes the 
jobs characteristics as, for example, β � prmp if preemp
tion is allowed. In Xing and Zhang (2000), β � split is 
proposed for job splitting. (c) γ refers to the objective 
function. Some of the most common objective criteria 
include Cmax for the makespan and 

P
jCj (

P
jwjCj) for 

the (weighted) sum of completion times. Thus, the prob
lem considered here is denoted by Q |split |

P
jCj: Let m 

be the number of machines and n be the number of jobs. 
In Xing and Zhang (2000), it is proven that for the 
Q |split |

P
jCj problem, there exists an optimal schedule 

where each job is partitioned into m split parts that are 
processed simultaneously on all the machines. There
fore, the Q |split |

P
jCj problem is reducible to a single- 

machine problem, namely 1 | · |
P

jCj, where the speed 
of the machine is the sum of the speeds of the original 
machines, denoted by v, and the processing time on this 
machine of a job whose processing requirement is p is pv :

Cooperative games with transferable utilities are coali
tional games defined by a pair (N, G), where N � {1, : : : , 
n} is a set of n players and the characteristic function G :

2N→ R, is a set function that for any coalition ∅ ⊆ S ⊆
N, returns a real number G(S), where G(∅) � 0:We refer 
to G(S) as the cost of a set of players S ⊆N if its members 
cooperate and form a coalition. The cost imposed on a 
coalition is independent of what the players in N \ S are 
doing. The coalition S�N is called the grand coalition. A 
subgame (S, G) of a game (N, G), for any S ⊂N, is the 
cooperative game whose set of players is S, and its char
acteristic function is the set function G reduced to all 
subsets of S. A game is called monotone if G(S) ≤ G(T) for 
any S ⊆ T ⊆N. Under any partition of the grand co
alition into disjoint sets S1, : : : , SK, the total cost of the 
game is 

PK
ℓ�1 G(Sℓ), meaning that the total cost is addi

tive in the coalitional structure. A necessary condition for 
all players of N to cooperate and form the grand coalition 
is subadditivity of the game. A game (N, G) is subadditive 
if and only if the characteristic function G is subadditive; 
that is, for any two disjoint coalitions S, T ⊂N, G(S ∪ T)
≤ G(S) +G(T): Subadditivity implies that G(N) ≤

PK
ℓ�1 

G(Sℓ) for any partition of N into disjoint coalitions {S1, 
: : : , Sk}, k ≥ 1, meaning that the grand coalition is an 
optimal formation of a coalitional structure.

If the grand coalition is formed, the players start bar
gaining for a fair cost allocation scheme of the total 
cost G(N): Let x̂ � (x1, : : : , xn) ∈Rn be a cost allocation 
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vector where xi, i ∈N, is the cost allocated to player i. 
The efficiency condition, namely 

Pn
i�1 xi � G(N), is pre

liminary for a cost allocation vector. As mentioned in 
Section 1, we focus here on the core of the game 
denoted by C(N, G): The core, a notion attributed to 
Gillies (1953), consists of all efficient cost allocation 
vectors x̂ � (x1, : : : , xn) that satisfy the additional 2n � 1 
coalitional rationality conditions of the form, 

P
i∈Sxi ≤

G(S), one for each proper subcoalition S ( N: As men
tioned in Section 1, any cost allocation that satisfies 
this set of conditions suggests stability as no subset of 
players can reduce its cost by leaving the grand coali
tion. A cooperative game whose core is nonempty is 
said to be balanced, and if its core and the cores of all its 
subgames are nonempty, the game is totally balanced.

Except for the notion of job splitting, taken from the 
theory on PMS, we use in this paper a different type of 
splitting related to cooperative games, where each 
player is split into (at least one) subplayers. The game 
generated by the subplayers is defined on a subset of 
all the coalitions of subplayers called feasible coalitions, 
namely those coalitions of subplayers that consist of all 
the descendants of a certain coalition of players in the 
original game. A game that is defined on a subset of all 
possible coalitions of its grand coalition is called a con
strained game. The grand coalition of the constrained 
game is a feasible coalition by definition. As we are 
going to see, splitting players of a PMS game may result 
in a more tractable game than the original one.
Definition 1. Given a cooperative game (N, G) with n 
players, the game (Ñ, G̃) is said to be generated from 
the game (N, G) by splitting players of N if we have 
the following. 
• There is a splitting scheme Π that maps N into Ñ , 

which satisfies the following properties. (i) For any i ∈N, 
Π(i)≠ ∅, (ii) for any i, j ∈N, i ≠ j, Π(i) ∩Π(j) � ∅, and 
(iii) ∪i∈NΠ(i) � Ñ .
• For any coalition S ⊆N, it holds that G(S) � G̃(∪i∈S 

Π(i)).

Except for the degenerate case where each player of 
the game (N, G) is split into a single subplayer, not all 
coalitions of the subplayers’ game (Ñ, G̃) correspond 
to a coalition of players in the game (N, G): We call a 
coalition of the game (Ñ, G̃) a feasible coalition if it is 
a collection of all subplayers that are descendants of a 
certain coalition of players in the original game.

Definition 2. Let (N, G) be a cooperative game, and let 
(Ñ , G̃) be a game that is generated from the game (N, G) 
by splitting players using a splitting scheme Π. For any 
coalition S ⊆N, the set of subplayers ∪i∈SΠ(i) is a feasi
ble coalition of the game (Ñ, G̃): Denote the set of all fea
sible coalitions of the game (Ñ, G̃) by C. Let the game 

(Ñ,C, G̃) be the constrained game of the game (Ñ, G̃), to 
feasible coalitions of Ñ:

The following definition follows naturally from Defi
nition 2.

Definition 3. The constrained game (Ñ,C, G̃) is bal
anced if and only if the set of cost allocation vectors of 
the game (Ñ , G̃) that satisfy the efficiency constraint 
and the coalitional rationality constraints for all feasi
ble coalitions, that is, all coalitions of C, is nonempty.

Example 1. Let (N, G) be a cooperative game with two 
players, N � {a, b}: Suppose that player a is split into 
two players: a1 and a2: Let Ñ � {a1, a2, b}: The con
strained game (Ñ ,C, G̃) is associated with three feasible 
coalitions in C, namely {a1, a2}, {a1, a2, b}, and {b}, which 
correspond to the three coalitions of the game (N, G), 
whereas the additional four coalitions of the game (Ñ , 
G̃), namely {a1}, {a2}, {a1, b}, and {a2, b}, are infeasible 
coalitions of (Ñ ,C, G̃):

The following observation follows directly from 
Definition 3.

Observation 1. If the game (Ñ , G̃) is totally balanced, 
then the constrained game (Ñ,C, G̃) is also totally balanced, 
and as the constrained game (Ñ ,C, G̃) is equivalent to the 
game (N, G), the game (N, G) is also totally balanced.

The literature describes a few classes of games that 
have been proven to be totally balanced. The most 
structured class of games that allow for a full charac
terization of the core is the class of concave games.

Definition 4. A game (N, G) is concave if its characteristic 
function is concave (i.e., for any two coalitions S ⊂ T ⊂N 
and i ∈N \T, G(S ∪ {i})�G(S) ≥ G(T ∪ {i})�G(T)).

Concave games are subadditive but not the other 
way around. It is shown in Shapley (1971) that the 
core of a concave game possesses n! extreme points, 
each of which being the marginal contribution vector 
of the players for one of the n! permutations of the 
players. A few cooperative games in operations man
agement have been proven to be concave; see, for 
example, Anily and Haviv (2007) and its generaliza
tion in Zhang (2009) that considers joint replenish
ment models of one warehouse and several retailers. 
However, the Q |split |

P
jCj game considered here is 

not concave, as will be proven in Section 4.

4. The PMS Under the Job-Splitting 
Cooperative Game

Let N � {1, : : : , n}, n ≥ 2, be a set of players. Each player 
i ∈N is associated with (1) a set J({i}) of ψ({i}) ≥ 1 jobs 
and (2) a nonempty set M({i}) of machines whose total 
speed is positive. We further assume that for each 
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player i ∈N, the speed of her machines in M({i}) is a 
positive rational number, implying that the total speed 
of the machines in M({i}), denoted by v({i}), satisfies 
v({i}) ∈Q++: For a coalition S ⊆N, let J(S), ψ(S), and 
M(S) be the set of jobs, the number of jobs, and the set 
of machines of the players of S correspondingly, and let 
v(S) be the total speed of the machines in M(S): As dis
cussed in Section 3, the number of machines in M({i}) is 
immaterial (i.e., we can assume, without loss of gener
ality (w.l.o.g.), that each player i ∈N is associated with 
a single machine or alternatively, with ψ({i})machines; 
i.e., one machine for each job). Note that our model 
allows the machines to also be associated with rational 
operating costs. Let ôc({i}) ∈Q++ be the operating cost 
of the machines of player i. In such a case, we redefine 
the speed of the machines of player i to be v({i})=
ôc({i}): Therefore, in the sequel, we do not consider the 
machines’ operating costs explicitly.

