
This article was downloaded by: [132.66.166.86] On: 03 April 2024, At: 01:34
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Manufacturing & Service Operations Management

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

The Basic Core of a Parallel Machines Scheduling Game
Tzvi Alon, Shoshana Anily

To cite this article:
Tzvi Alon, Shoshana Anily (2023) The Basic Core of a Parallel Machines Scheduling Game. Manufacturing & Service Operations
Management 25(6):2233-2248. https://doi.org/10.1287/msom.2021.0337

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/msom.2021.0337
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

The Basic Core of a Parallel Machines Scheduling Game
Tzvi Alon,a Shoshana Anilyb,*
a Department of Statistics and Federmann Center for the Study of Rationality, Hebrew University of Jerusalem, 9190501 Jerusalem, Israel;
b Coller School of Management, Tel Aviv University, 6997801 Tel Aviv, Israel
*Corresponding author
Contact: alontzvi@gmail.com, https://orcid.org/0000-0002-3847-8005 (TA); anily@post.tau.ac.il, https://orcid.org/0000-0001-8527-1659 (SA)

Received: July 22, 2021
Revised: December 8, 2021; September 21,
2022; May 10, 2023
Accepted: May 16, 2023
Published Online in Articles in Advance:
July 20, 2023

https://doi.org/10.1287/msom.2021.0337

Copyright: © 2023 INFORMS

Abstract. Problem definition: We consider the parallel machine scheduling (PMS) under
job-splitting game defined by a set of manufacturers where each holds uniform parallel
machines and each is committed to produce some jobs submitted to her by her clients
while bearing the cost of the sum of completion times of her jobs on her machines. An effi-
cient algorithm for this scheduling problem is well known. We consider the corresponding
cooperative game, where the manufacturers are players that want to join forces. We show
that collaboration is profitable. Yet, the stability of the cooperation depends on the cost allo-
cation scheme; we focus on the core of the game. Methodology/results: We prove that the
PMS game is totally balanced and its core is infinitely large, by developing a sophisticated
methodology of linear complexity that finds a line segment in its symmetric core. We call
this segment the basic core of the game. Managerial implications: This PMS game has the
potential for various applications both in traditional industry and in distributed computing
systems in the hi-tech industry. The formation of a partnership among entrepreneurs, com-
panies, or manufacturers necessitates not only a plan for joining forces toward the achieve-
ment of the ultimate goals, but also an acceptable agreement regarding the cost allocation
among the partners. Core allocations guarantee the stability of the partnership as no subset
of players can gain by defecting from the grand coalition.

Funding: This work was supported by the Henry Crown Israeli Institute for Business Research, the Col-
ler Foundation, and the Israel Science Foundation [Grant 1489/19].

Keywords: cooperative games • core • parallel machines scheduling • job splitting • distributed computing

1. Introduction
In this paper, we deal with a cooperative game where
several players own similar machines that process the
same type of jobs, but they may differ in their speeds.
Clients submit jobs to the players in order to process
them. The goal of each player, if she works indepen-
dently of the others, is to process her jobs on her
machines so that the sum of completion times of her
jobs is minimized. The type of jobs that we consider
here allows for job splitting (i.e., any job can be split into
parts that can be processed simultaneously on different
machines). Our goal is to investigate the profitability of
cooperation in such systems.

Because of the simplicity and generality of the sys-
tem described, it has a potential for various interesting
applications in both traditional and hi-tech industries.
For a recent collaboration in the production industry,
consider the pharmaceutical giants Sanofi and Novartis,
which used their manufacturing capabilities to produce
the mRNA vaccine developed by Pfizer and BionTech
during the coronavirus disease 2019 pandemic. In ser-
vice systems, capacity sharing among firms is a common

practice that helps manufacturers and service providers
to cope with fluctuations in demands, maintain their cli-
ents, and increase their sales; see Yu et al. (2015). These
two applications allow for job splitting of the type dis-
cussed here (i.e., where the parts of a job can be pro-
cessed simultaneously).