Any job j ∈ J(N) belongs to a certain player in N, called 
its father, and therefore, is denoted by f (j) ∈N: In addi
tion, each job j ∈ J(N) is associated with its processing 
requirement, denoted by pj ≥ 0, which is the processing 
time duration of the job on a unit-speed machine (v�1). 
Players are allowed to have no jobs. In such a case, we 
say that the player has a single job whose processing 
requirement is zero, called an empty job. Other players, 
namely players that have real jobs, are not allowed to 
have empty jobs. Note that the players that have no jobs 
are the most valuable in the game as they contribute 
their resource (machines) for processing of the jobs of 
the other players without consuming any resources as 
they do not have jobs to process. As mentioned in Sec
tion 3, under the job-splitting property, there exists an 
optimal schedule where each job is partitioned into as 
many split parts as the number of available machines, 
and these parts are processed simultaneously on all the 
machines. Therefore, the processing time of a job j ∈ J(N)
on the machines of coalition S is pj=v(S).

The jobs in the set J(N) are indexed from one up to 
ψ(N) in a nondecreasing order of their processing require
ments. Let (p1, : : : , pψ(N)) be the processing requirement 
vector of the jobs of J(N), where ties are broken arbi
trarily. Let p0 � 0: Note that the order of the jobs of J(N) is 
preserved in all subsets of J(N), and that is, if the index of 
job j precedes the index of job k in J(N), then this will be 
the case in all subsets of J(N) that contain both jobs j and k. 
Accordingly, the jobs of J(S), for any coalition S ⊆N, 
are indexed from one up to ψ(S): In particular, let pS

k be 
the processing requirement of the kth job of J(S): Let jSk , 
0 ≤ k ≤ ψ(S), be the index in J(N) of the kth job of J(S), 
where jS0 � 0: Thus, the processing requirement pS

k of 
the kth job in J(S), 1 ≤ k ≤ ψ(S), is equal to pjSk

, where 
1 ≤ k ≤ jSk ≤ ψ(N)� ( |S | � k): As a consequence, the se
quence (pj)

ψ(N)
j�1 coincides with the sequence (pN

j )
ψ(N)
j�1 :

According to the shortest processing time (SPT) rule (see 
Smith 1956), the minimum sum of completion times of 
jobs on a single machine is achieved by processing the 
jobs in a nondecreasing order of their processing require
ments. Let P : 2N→R be the set function that returns, for 
any coalition of players S ⊆N, the minimum sum of 
completion times of the jobs of J(S) on the machines in the 
set M(S). Following the results in Xing and Zhang (2000) 
and as explained, P(S) is achieved by splitting up the jobs 
of J(S) into |M(S) | split parts that are processed simulta
neously, according to the SPT rule, on all the machines in 
the set M(S), whose total speed is v(S):

In Section 4.1, we present a few properties of the PMS 
game (N, P) that are based on the optimal solution of the 
scheduling problem Q |split |

P
jCj: In Section 4.2, we first 

present the characteristic function P of the PMS game 
that follows directly from the structure of the optimal 
solution of the PMS Q |split |

P
jCj problem. Then, we 

present an equivalent formulation of the PMS game as a 
constrained PMS game whose players are the jobs of 
J(N), under a set of feasible coalitions of J(N):

4.1. Some Properties of the PMS Game (N, P)

Claim 1. The PMS game (N, P) is subadditive.

Proof. In order to prove the subadditivity of the PMS 
game (N, P), we need to show that for any two disjoint 
coalitions of players S, T ⊂N, P(S ∪ T) ≤ P(S) +P(T):
Note that P(S ∪ T) is the solution of a minimization 
problem of the sum of completion times of the jobs in 
J(S ∪ T) by the machines in M(S ∪ T). The solution of 
P(S) +P(T), on the other hand, is achieved by a sched
ule of the jobs J(S ∪ T) on the machines of M(S ∪ T)
under the restriction that the jobs of S and T are 
assigned according to the set they belong to, so that the 
jobs of J(S) are processed by the machines of M(S) and 
the jobs of J(T) are processed by the machines of M(T):
Thus, the cost P(S) +P(T) is the cost of optimally sched
uling J(S) on M(S) and J(T) on M(T), implying that it is 
the cost of a feasible but not necessarily optimal sched
ule for the minimization problem that P(S ∪ T) is its 
solution, implying that P(S ∪ T) ≤ P(S) +P(T): w

The next two examples show that the PMS game is 
neither monotone nor concave.

Example 2. Consider the instance N � {1, 2}, v({1}) � 2, 
v({2}) � 1, J({1}) � {1}, J({2}) � {2}, p1 � 1, p2 � 2. Thus, 
P({1}) � 1

2 , P({1, 2}) � 4
3 , P({2}) � 2, implying that P({1})

< P({1, 2}) < P({2}), and therefore, the PMS game is not 
monotone.

Example 3. Consider the instance N � {1, 2, 3}, v({i})
� 1, and J({i}) � {i} for i ∈N, p1 � p2 � 1, and p3 � 2. Let 
S � {3}, T � {2, 3}, and i�1. Then, P(S ∪ {i})�P(S) � 4

2 
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�2 � 0 < 1
3 �

7
3�

4
2 � P(T ∪ {i})�P(T), proving that the 

PMS game (N, P) is not concave.

There exist several cooperative games that were 
proved to be totally balanced by identifying a core 
allocation where each player is assigned a simple non
negative function of its parameters. Such a cost alloca
tion, by definition, is symmetric (i.e., any two identical 
players will be assigned exactly the same cost). For 
example, in Anily and Haviv (2010), each server is 
associated with an M=M=1 queueing system defined 
by its service rate and its arrival rate. The servers can 
form coalitions by pooling their service capacities to 
serve the union of the respective individual streams of 
customers. The characteristic function value of any 
coalition is its steady-state mean number of customers 
in the pooled system. The first observation of the paper 
is that a simple symmetric cost allocation vector that 
assigns each server the system’s steady-state number 
of customers of that server when all servers cooperate 
and form the grand coalition is in the core. We note that 
the core of the queueing game may also contain alloca
tion vectors with some (but not all) negative entries, but 
its nonnegative core (i.e., the part of the core that consists 
of nonnegative vectors) is nonempty. Similarly, the non
negative Bird cost allocation for the minimum spanning 
tree game (see Bird 1976) and the allocation provided for 
pooling risk games in Alon and Haviv (2020) are simple 
nonnegative core allocations for the associated games. 
We emphasize that there is nothing special about non
negative core allocations, as identifying any cost alloca
tion in the core proves that the game is totally balanced. 
As shown by the next example, for the PMS game, the 
set of nonnegative core allocations, hereafter called the 
nonnegative core, might be empty, implying that there 
exist instances of the PMS game in which any core 
cost allocation contains negative entries, meaning that 
some players will be paid by other players. One of the 
reasons for this phenomenon is that a player that 
owns a speedy machine but her jobs are relatively 
short might be valuable as other players may be inter
ested in cooperating with her in order to reduce the 
cost of their coalition. In such a case, some players 
may be ready to pay such “valuable players” in order 
to persuade them to join their coalition.

Example 4. Consider the following instance of the PMS 
game (N, P): N � {1, 2, 3}, v({1}) � 10, v({2})� v({3})� 1, 
J({i}) � {i} for i�1, 2, 3, and p1 � 1, p2 � p3 � 10, imply
ing the following characteristic function values: P({1})�
1
10 , P({2})� P({3})�10, P({1, 2})� P({1, 3})� 12

11 , P({2, 3})
� 15, and P({1, 2, 3}) � 2:75. The vector x→ � (x1, x2, x3) �

(�1:25, 2, 2) satisfies the efficiency and all the coalitional 
rationality conditions, implying that the instance is bal
anced. We show that the nonnegative core allocation 
set of this instance is empty. Suppose by contradiction 

that x→ � (x1, x2, x3) is a nonnegative core allocation. As 
x1 ≥ 0, the coalitional rationality constraint for coalition 
{1, 2}, namely x1 + x2 ≤

12
11 , implies that x2 ≤

12
11 : By sym

metry, also x3 ≤
12
11 : By summing up the last two in

equalities with the stand-alone condition x1 ≤ 0:1, we 
obtain that x1 + x2 + x3 ≤

251
110 < 2:282 < P(N), contradict

ing the efficiency constraint. Thus, the nonnegative part 
of the core of this instance is empty.