The modern hi-tech world requires analysis of vast
amounts of data. To carry this out effectively, one must
achieve the goals of maximizing throughput while mini-
mizing latency and response time. Analyses of large
amounts of data are employed in machine learning
models as well as in comparing implementations of
an algorithm and in verifying software and hardware
implementations. In the last two decades, as a result of
the development and spread of high-bandwidth net-
works, distributed computing systems have evolved,
consisting of multiple computers (processors) working
together in order to accomplish a single task. These sys-
tems offer the most effective way to reach the goals. The
processors, each having its own memory, are connected
by high-bandwidth networks and may therefore be
located far away from one another, possibly in different

2233

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Vol. 25, No. 6, November–December 2023, pp. 2233–2248

ISSN 1523-4614 (print), ISSN 1526-5498 (online) https://pubsonline.informs.org/journal/msom

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

mailto:alontzvi@gmail.com
https://orcid.org/0000-0002-3847-8005
mailto:anily@post.tau.ac.il
https://orcid.org/0000-0001-8527-1659

continents, and they may be owned by different entities.
Load-balancing algorithms determine the load alloca-
tion among the various processors in order to minimize
the completion time of the tasks. Our model can be ben-
eficial for pooling of resources in distributed computing
systems. For example, pooling the processors of a multi-
division hi-tech company or of a university with several
departments will accelerate the accomplishment of tasks
as described. For a review of load-balancing schemes
for distributed computing systems, see Kushwaha and
Gupta (2015). For the use of cooperative and noncooper-
ative game theory in modeling load-balancing problems
in distributed computing systems, see Penmatsa and
Chronopoulos (2011) and the references therein.

The formation of a partnership among companies or
other entities necessitates not only a plan for joining
forces toward the achievement of the ultimate goals
but also an agreement regarding the revenue, cost, or
load allocation among the partners. Here is where the
theory of cooperative games can be helpful as it pro-
vides a number of revenue and cost allocation schemes
that guarantee the stability of the partnership or satisfy
some fairness properties that players would like to
have. The decision regarding the allocation scheme to
be used must be acceptable by all players as otherwise,
the alliance is put at risk.

A cooperative game is defined by a set of players and
a characteristic (coalitional) function that returns a cost for
any coalition of players. The main tasks while analyz-
ing a cooperative game are (i) to predict the formation
of coalitions and then, for any possible coalition, (ii) to
propose an allocation of its total cost among its mem-
bers. If it turns out that all players cooperate, then a sin-
gle coalition called the grand coalition, which contains
all the players, is formed. In such a case, the next ques-
tion that arises is how to allocate the total cost among
the players. Several cost allocation mechanisms have
been proposed in the literature, such that either fairness
or stability of the cooperation is achieved. Here, we
focus on the core, a notion proposed by Gillies (1953);
the core guarantees the stability of the grand coalition
by requiring that (i) the total cost incurred by the grand
coalition is allocated among all the players and (ii) the
total cost allocated to the members of any proper sub-
coalition does not exceed the cost that the subcoalition
would have paid if it defected from the grand coalition.
Thus, the set of core cost allocation vectors is defined by
2n linear constraints, where n is the number of players in
the grand coalition. Researchers usually face a real chal-
lenge to (partially) characterize the core or even to prove
that the core is nonempty, in view of the exponential
number of constraints that define the core.

In this paper, we consider the cooperative game of a
parallel machines scheduling (PMS) problem under job
splitting, where the characteristic function is to mini-
mize the scheduling cost, which is proportional to the

sum of completion times of the jobs. The game is
defined by a set of players, where each player is a man-
ufacturer that owns a nonempty set of machines. All
machines have the same capabilities, although their
speeds may be machine dependent. Each manufacturer
is also associated with a possibly empty set of jobs (i.e.,
orders submitted to him by clients). All machines are
capable of producing any job. The jobs differ in their
processing requirement time. The jobs can be partitioned
into any number of disjoint segments that can be pro-
duced on different machines at any order and even
simultaneously. Such jobs are called splitting jobs, and
the respective PMS problem is said to allow for job split-
ting. There are interesting applications for splitting jobs
in the industry, where the procedure of splitting a job is
called lot sizing and the split parts are also called sublots;
see Potts and Van Wassenhove (1992), which considers
the case where a job consists of many identical items.
An application of scheduling looms in the textile in-
dustry where splitting jobs is allowed is described in
Serafini (1996). The most prevalent application of job
splitting is in the hi-tech industry in distributed data
processing, which is discussed above.