4.2. The PMS Game (N, P) and the Constrained 
PMS Game (J(N),C,F)

The well-known cost set function P : 2N→R of the sched
uling problem Q |split |

P
jCj proposed in Smith (1956) is 

given by

P(S) � 1
v(S)

Xψ(S)

k�1
(ψ(S)� k+ 1)pS

k

�
1

v(S)
Xψ(S)

k�1
(ψ(S)� k+ 1)pjSk

: (1) 

The PMS game (N, P) whose characteristic function is 
given in (1) can also be considered as a constrained 
PMS game (J(N),C, F) whose players are the jobs of 
J(N), now called job players. As described, the players 
of N are split (see Definition 1) into job players in the 
set J(N): The set C contains all feasible coalitions J(S) ⊆
J(N), namely coalitions of job players that are descen
dants of a coalition of players S ⊆N: More specifically, 
each job player is an offspring of a certain player i ∈N; 
the feasible coalitions contain all the offspring of the 
players in some coalition S ⊆N. Each job player j ∈ J(N)
is associated with its processing requirement pj ≥ 0: As 
mentioned at the beginning of this section, players that 
do not have jobs are assumed to have a single empty 
job. In order to complete the definition of the con
strained PMS game, we need to associate a speed with 
the (virtual) machine of each job player. Recall that the 
speed of the machine of any player i ∈N is a positive 
rational number. We assume w.l.o.g. that in the con
strained PMS game (J(N),C, F), each of the ψ({i}) job 
players in J({i}), i ∈N, owns a machine whose speed is 
v({i})=ψ({i}) ∈Q++, namely the speed v({i}) of the 
machine of player i, i ∈N, is equally allocated among 
its ψ({i}) job players in J({i}), also implying that the 
speeds of the machines of the job players are rational 
numbers.

The characteristic function satisfies the following 
equation for any coalition S ⊆N :

F(J(S)) � P(S):

Note that all properties of the PMS game (N, P) men
tioned in Section 4.1 continue to hold for the constrained 
PMS game (J(N),C, F):According to Observation 1, if the 
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PMS game (J(N), F) is totally balanced, then the con
strained PMS game (J(N),C, F) is also totally balanced.

For the rest of the analysis, we assume that the speeds 
of the machines of all the job players are natural num
bers. This assumption is w.l.o.g. as it can be achieved by 
rescaling the time unit.

Assumption 1. The speeds of the machines of all job 
players in J(N), that is, the ratios v({i})=ψ({i}), for i ∈N, 
are natural numbers.

Next, we present an alternative formulation of the 
characteristic function F for any feasible coalition of job 
players as a function of the nonnegative marginal in
crement vector of the processing requirement vector 
(p1, : : : , pψ(N)): For this sake, let ∆j � pj� pj�1 ≥ 0 be the 
marginal increment of the processing requirement of 
job player j ∈ J(N), implying that pj �

Pj
ℓ�1 ∆ℓ: Recall 

that for a given feasible coalition J(S) ∈ C and the ℓth job 
player in J(S), 1 ≤ ℓ ≤ ψ(S), the index jSℓ returns the 
index of that job player in J(N): In addition, let ∆S

ℓ be the 
marginal increment of the processing requirement of 
job player jSℓ with respect to coalition J(S), where jS0 � 0, 
implying that

∆S
ℓ � pjS

ℓ
� pjS

ℓ�1
�
XjS
ℓ

t�jS
ℓ�1+1

∆t: (2) 

Thus,

P(S) � F(J(S)) �
Xψ(S)

k�1
CjSk
�

1
v(S)

Xψ(S)

k�1

Xk

ℓ�1
pjS
ℓ

�
1

v(S)
Xψ(S)

k�1

Xk

ℓ�1

Xℓ

t�1
∆S

t

�
1

v(S)
Xψ(S)

k�1

Xk

ℓ�1
(k� ℓ + 1)∆S

ℓ

�
1

v(S)
Xψ(S)

ℓ�1

Xψ(S)

k�ℓ
(k� ℓ + 1)∆S

ℓ �
1

v(S)
Xψ(S)

ℓ�1
∆S
ℓ

Xψ(S)�ℓ+1

k�1
k

�
1

v(S)
Xψ(S)

ℓ�1

(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)
2 ∆S

ℓ : (3) 

In order to gain some insight into (3), note that the ℓth 
marginal increment of the processing requirement of job 
player ℓ ∈ {1, : : : ,ψ(S)}, namely ∆S

ℓ , should be summed 
up while considering the completion time of the last 
ψ(S)� ℓ+ 1 job players of S: that is, job players k ∈ {jSℓ , 
: : : , jSψ(S)} ⊆ J(N): Therefore, when considering the com
pletion time of any job player k ∈ {jSℓ , : : : , jSψ(S)}, ∆S

ℓ is 
taken into account k� ℓ+ 1 times. Thus, in total, ∆S

ℓ 
should be counted 1+ 2+⋯ +(ψ(S)� ℓ+ 1) � 0:5((ψ 
(S)� ℓ+ 2)(ψ(S)� ℓ+ 1)) times in (3).

For any feasible coalition J(S) � {jS1 , : : : , jSψ(S)} ∈ C, and 
for any job player j ∈ J(N), let ℓS(j) � {ℓ : jSℓ�1 ≤ j < jSℓ } be 
the smallest indexed job in J(S) whose index in J(N) is at 
least as large as j. If j > jSψ(S), then ℓS(j) �def

ψ(S) + 1: In 
addition, let

KJ(S)(j) � ψ(S) + 1� ℓS(j): (4) 

Note that KJ(S)(j) is the number of job players of J(S) 
whose index in J(N) is at least as large as j.

Lemma 1 presents an alternative expression of the 
characteristic function value of any feasible coalition 
J(S) ∈ C given in (3) by using the values KJ(S)(j), for j � 1, 
: : : ,ψ(N), defined in (4). This presentation will turn out 
to be helpful later.

Lemma 1. The characteristic function value of any feasible 
coalition J(S) ∈ C in the constrained PMS game (J(N),C, F)
is equal to the following nonnegative linear combination of 
the marginal increments of the processing requirements of 
the jobs in J(N) :

P(S) � F(J(S)) �
Xψ(S)

ℓ�1
CjS
ℓ
�
Xψ(N)

j�1
∆j

KJ(S)(j)(KJ(S)(j) + 1)
2v(S)

:

(5) 

Proof. Define jS0 � 0. Using (2) and (4) (recall that for 
j > jSψ(S), KJ(S)(j) � 0), we have

Xψ(S)

ℓ�1
(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)∆S

ℓ

�
Xψ(S)

ℓ�1
(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)

XjS
ℓ

t�jS
ℓ�1+1

∆t

�
Xψ(S)

ℓ�1

XjS
ℓ

t�jS
ℓ�1+1

(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)∆t

�
X
jS
ψ(S)

j�1
(ψ(S) + 1� ℓS(j))(ψ(S) + 2� ℓS(j))∆j

�
Xψ(N)

j�1
∆jKJ(S)(j)(KJ(S)(j) + 1), 

and the proof is completed by (3). w

5. The PMS Game (N, P) Is 
Totally Balanced

The total balancedness proof of the PMS game is a con
structive one. The proof consists of a few steps that gen
erate a line segment within the symmetric core of the 
game as described. 

1. In Section 5.1.1, we define ψ(N) constrained basic 
(CB) PMS games, denoted by (J(N),C, F(j)), j � 1: : :ψ(N), 
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that share the same set of ψ(N) job players and set of 
feasible coalitions as in the constrained PMS game. The 
processing requirement vector of the constrained basic 
PMS game (J(N),C, F(j)), j � 1: : :ψ(N), is the nonde
creasing zero-one vector whose first j�1 entries are 
zero. The characteristic function value of the constrained 
PMS game (J(N),C, F) for any feasible coalition J(S), 
namely F(J(S)), is proved to be a weighted sum of the 
characteristic function values F(j)(J(S)) for j � 1: : :ψ(N), 
where the corresponding weights are the marginal pro
cessing requirements ∆j � pj � pj�1 of the job players in 
J(N):

2. In Section 5.1.2, based on Assumption 1, each job 
player ℓ ∈ J(N) of a constrained basic PMS game, (J(N), 
C, F(j)), j � 1: : :ψ(N), is split into unit-speed job players. 
Consequently, we obtain v(N) unit-speed job players, 
where similarly as in the constrained basic PMS game 
(J(N),C, F(j)), ψ(N)� j+ 1 of them are assigned a unit 
processing requirement, whereas the others are assigned 
a zero processing requirement. Hence, we obtain ψ(N)
unit-speed constrained basic PMS games, called for short 
UCB PMS games, each having v(N) unit-speed job players 
whose processing requirement is in {0, 1}, and their set of 
feasible coalitions consists of all the unit-speed job players 
that are descendants of a certain feasible coalition J(S) ⊆
J(N) of the constrained PMS game. Yet, we consider a sub
set of the core of each UCB PMS game by assuming that 
all the 2v(N) coalitions of the v(N) unit-speed job players 
are feasible and show that this subset of the core is none
mpty. We call the UCB PMS games where all coalitions of 
unit-speed players are feasible unit-speed {0, 1} PMS games.