We prove that in the PMS under the job-splitting
game, it is most probable that all manufacturers will join
forces and form the grand coalition and that the core of
the game and the core of any of its subgames are all
nonempty. If the management of the cooperation allo-
cates the total scheduling cost among the manufacturers
by using any core cost allocation, then it is most probable
that the stability of the cooperation will not be put at risk
as no coalition of manufacturers is able to gain by defect-
ing from the grand coalition. The only assumption that
is needed in our proof regarding the problem’s para-
meters is that the speeds of all the machines are positive
rational numbers.

The outline of the paper is as follows. Section 2 pre-
sents the relevant literature. Section 3 introduces some
notations and preliminaries. Section 4 defines the PMS
under the job-splitting game. Section 5 presents the
methodology of proving the total balancedness of the
PMS game in a number of subsections, where each is
devoted to a specific step. The general idea behind our
proof is to split the players of the game into job players,
resulting in a constrained PMS game in which each job is
a player, called a job player, where only certain coali-
tions of job players are feasible. Based on the con-
strained PMS game, we generate as many constrained
basic PMS games as the number of job players, whose
processing requirement vectors are linearly indepen-
dent zero-one vectors. The constrained PMS game is
then shown to be equal to a nonnegative linear combi-
nation of the constrained basic PMS games. Thereafter,
each job player of any constrained basic PMS game is
split into a number of unit-speed job players, each hav-
ing a processing requirement of zero or one, resulting

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2234 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

in a respective unit-speed constrained basic game whose
only feasible coalitions are those that consist of all des-
cendants of feasible coalitions of job players in the con-
strained PMS game. We show that even under the tighter
assumption where all coalitions of unit-speed job players
in any unit-speed constrained basic game are feasible, the
symmetric core of the game is infinitely large. In fact, we
identify a closed form nondegenerate line segment in the
symmetric core of any unit-speed constrained basic game
and therefore, also in the constrained basic game to which
it is associated. By working backward, using the presenta-
tion of the constrained PMS game as a nonnegative linear
combination of constrained basic games, we derive a sub-
set of the symmetric core of the constrained PMS game.
We complete the proof by merging back the job players of
the constrained PMS game into the players of the PMS
game while generating a subset of the symmetric core of
the PMS game. Section 6 concludes the paper, and it pro-
poses some future research directions.

2. Literature Review
There is a vast literature on scheduling; see Pinedo (2016)
for a state-of-the-art review on the subject. The literature
on cooperative scheduling games is divided into three
types. The first type is called permutation games; see Curiel
(2010, chapter 3 and the references therein). A permuta-
tion game is defined by n jobs, which need to be pro-
cessed on a single machine, where all jobs share the same
processing time. The underlying assumption in such
games is that given a certain processing sequence of the
jobs, the cost of processing job i, 1 ≤ i ≤ n, depends only
on its location in the sequence, and the total cost is addi-
tive in the jobs. Thus, the data of such a game consist of
the cost parameters, which are given by a square nonneg-
ative matrix with n rows; see Tijs et al. (1984). Another
game that is closely related to permutation games is the
assignment game, where the data matrix is not necessarily
a square matrix (Shapley and Shubik 1972).