3. In Section 5.2 and Theorem 2, we fully character
ize the symmetric core of unit-speed {0, 1} PMS games, 
namely PMS games in which all job players have a 
unit-speed machine and their processing requirement 
is zero or one.

4. In Section 5.3, we wrap up the proof. Theorem 4, 
the key theorem of the paper, proves that the PMS 
game is totally balanced. Thereafter, by combining 
the symmetric cores of the ψ(N) unit-speed {0, 1} PMS 
games according to the nonnegative linear combination 
of the constrained basic PMS games, mentioned in the 
first item of this description, we derive a line segment 
in Rψ(N), which is an infinitely large subset of the sym
metric core of the constrained PMS game.

Figure 1 presents a tree diagram that shows the rela
tions among the various games.

5.1. The Constrained Basic PMS Games
In this subsection, we present auxiliary PMS games 
that will enable us to prove the total balancedness of 
the PMS game.

5.1.1. The Constrained Basic PMS Games. We start 
by presenting ψ(N) games of a special form called con
strained basic (CB) PMS games. The constrained PMS 
game (J(N),C, F) shares with the CB PMS games the 
same set of job players J(N), the same speed of the 
machines, and the same set of feasible coalitions C: In 
other words, the constrained PMS game and the ψ(N)
CB PMS games differ only in their processing require
ment vectors. Let (J(N),C, F(j)), j � 1: : :ψ(N), be the jth 

Figure 1. A Tree Diagram That Represents the Relations Among the Various Games 
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CB game. Its processing requirement vector is the non
decreasing 0� 1 vector whose first j�1 entries are 
equal to zero, implying that its marginal processing 
requirement vector u→

j 
is the jth unit vector in Rψ(N), 

namely the vector u→
j
j � 1, and u→

j
k � 0 for k ≠ j: By using 

Lemma 1, we conclude that the characteristic function 
value of the CB PMS game (J(N),C, F(j)) for any feasible 
coalition, J(S) ⊂ J(N), is given by

F(j)(J(S)) �
Xψ(N)

k�1
u→

j
k
KJ(S)(k)(KJ(S)(k) + 1)

2v(S)

�
KJ(S)(j)(KJ(S)(j) + 1)

2v(S) : (6) 

By combining Equations (5) and (6), we get the follow
ing theorem.

Theorem 1. The constrained PMS game (J(N),C, F), satisfies

F(J(S)) �
Xψ(N)

j�1
∆jF(j)(J(S)): (7) 

In view of Theorem 1, in order to prove the total balanc
edness of the constrained PMS game (J(N),C, F), it is suf
ficient to prove the total balancedness of the CB PMS 
games. This observation follows immediately from two 
properties that the core of a cooperative game satisfies; 
see Peleg and Sudhölter (2007, pp. 19–21). In order to 
simplify, we present the properties in their least general 
form that fits the needs of our proof. For this sake, let 
C(M, G) be the (possibly empty) core of a cooperative 
game (M, G): Then, (i) the core satisfies the covariant 
under strategic equivalence property; that is, if G2 � αG1, 
for α > 0, then C(M, G1) � αC(M, G2): (ii) The core satis
fies the superadditivity property; that is, C(M, G1) +C(M, 
G2) ⊆ C(M, G1 +G2):

As it turns out, the CB PMS games (J(N),C, F(j)), j �
1: : :ψ(N), are still too tricky to analyze. Yet, as the 
speed of the machine of each job player in J(N) is a natu
ral number, we further simplify the CB PMS games in 
Section 5.1.2 by splitting each job player into unit-speed 
job players.

5.1.2. The UCB PMS Games. In this subsection, we 
associate with each CB PMS game (J(N),C, F(j)), j � 1 
: : :ψ(N), a unit-speed constrained basic PMS game, which 
is a CB PMS game where each job player has a unit- 
speed machine. For this sake, consider a certain CB PMS 
game (J(N),C, F(j)), j � 1: : :ψ(N), and a job player ℓ ∈
J(N) whose father is player i ∈N, and that is, f (ℓ) � i:
Recall that the speed of the machine of job player ℓ, 
denoted by v′({ℓ}) � v({i})=ψ({i}), is assumed to be a 
natural number; see Assumption 1. In order to get a 
UCB PMS game, we split each job player ℓ ∈ J(N) into 

v′({ℓ}) unit-speed job players, where one of them is asso
ciated with the same processing requirement (zero or 
one) as its father (i.e., job player ℓ ∈ J(N), ) and the others 
are associated with a zero processing requirement. Let 
JU(N) �def 

{1, : : : , v(N)} be the resulting set of v(N) unit- 
speed descendants of J(N): The set of feasible coalitions 
of each of the ψ(N) UCB PMS games is denoted by CU, 
where |CU | � 2n, exactly as the number of coalitions in 
the original PMS game (N, P): In fact, any coalition S ⊆N 
is associated in each of the ψ(N) CB PMS games with the 
coalition J(S) ⊆ J(N), and J(S), in turn, is associated with 
the coalition of unit-speed job players JU(S) ⊆ JU(N) in the 
UCB PMS games. Applying this procedure on each CB 
PMS game (J(N),C, F(j)), j � 1: : :ψ(N), generates ψ(N)
UCB PMS games, each of which is defined on the set 
JU(N) of unit-speed job players under the set of feasible 
coalitions CU: Let (JU(N),CU, F(j)U ), j � 1: : :ψ(N), be the 
UCB PMS games that are associated with the PMS game 
(N, P): Note that the ψ(N) UCB PMS games (JU(N), 
CU, F(j)U ) are identical to each other, except for their zero- 
one processing requirement vectors. More precisely, in the 
UCB PMS game (JU(N),CU, F(j)U ), ψ(N)� j+ 1 job players 
are associated with a unit processing requirement, where 
the others have a zero processing requirement.

In Section 5.2, we consider UCB PMS games in which 
all coalitions are allowed. Each job player of such a game 
owns a unit-speed machine and a job whose processing 
requirement is in {0, 1}. We call such games unit-speed 
{0, 1} PMS games. We fully characterize the symmetric core 
of these games, proving that they are totally balanced.

5.2. The Symmetric Core of Unit-Speed {0, 1} 
PMS Games (NU,FU)

The whole symmetric core of a unit-speed {0, 1} PMS game 
is derived in this subsection.

Definition 5. A unit-speed {0, 1} PMS game (NU, FU) is 
a PMS game in which each job player owns a machine 
of unit speed and a job whose processing requirement 
is either zero or one; the job players whose processing 
requirement is zero are called unit-speed 0 job players, 
and the others are called unit-speed 1 job players.

In what follows, we fully characterize the nonempty 
symmetric core of a unit-speed {0, 1} PMS game (NU, 
FU) with n ≥ 2 job players, where z ≥ 0 is the number of 
unit-speed 0 job players and u � n� z ≥ 0 is the number 
of unit-speed 1 job players. We first consider the two 
trivial cases where zu � 0, and that is, the unit-speed job 
players are all of the same type, implying a single symmet
ric core allocation; if z � n, all coalitions of NU have a zero 
cost, and therefore, assigning a cost 0 to all job players is 
the only symmetric cost allocation in the core. If u � n, all 
job players are unit-speed 1 job players, implying that the 
cost of the grand coalition is n(n+ 1)=2n, and therefore, 
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the only symmetric core allocation assigns a cost 
n+ 1

2n � 0:5 1+ 1
n

� �

to each job player.
In general, the cost of the grand coalition is

FU(NU) �
u(u + 1)
2(u + z) �

u(u + 1)
2n :

The cost of any other coalition is computed in a similar 
way. In the rest of this subsection, we assume that zu ≥
1, and that is, the grand coalition contains both types of 
unit-speed job players, implying that the symmetric core 
of the game, if it is nonempty, consists of a collection of 
pairs (α,β) ∈R2, where α is the cost allocated to unit- 
speed 0 job players and β is the cost allocated to unit- 
speed 1 job players.

In unit-speed {0, 1} PMS games, unit-speed 0 job players 
are the most valuable players as they do not have jobs to 
process, but they own machines that speed up the com
pletion time of the jobs of the other job players. Thus, we 
expect that if the core is nonempty, in any symmetric core 
cost allocation, the unit-speed 0 job players will be com
pensated for by the unit-speed 1 job players in order to 
persuade them to join the grand coalition. This observa
tion is justified by the fact that FU(S) � 0 for any coalition 
S of unit-speed 0 job players, implying that in any sym
metric core cost allocation, the unit-speed 0 job players 
will be compensated for by the unit-speed 1 job players or 
they will pay nothing for joining the grand coalition; that 
is, any core allocation (α,β) satisfies α ≤ 0 and β ≥ 0:
From now on, we refer to the compensation �α ≥ 0 that 
unit-speed 0 job players get for joining the grand coalition 
rather than to the corresponding cost.

In Observation 2, we provide an upper bound on 
the compensation �α ≥ 0 paid to the unit-speed 0 job 
players and a lower bound β ≥ 0 on the cost imposed 
on unit-speed 1 job players. The upper bound on �α 
is based on the fact that in any cooperative game, a 
player cannot expect to get a compensation that is 
higher than the marginal reduction in the total cost 
when this player is the last to join the grand coalition. 
Similarly, the lower bound on β is based on the fact 
that a player cannot expect to pay less than the mar
ginal increase in the cost of the grand coalition when 
this player is the last to join the grand coalition.

Let c(z, u) for 0 ≤ z ≤ n, and u � n� z, be the cost of 
a coalition that consists of z (u) unit-speed 0 (1) job 
players in a unit-speed {0, 1} PMS game. Observation 
2 follows directly from the discussion.

Observation 2. Suppose that the symmetric core of a 
unit-speed {0, 1} PMS game with z (u) unit-speed 0 (1) 
job players is nonempty. Then, any symmetric core 
allocation (α,β) of the game satisfies 

1. �α ≤�(c(z, u)� c(z� 1, u)) and

2. β ≥ c(z, u)� c(z, u� 1).
Let �α̃1 �

def
�(c(z, u)� c(z� 1, u)) and β̃2 �

def c(z, u)�
c(z, u� 1): In the next theorem, we prove that the sym
metric core of unit-speed {0, 1} PMS games is nonempty 
and that the bounds specified in Observation 2 are 
tight; that is, there exist core allocations in which (i) 
�α̃1 assigns the maximum compensation to the unit- 
speed 0 job players and thus, the maximum cost to 
unit-speed 1 job players and (ii) β̃2 assigns the mini
mum cost to the unit-speed 1 job players and thus, the 
minimum compensation to the unit-speed 0 job players. 
For given z ≥ 1 and u ≥ 1, let

α1 ��
u(u+ 1)

2(u+ z)(u+ z� 1)

β1 �
(u+ 1)(u+ 2z� 1)
2(u+ z)(u+ z� 1) (8) 

α2 ��
u(u� 1)(z� 1)

2z(u+ z)(u+ z� 1)

β2 �
u(u+ 2z� 1)

2(u+ z)(u+ z� 1) : (9) 

It is easy to verify that α̃1 and β̃2, as defined, are equal 
to α1 and β2, respectively. The values of α2 and β1 are de
rived by the efficiency property of the core. We prove 
now that unit-speed {0, 1} PMS games are totally bal
anced by fully characterizing their symmetric core. In 
Theorem 2, (8) and (9) will be proven to be the two ex
treme symmetric core allocations. The theorem will also 
imply that the convex hull of these two cost allocations is 
the whole symmetric core of a unit-speed {0, 1} PMS 
game with z (u) unit-speed 0 (1) job players. We defer the 
technical proof of Theorem 2 to the appendix.

Theorem 2. Any symmetric core allocation of a unit-speed 
{0, 1} PMS game (NU, FU), where |NU | � n � z+ u, zu > 0, 
assigns a cost α (β) to each unit-speed 0 (1) job player, such 
that α � ρα1 + (1� ρ)α2, β � ρβ1 + (1� ρ)β2 for ρ ∈ [0, 1], 
for α1 and β1 defined in (8) and α2 and β2 defined in (9). If 
zu � 0, the core is a singleton; if u � 0, each unit-speed 0 job 
player is assigned a cost α � 0, and if z � 0, each unit-speed 1 
job player is assigned a cost β � 0:5+ 1=2n:

As stated in Theorem 2, for any given unit-speed {0, 1} 
PMS game with z> 0 unit-speed 0 job players and u> 0 
unit-speed 1 job players, all cost allocations in the convex 
hull of (α1,β1) and (α2,β2) are within the symmetric core 
of the game. Yet, not all cost allocations are identical in 
terms of fairness. As mentioned, the cost allocation (α1, 
β1) is the best to unit-speed 0 job players but the worst 
for unit-speed 1 job players, where the opposite holds 
for the cost allocation (α2,β2), which is the worst for the 
unit-speed 0 job players and the best for unit-speed 1 
job players. In this sense, the core cost allocation that 
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may reduce to the minimum the gap between the un
happiness of one type of job players versus the happi
ness of the second type of job players is the average of 
the two extreme cost allocations, namely the cost allo
cation 0:5(α1 +α2,β1 + β2): The idea behind this cost 
allocation is similar to the idea behind the well-known 
EGS rule proposed as a core allocation for sequencing 
games; see Curiel et al. (1989). Later, Hamers et al. 
(1996) generalize the EGS rule and propose the split core 
of a sequencing game by dividing the gain generated 
by the switch of two players not necessarily equally. 
We call the average of the two extreme core costs alloca
tions for the unit-speed {0, 1} PMS game the equal cost 
splitting rule or for short, the ECS rule. Thus, let

αECS � 0:5(α1 + α2)

βECS � 0:5(β1 + β2), (10) 

implying Definition 6.

Definition 6. The equal cost splitting rule for unit-speed 
{0, 1} PMS games generates the cost allocation (αECS,βECS):

As a side remark, note that the core of a unit-speed 
{0, 1} PMS game also contains nonsymmetric cost allo
cations. For example, consider a unit-speed {0, 1} PMS 
game with three unit-speed job players; two of them 
are zero job players, and the third is a one job player. 
The nonsymmetric cost allocation that allocates one 
of the zero job players a cost 0, the second a cost � 1

6 , 
and the one job player a cost 0.5 is within the core.

5.3. The Basic Core of the PMS Game (N, P)
In this subsection, we wrap up the results of this section 
and prove that the PMS game (N, P) is totally balanced, 
and then, we show how to derive a line segment within 
the symmetric core of the game.

The next theorem follows from Theorem 1, the dis
cussion following the theorem, and Observation 1.

Theorem 3. The PMS game (N, P) is totally balanced if 
and only if the UCB PMS games (JU(N),CU, F(j)U ), j � 1: : :
ψ(N), are totally balanced.

The next theorem is the key theorem of the paper.

Theorem 4. The PMS game (N, P) is totally balanced.

Proof. According to Theorem 2, unit-speed {0, 1} PMS 
games are totally balanced, and therefore, in view of 
Observation 1, the UCB PMS games (JU(N),CU, F(j)U ), j � 1 
: : :ψ(N), which are constrained unit-speed {0, 1} PMS 
games, are also totally balanced, implying by Theorem 3
that the PMS game (N, P) is totally balanced. w

Definition 7. We call the symmetric part of the core of 
the PMS game, which is generated by the procedure 
described in this paper and in particular, by splitting 
players into unit-speed players whose processing require
ment is zero or one, the basic core of the PMS game.

In the rest of this subsection, we derive the basic core 
of the PMS game (N, P), which is a line segment in Rn:

The following corollary follows from Theorem 2, 
(8), and (9).