The second type of scheduling games is called sequenc-
ing games; see Curiel (2010, chapter 4 and the references
therein). The class of sequencing games generalizes the
class of permutation games by allowing the jobs to be
associated with job-dependent processing times, and the
cost of each job depends on its completion time, which
consists of its waiting and service times. This stream of
research was initiated in Curiel et al. (1989), which con-
siders a game where each player has a single job and a
player-dependent linear cost function of its completion
time. Given an initial sequence of the jobs, the profit of
any coalition is defined as the maximum possible sav-
ings that the coalition can get by reordering the jobs in
the connected parts of the coalition, implying that the
completion times of the jobs that are not members of the
coalition are not affected. Reordering the jobs is done
iteratively, where at each iteration, two consecutive jobs

in a connected part of the coalition are switched. The
gain achieved by any such switch is equally divided
between the two players that own the jobs that were
switched. Accordingly, the algorithm is called the equal
gain splitting (EGS) rule. For a generalization of this
paper to general additive weakly increasing cost func-
tions, see Curiel et al. (1994). Other sequencing games
vary by their characteristic function; the set of require-
ments regarding the jobs, like ready times and due dates;
and/or allowed actions while forming coalitions. For
more details, see Curiel et al. (2002). Although the vast
majority of papers on sequencing games deal with
single-machine models, there are also some papers that
consider the parallel machines case; see Hamers et al.
(1999) and Slikker (2006).

The third type of scheduling games is called coopera-
tive PMS games, where players are manufacturers that
own machines. In addition, each manufacturer is com-
mitted to produce a (possibly empty) set of jobs. The
machines of all manufacturers have the same capabili-
ties (i.e., each can produce any job), and they differ only
in their speeds. PMS games allow the manufacturers to
collaborate in order to lower their production cost. Such
games differ in their characteristic function and the
type of jobs. In this paper, we consider the characteristic
function that returns, for any coalition of manufac-
turers, the minimum sum of completion times of their
jobs by using their machines. The jobs are assumed to
fulfill the job-splitting property (i.e., they can be split
into any number of disjoint segments that can be allo-
cated to the machines in any possible order and even
simultaneously on a number of machines). For polyno-
mially solvable PMS problems allowing job splitting,
see Xing and Zhang (2000) and Tahar et al. (2006).

Another PMS game that has been analyzed is the one
where the characteristic function minimizes the make-
span. The makespan of a schedule that starts at time 0 is
the point of time when the schedule ends. In the single-
machine case, the optimal makespan is independent of
the processing order of the segments of the jobs in con-
trast to the case where the objective function minimizes
the sum of the jobs’ completion times, where the cost is
heavily order dependent, even in the single-machine
case. Although the PMS game under the makespan
where job splitting is allowed was not directly men-
tioned in the literature, its solution can be deduced
from another game, which has the same form, namely
the M=M=1 queueing game analyzed in Anily and
Haviv (2010). Therefore, we conclude that the PMS
game under makespan belongs to the class of centraliz-
ing aggregation games, which has been proved in Anily
(2018) to have a nonempty core whose nonnegative
part is fully characterized. The PMS game under make-
span, where the property of job splitting is replaced by
the more restrictive property of preemptive jobs (i.e., it
allows for job preemptions but not for simultaneous

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2235

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

processing of a job on several machines), is also consid-
ered in Anily (2018). The paper proves that this game,
although is not a centralizing aggregation game, has a
nonempty core, and a polytope, which is a subset of its
nonnegative core, is fully characterized. To the best of
our knowledge, the two versions of the PMS makespan
game mentioned above are the only cooperative PMS
games that have been analyzed. Yet, the properties of
the core of each of these games are different from the
properties proved here for the PMS under the job-
splitting game, where the characteristic function mini-
mizes the sum of completions times of the jobs.
Although a subset of the nonnegative core is fully char-
acterized for the PMS games under the makespan, the
nonnegative core of the PMS under the job-splitting
game analyzed here might be empty, as will be shown
in Example 4. This difference calls for a different type
of analysis of the current game.

Interestingly, the property of job splitting also attracts
the attention of researchers from the perspective of non-
cooperative games, where no central controller that
has complete information on all the players exists and
issues of incentive incompatibility may arise; consider a
parallel multiprocessor computing system, where the
schedule prioritizes jobs according to a monotone order
of a certain property, like the remaining processing time
of the jobs. The players, in such a game, may manipu-
late the system by splitting, merging, or partially trans-
ferring some of their jobs to other players, disabling the
central controller monitoring the identity of the players.
See Moulin (2007, 2008) in the context of PMS with job
splitting.