Corollary 1. The core of any UCB PMS game (JU(N),CU, 
F(j)U ), 1 ≤ j ≤ ψ(N), contains the core of the respective unit- 
speed {0, 1} PMS game with v(N) unit-speed job players, 
where uj � ψ(N)� j+ 1 is the number of the unit-speed 1 job 
players and the rest (i.e., zj � v(N)� uj players) are unit- 
speed 0 job players. Except for the case j�1 and v(N) �
ψ(N), its set of symmetric core allocations is a line segment in 
Rv(N), which covers the following nondegenerate line segment 
defined by the following two extreme points. The first (second) 
point assigns a cost αj

1 (α
j
2) to each unit-speed 0 job player in 

JU(N) and a cost βj
1 (βj

2) to each unit-speed 1 job player in 
JU(N), where αj

1 < α
j
2 < 0 and βj

2 < β
j
1; that is,

αj
1 ��

(ψ(N)� j+ 1)(ψ(N)� j+ 2)
2v(N)(v(N)� 1) ,

βj
1 �
(ψ(N)� j+ 2)(2v(N)�ψ(N) + j� 2)

2v(N)(v(N)� 1) , (11) 

αj
2 ��

(ψ(N)� j+ 1)(ψ(N)� j)(v(N)�ψ(N) + j� 2)
2v(N)(v(N)� 1)(v(N)�ψ(N) + j� 1) ,

βj
2 �
(ψ(N)� j+ 1)(2v(N)�ψ(N) + j� 2)

2v(N)(v(N)� 1) : (12) 

If j� 1 and v(N) � ψ(N), then the UCB PMS game 
(JU(N),CU, F(1)U ) coincides with the constrained basic PMS 
game (J(N),C, F(1)): In this game, all job players are unit 
job players, and therefore, a single symmetric core allocation 
exists, where each job player of JU(N), and of J(N), is allo
cated a cost of (ψ(N) + 1)=2ψ(N):

Recall that each job player k ∈ J(N) is associated with 
its father, namely player i ∈N, denoted by f (k) � i: In 
the CB PMS games, job player k is assumed to have a 
machine whose speed is v′({k}) � v({f (k)})=ψ({f (k)}): In 
Lemma 2, except for the case considered in Corollary 1, 
where j�1 and v(N) � ψ(N), we present, for any j �
1, : : : ,ψ(N), a line segment in Rψ(N), which is a subset of 
the symmetric core of the CB PMS game (J(N),C, F(j)):

Lemma 2. The symmetric core of any CB PMS game 
(J(N),C, F(j)) for j � 1, : : : ,ψ(N), except for the case j�1 
and v(N) � ψ(N), considered in Corollary 1, contains the 
convex hull of the following two nonidentical symmetric 
cost allocation vectors (α̈j

t(k), β̈
j
t(k)) for t � 1, 2 :

α̈j
t(k) � v′({k})αj

t 1 ≤ k ≤ j� 1,

β̈
j
t(k) � β

j
t + (v′({k})� 1)αj

t j ≤ k ≤ ψ(N): (13) 

Proof. Recall that the job players of any CB PMS game 
(J(N),C, F(j)) for j � 1, : : : ,ψ(N), are split into unit-speed 
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{0, 1} job players, resulting in the corresponding UCB 
PMS game (JU(N),CU, F(j)U ), for which we identified in 
Corollary 1 two nonidentical symmetric core allocations. 
In the proof here, we fold back these two symmetric 
core allocations into two symmetric core allocations of 
the corresponding CB PMS game. The proof is based on 
the fact that in order to generate the UCB PMS game 
(JU(N),CU, F(j)U ), any job player k ∈ J(N) whose speed is 
v′(k) in the CB PMS game is split into v′({k}) unit-speed 
job players in the (JU(N),CU, F(j)U ) game, where one of 
them has the same processing requirement as that of 
its father, namely job player k, and the others have 
zero processing requirements. By summing up the cor
responding first (second) symmetric core allocations of 
the unit-speed job players in the feasible coalition of 
job player k in the UCB PMS game (JU(N),CU, F(j)U ), we 
obtain two core allocations for job player k in the corre
sponding CB PMS game (J(N),C, F(j)): Repeating this 
process for any job player in J(N) results in two non
identical core allocations of the CB PMS game (J(N),C, 
F(j)) whose convex hull λ(α̈j

1(1), : : : , α̈
j
1(j� 1), β̈j

1(j), : : : , 
β̈

j
1(ψ(N))) + (1�λ) (α̈

j
2 (1), : : : , α̈

j
2(j � 1), β̈j

2(j), : : : , β̈
j
2(ψ 

(N))), for λ ∈ [0, 1], preserves the symmetry, efficiency, 
and coalitional rationality conditions of the feasible coa
litions in CU satisfied by the game (JU(N),CU, F(j)U ): w

Similarly to Definition 6, we define the equal cost split
ting allocation for the CB PMS game (J(N),C, F(j)), for j �
1, : : : ,ψ(N), by using Equations (10) and (13):

α̈j
ECS(k) � v′({k})αj

ECS 1≤ k≤ j� 1,

β̈
j
ECS(k) � β

j
ECS + (v

′({k})� 1)αj
ECS j≤ k≤ψ(N): (14) 

The cost allocation specified in (14) is the average of the 
two core cost allocation vectors of the CB PMS game 
(J(N),C, F(j)), for j � 1, : : : ,ψ(N), given in (13).

The following theorem is the main result of the paper 
as it identifies the basic core (see Definition 7) of the 
PMS game (N, P).

Theorem 5. The basic core of the PMS game (N, P) is the 
nondegenerate line segment in Rn that connects the following 
core allocation (f1, : : : , fn) and (g1, : : : , gn), where

fi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
1(k) +

Xψ(N)

j�k+1
∆jα̈

j
1(k)

0

@

1

A

gi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
2(k) +

Xψ(N)

j�k+1
∆jα̈

j
2(k)

0

@

1

A: (15) 

The basic core coincides with the symmetric core of the 
PMS game (N, P) only if each player of N has a single job 

and the speed of the machine of each player is a positive 
rational number.

Proof. According to Theorem 1, P(S) � F(J(S)) �
Pψ(N)

j�1 
∆jF(j)(J(S)), for any coalition S ⊆N: By combining 
Lemma 2 and the constructive method of generating 
the cost allocation vectors in (15), we conclude that 
(f1, : : : , fn) and (g1, : : : , gn), are two symmetric core allo
cations of the PMS game (N, P), and their convex hull 
is a line segment in Rn, which according to Definition 
7, is the basic core of the PMS game (N, P):

In the case that all players have a single job and a 
machine of the same speed v ∈Q++, then |N | � n �
ψ(N) � v(N); in particular, the n UCB PMS games coin
cide with the respective n CB PMS games, and the con
strained PMS game coincides with the PMS game (N, 
P), implying that the symmetric core of the PMS game 
(N, P) is fully characterized. w

We conclude this subsection by presenting the core 
cost allocation for the PMS game (N, P) generated by 
ECS rule by using the ECS cost allocation vectors of the 
CB PMS games (see (14)):

ECSi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
ECS(k) +

Xψ(N)

j�k+1
∆jα̈

j
ECS(k)

0

@

1

A:

6. Conclusions
In this paper, we analyze the cooperative game of the 
Q |split |

P
Cj problem, namely the PMS under job split

ting for a set N of n players and a set J(N) of ψ(N) jobs. 
Each player is assumed to own several machines whose 
speeds are positive rational numbers and several jobs, 
where each job is associated with its processing require
ment. If a player has no jobs to process, we assume that 
the player has an empty job with a zero processing 
requirement. The characteristic function of the game is 
the minimum sum of completion times of the jobs of 
any coalition of players S ⊆N: We prove that the game 
is totally balanced by generating an infinitely large sub
set of its symmetric core. More precisely, we specify a 
line segment in Rn, such that each of its points is a cost 
allocation vector that assigns a cost to each player of N. 
We call the line segment that we have identified the 
basic core of the game as its derivation involves the use 
of ψ(N) CB PMS games, namely PMS games that are 
associated with independent zero-one processing re
quirement vectors that form a basis for Rψ(N): The ψ(N)
CB PMS games are shown to linearly span the PMS 
game. The complexity of the proposed algorithm is 
linear in the number of jobs. This is most remarkable 
as the core of a cooperative game is defined by an ex
ponential number of constraints. In addition, in gen
eral, symmetric core cost allocations are attractive in 
terms of fairness, as any two players with exactly the 
same characteristics are assigned the same cost. In fact, 
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symmetry is one of the four attributes that the Shapley 
value satisfies. However, the Shapley value is a single- 
cost allocation, which is not necessarily a member of 
the core of the game.

We view the main contribution of the paper in the 
new methodology that we developed for analyzing the 
cooperative PMS game under job splitting. The meth
odology is based on the unique presentation of the 
PMS game as a nonnegative linear combination of the 
CB PMS games. The original game is totally balanced if 
and only if the CB PMS games are totally balanced. 
This methodology has the potential to be helpful in the 
analysis of other sequencing and PMS games, where 
the order of the players plays a central role.

Appendix
We first introduce a proposition that presents properties satis
fied by the cost allocations (8) and (9). These properties are 
used in the proof of Theorem 2.

Proposition A.1. Consider a unit-speed {0, 1} PMS game (NU, 
FU), |NU | � nU � z+ u, where z (u) is the number of unit-speed 0 
(1) players. If zu ≥ 1, then the symmetric cost allocations (αi 
(z, u),βi(z, u)) for i � 1, 2, defined in (8) and (9), respectively, sat
isfy the following properties. 

1. For any given u ≥ 1, β1(z, u) is decreasing in z to zero.
2. For any u, β2(1, u) � 0:5, and for any fixed z ≥ 2, β2(z, u) is 

strictly increasing in u and limu→∞β2(z, u) � 0:5:

Proof.
1. The proof that β1(z, u) is decreasing in z follows by verify

ing that the partial derivative of β1(z, u)with respect to z is neg
ative. The convergence of β1(z, u) to zero as z grows to infinity 
follows by applying the L’Hopital rule on limz→∞β1(z, u):

2. The proof for z� 1 is obtained by substitution of z by 
one in (9). The proof for z ≥ 2 is obtained by showing that 
∂β2(z,u)
∂u > 0, implying that β2(z, u) is increasing in u. By using 

the L’Hopital rule, we obtain that limu→∞β2(z, u) � 0:5 for 
any z ≥ 2, concluding the proof. w

Proof of Theorem 2. Consider a unit-speed {0, 1} PMS game 
(NU, FU), where |NU | � u+ z, and zu ≥ 1: For any given pair 
(z, u), the symmetric cost allocations (αi,βi), for i � 1, 2, are 
distinct. Let ω(ℓ, k) denote the cost of a coalition with ℓ unit- 
speed 0 players and k unit-speed 1 players, where 0 ≤ ℓ ≤ z, 
and 0 ≤ k ≤ u, and that is, ω(ℓ, k) � k(k+ 1)=2(k+ ℓ): It is suffi
cient to show that both cost allocations (αi,βi), for i � 1, 2, are 
the only extreme symmetric core allocations of the unit-speed 
{0, 1} PMS game (NU, FU) in the sense that any symmetric 
core allocation (α,β) satisfies α ∈ [α1,α2] and β ∈ [β2,β1], and 
the rest of the proof follows by the convexity of the core.

The efficiency property of the cost allocations (αi,βi) for i �
1, 2, defined in (8) and (9), follows by verifying that the equations 

zαi + uβi � FU(NU) �
u(u+ 1)
2(z+ u)

, 

hold. It remains to prove that for any coalition S ⊂NU with ℓ, 
0 ≤ ℓ ≤ z, unit-speed 0 players and k, 0 ≤ k ≤ u, unit-speed 1 
players, where ℓ+ k < z+ u, the coalitional rationality condi
tion holds; that is, αiℓ+ βik ≤ ω(ℓ, k) for i � 1, 2: For this sake, 
let ∆i(ℓ, k) � ω(ℓ, k)�αiℓ� βik, for i � 1, 2:

Consider first the symmetric cost allocation (α1,β1): In view 
of the first item of Proposition A.1, β1 � β1(z, u) ≤ β1(1, u) �
0:5 1+ 1

u
� �

for any z and u satisfying zu ≥ 1: We need to prove 
that the function ∆1(ℓ, k) is nonnegative for all proper coali
tions of NU: Coalitions that have no unit-speed 0 players, that 
is, ℓ � 0, satisfy

ω(0, k) � 0:5(1+ k) � 0:5 1+ 1
k

� �

k ≥ 0:5 1+ 1
u

� �

≥ β1k:

This proves that ∆1(0, k) ≥ 0: Also, coalitions that contain just 
one unit-speed 0 player, that is, ℓ � 1, satisfy the coalitional 
rationality conditions as ω(1, k) � 0:5k, and the allocated cost is 
α1 + β1k, implying that it is sufficient to prove that �α1 ≥

(β1 � 0:5)k: By using (8), this inequality boils down to the in
equality u(u+ 1) ≥ k(u+ 3z� z2 � 1): The quadratic function 
3z� z2 � 1 ≤ 1 for all natural numbers, implying that it is 
sufficient to prove that u(u+ 1) ≥ k(u+ 1), which trivially 
holds.

By simple algebra, one can verify that the coalitional ratio
nality constraint for z� 1 unit-speed 0 players and u unit- 
speed 1 players is tight; that is, (z� 1)α1 + uβ1 � ω(z� 1, u):

Note that coalitions with no unit-speed 1 players satisfy the 
coalitional rationality constraints as for any ℓ ∈ {1, : : : , z}, 
ω(ℓ, 0) � 0, and ∆1(ℓ, 0) ��α1ℓ ≥ 0: Thus, consider pairs (ℓ, k), 
where ℓ ∈ {2, : : : , z} and k ∈ {1, : : : , u}: Let ∆k

1(ℓ) � ∆1(ℓ, k): For 
the sake of the proof, we extend the function ∆k

1(ℓ) to be 
defined on the interval [0, z]: We prove the following proper
ties for any k ∈ {1, : : : , u} :. (i) The function ∆k

1(ℓ) is strictly con
vex in ℓ (ii) there exists a single real value ℓ1(k), 0 < ℓ1(k) < z, 
where ∆k

1(ℓ) decreases in ℓ ∈ (0, ℓ1(k)) and increases in ℓ ∈
(ℓ1(k), z); (iii) the sequence ℓ1(k) for k ∈ {1, : : : , u} is strictly 
increasing in k; and (iv) ℓ1(u) satisfies z� 1 < ℓ1(u) < z, and 
∆u

1(ℓ1(u)) < 0, whereas for ℓ ∈ {0, : : : , z}, ∆u
1(ℓ) ≥ 0: We prove 

these items as follows. (i) The convexity of the function ∆k
1(ℓ)

follows from its form, that is,

∆k
1(ℓ) �

k(k+ 1)
2(k+ ℓ)�α1ℓ� β1k, 

or alternatively, from the fact that
∂∆k

1(ℓ)

∂ℓ
��

k(k+ 1)
2(k+ ℓ)2

�α1, 

is increasing in ℓ; (ii) the unconstrained minimizer of ∆k
1(ℓ) is 

obtained by equating its derivative to zero, that is, d∆k
1(ℓ)

dℓ � 0, 
implying that

ℓ1(k) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(k+ 1)
2 |α1 |

s

� k; (A.1) 

(iii) the sequence ℓ1(k) is increasing in k, as dℓ1(k)
dk > 0, and in 

view of (8), |α1 | < 0:5 implying that the sequence ℓ1(k) is 
strictly increasing in k; and (iv) by substituting k�u and the 
expression for α1, see (8), into (A.1), we get

ℓ1(u) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u(u+ 1)
2 |α1 |

s

� u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u+ z)(u+ z� 1)

p
� u ∈ (z� 1, z):

As ℓ1(u) is the unique minimizer of ∆u
1(ℓ), and ∆u

1(z� 1) �
∆u

1(z) � 0, we conclude that ∆u
1(ℓ1(u)) < 0, but for any integer 

ℓ ∈ {0, : : : , z}, ∆u
1(ℓ) ≥ 0:

In order to terminate the proof, it is sufficient to show that 
for k ∈ {1, : : : , u� 1}, ∆k

1(ℓ1(k)) > 0, as it implies that ∆k
1(ℓ) > 0 
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for ℓ ∈ {0, : : : , z}: By using (8) and (A.1), 

ℓ1(k) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 1)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(u+ z)(u+ z� 1)
u(u+ 1)

s

� k, 

and

∆1(ℓ1(k), k) � k(k+ 1)
2(k+ ℓ1(k))

�α1ℓ1(k)� β1k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 1)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u(u+ 1)
(u+ z)(u+ z� 1)

s

� k (u+ 1)(2u+ 2z� 1)
2(u+ z)(u+ z� 1) :

In order to show that ∆1(ℓ1(k), k) > 0 for k � 1, : : : , u� 1, it 
remains to check that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k+ 1)u(u+ z)(u+ z� 1)

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(u+ 1)

p
(2u+ 2z� 1):

By taking the square of both sides of the inequality, it is 
equivalent to showing that 4(k+ 1)(u3 + u2(2z� 1) + uz(z�
1)) ≥ k(4u3 + 4uz2 � 3u+ 8u2z+ 4zu+ 4 z2 + 1� 4z), which in 
turn, is equivalent to showing that 4(k+ 1)(u3 + 2u2z� u2 

+uz2 � zu) ≥ k(4u3 + 4uz2 � 3u+ 8u2z+ 4zu+ 4z2 + 1� 4z):As 
both sides of the last inequality are positive and as 4(k+ 1)=k 
is decreasing in k, the inequality gets tighter as k is larger. 
Thus, it suffices to check the inequality for k � u� 1 : By 
using some simple algebraic manipulations, we get that it 
is sufficient to show that u(3u+ 8z� 4) + 4z2 � 4z+ 1 ≥ 0, 
which clearly holds. This concludes the proof that the sym
metric cost allocation (α1,β1) is in the core of the unit-speed 
{0, 1} PMS game (NU, FU):

According to Observation 2 and the discussion in between 
the observation and Theorem 2 in Section 5.2, there does not 
exist any symmetric core cost allocation (α,β) for the unit-speed 
{0, 1} PMS game (NU, FU) for which α > α1, and that is, the unit- 
speed 0 players are compensated for by the maximum possible 
according to the symmetric cost allocation (α1,β1):

Similarly, we prove that the symmetric cost allocation 
(α2,β2), given in (9), is in the core of the unit-speed {0, 1} PMS 
game (NU, FU) and that it is extreme in the sense that there 
does not exist another symmetric core allocation (α,β) with 
β < β2: Define the function ∆2(ℓ, k) � ω(ℓ, k)�α2ℓ� β2k, and 
for any fixed ℓ ∈ {0, : : : , z}, let ∆ℓ2(k) � ∆2(ℓ, k): As the effi
ciency condition holds, it remains to prove the coalitional 
rationality conditions for all proper coalitions that consist of ℓ 
unit-speed 0 players and k unit-speed 1 players. If k�0, the 
coalition’s cost is zero, whereas the cost allocated is α2ℓ < 0 
for 1 ≤ ℓ ≤ z, proving the coalitional rationality conditions for 
such coalitions. We proceed to verifying the function ∆ℓ2(k)
for ℓ ∈ {0, 1}, and k ∈ {1, : : : , u}: Recall from the second item of 
Proposition A.1 that

β2 �
u(u+ 2z� 1)

2(u+ z)(u+ z� 1) ≤ 0:5, 

and for z ≥ 2, β2 < 0:5:
Next, we prove that ∆0

2(k) ≥ 0 for k ∈ {1, : : : , u}: These 
inequalities follow by the second item of Proposition A.1, 
which implies that β2 ≤ 0:5, and therefore, ∆0

2(k) � (k+ 1)=2�
β2k ≥ 0: We consider now coalitions with a single unit-speed 0 
player: that is, ℓ � 1: Under this case, ∆1

2(k) � 0:5k� α2 � β2k �
(0:5� β2)k�α2, which is positive as β2 ≤ 0:5 and α2 < 0: Thus, 

the coalitional rationality constraints for ℓ � 1, hold too. In partic
ular, the symmetric cost allocation (α2,β2) is in the core of unit- 
speed {0, 1} PMS games (NU, FU)with z � 1:

In order to conclude the proof of the coalitional rationality 
constraints for any z ≥ 2, we consider the continuous exten
sion of the function ∆ℓ2(k) in the interval k ∈ [1, u]: We show 
that the function ∆ℓ2(k) is strictly convex in k by verifying that 
its second derivative is positive. Calculations reveal that 

d
dk

∆ℓ2(k) � 0:5 1� ℓ(ℓ� 1)
(k+ ℓ)2

 !

� β2, 

and
d2

dk2 ∆ℓ2(k) �
ℓ(ℓ� 1)
(k+ ℓ)3

> 0:

The unconstrained minimizer k2(ℓ) for any given ℓ is obtained 
by solving d

dk ∆ℓ2(k) � 0 :

k2(ℓ) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)
1� 2β2

s

� ℓ: (A.2) 

Apparently, k2(ℓ) is increasing in ℓ as the numerator of

d
dℓ k2(ℓ) �

0:5(2ℓ� 1)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p

is positive. To see this, note that 0:5(2ℓ� 1) is the average of 
ℓ� 1 and ℓ, whereas 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p
is their geometric mean. The 

numerator is positive as the geometric mean is bounded from 
above by the average. In addition, it follows from the second 
item of Proposition A.1 that for z ≥ 2, 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p
< 1 as β2 <

0:5: In order to show that k2(ℓ) < u for any ℓ ∈ {2, : : : , z}, we 
substitute β2 in (A.2) by (9), and we get that 

k2(z) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z(z� 1)(u+ z)(u+ z� 1)
(u+ z)(u+ z� 1)� u(u+ 2z� 1)

s

� z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u+ z)(u+ z� 1)

p
� z, 

thus u� 1 < k2(z) < u: In fact, simple calculations reveal that 
in addition to the efficiency condition, the cost of the coalition 
that consists of z unit-speed 0 players and u�1 unit-speed 1 
players also satisfies ∆z

2(u� 1) � 0: As ∆z
2(k) is a decreasing 

function of k, for k ∈ [1, k2(z)], we conclude that ∆z
2(k) ≥ 0 for 

k ∈ {0, : : : , u}, implying the coalitional rationality conditions 
for any number of unit-speed 1 players.

In order to complete the proof, let ∆k
2(ℓ) � ∆2(ℓ, k) be a con

tinuous function of ℓ ∈ (1, z] for a fixed k ∈ {1, : : : , u}: By defini
tion, ∆k

2(ℓ) is convex in ℓ: For k�u, note that 
d
dℓ

∆u
2(ℓ) ��

u(u+ 1)
2(u+ ℓ)2

�α2, 

which is an increasing function of ℓ, and its maximum is ob
tained at ℓ � z:Thus,

d
dℓ

∆u
2(ℓ) ≤�

u(u+ 1)
2(u+ z)2

�α2 ��
u(2z(z� 1) + u(u+ 2z� 1))

2z(u+ z)2(u+ z� 1)
< 0, 

proving that ∆u
2(ℓ) is decreasing in ℓ, and in view of the effi

ciency condition, we conclude that ∆u
2(ℓ) ≥ 0 for any ℓ ∈

{0, : : : , z}: It can be proven, by similar arguments, that ∆u�1
2 

(ℓ) is also decreasing in ℓ, and by using ∆u�1
2 (z) � 0, the coali

tional rationality conditions also hold for coalitions that 

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game 
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2247 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

66
.1

66
.8

6]
 o

n 
03

 A
pr

il 
20

24
, a

t 0
1:

34
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



consist of u�1 unit-speed 1 players and any number ℓ, 0 ≤
ℓ ≤ z, of unit-speed 0 players.

Similarly to the case of ∆k
1(ℓ), ∆k

2(ℓ) is convex, and its 
unconstrained minimizer is

ℓ2(k) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(k+ 1)
2 |α2 |

s

� k:

Next, we show that the coalitional rationality conditions hold 
for any k ∈ (0, u), for which ℓ2(k) ≥ z, by using the following 
facts. First, the function ∆k

2(ℓ) is strictly convex and decreasing 
in ℓ ∈ (1, ℓ2(k)) ⊇ (1, z], which implies that it is decreasing 
in ℓ ∈ (1, z), and second, ∆k

2(z) ≥ 0: By solving the equation 
ℓ2(k) � z, we get the lowest value of k for which ℓ2(k) ≥ z, 
which we denote by û, where

û � 4z |α2 | � 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8z |α2 | (z� 1) + 1

p

2(1� 2 |α2 | )
:

Thus, it remains to prove the coalitional rationality conditions 
for any k ∈ (0, û): For this sake, note that the function, ∆k

2 
(ℓ2(k)) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 |α2 |k(k+ 1)

p
+ (α2 � β2)k, is concave in k ∈ (0, û), 

where at the extreme points of the interval, namely at k�0 
and k � û, ∆k

2(ℓ) ≥ 0: In view of the concavity of the function 
∆k

2(ℓ2(k)), the set {k : ∆k
2(ℓ2(k)) ≥ 0} is convex, completing the 

proof that the symmetric cost allocation (α2,β2) is in the core 
of the unit-speed {0, 1} PMS game (NU, FU):

According to Observation 2 and the discussion in between 
the observation and Theorem 2 in Section 5.2, there does not 
exist any symmetric core cost allocation (α,β) for unit-speed 
{0, 1} PMS game (NU, FU) for which β < β2, and that is, the 
unit-speed 1 players pay the minimum possible cost accord
ing to the symmetric cost allocation (α2,β2): w
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