3. Notations and Preliminaries
This section starts by presenting the PMS under the job-
splitting model, hereafter called the PMS game. We
summarize some concepts and preliminaries of the the-
ory of cooperative games and add a new definition that
will be helpful in the sequel.

The input of the PMS problem consists of (i) a given
set of identical machines, which may differ only in their
speeds; and (ii) a set of jobs, where each job can be pro-
cessed by any machine. The jobs are defined by their
processing requirement: namely, their processing time on
a unit-speed machine. In addition, we assume that job
splitting is allowed (i.e., the jobs can be partitioned and
even processed simultaneously on different machines).
The objective function is to minimize the scheduling
cost, which is proportional to the sum of completion
times of the jobs on the machines. Thus, in the sequel,
we refer to the objective function of minimizing the
sum of completion times of the jobs on the machines.
We only consider the contribution of the machines
because of their speed in achieving the ultimate goal of
minimizing the sum of the completion times of the jobs.

The common notation for PMS problems, proposed
in Graham et al. (1979), classifies problems by triplets
of a three-field notation α |β |γ, where (a) α ∈ {P, Q, R}
defines the machines’ environment, where α � P refers
to identical machines, α �Q refers to the more general
case of uniform machines where the machines are identi-
cal except for their speeds, and α � R refers to the most
general case of unrelated machines. (b) β�describes the
jobs characteristics as, for example, β � prmp if preemp-
tion is allowed. In Xing and Zhang (2000), β � split is
proposed for job splitting. (c) γ�refers to the objective
function. Some of the most common objective criteria
include Cmax for the makespan and

P
jCj (

P
jwjCj) for

the (weighted) sum of completion times. Thus, the prob-
lem considered here is denoted by Q |split |

P
jCj: Let m

be the number of machines and n be the number of jobs.
In Xing and Zhang (2000), it is proven that for the
Q |split |

P
jCj problem, there exists an optimal schedule

where each job is partitioned into m split parts that are
processed simultaneously on all the machines. There-
fore, the Q |split |

P
jCj problem is reducible to a single-

machine problem, namely 1 | · |
P

jCj, where the speed
of the machine is the sum of the speeds of the original
machines, denoted by v, and the processing time on this
machine of a job whose processing requirement is p is pv :

Cooperative games with transferable utilities are coali-
tional games defined by a pair (N, G), where N � {1, : : : ,
n} is a set of n players and the characteristic function G :

2N→ R, is a set function that for any coalition ∅ ⊆ S ⊆
N, returns a real number G(S), where G(∅) � 0:We refer
to G(S) as the cost of a set of players S ⊆N if its members
cooperate and form a coalition. The cost imposed on a
coalition is independent of what the players in N \ S are
doing. The coalition S�N is called the grand coalition. A
subgame (S, G) of a game (N, G), for any S ⊂N, is the
cooperative game whose set of players is S, and its char-
acteristic function is the set function G reduced to all
subsets of S. A game is called monotone if G(S) ≤ G(T) for
any S ⊆ T ⊆N. Under any partition of the grand co-
alition into disjoint sets S1, : : : , SK, the total cost of the
game is

PK
ℓ�1 G(Sℓ), meaning that the total cost is addi-

tive in the coalitional structure. A necessary condition for
all players of N to cooperate and form the grand coalition
is subadditivity of the game. A game (N, G) is subadditive
if and only if the characteristic function G is subadditive;
that is, for any two disjoint coalitions S, T ⊂N, G(S ∪ T)
≤ G(S) +G(T): Subadditivity implies that G(N) ≤

PK
ℓ�1

G(Sℓ) for any partition of N into disjoint coalitions {S1,
: : : , Sk}, k ≥ 1, meaning that the grand coalition is an
optimal formation of a coalitional structure.

If the grand coalition is formed, the players start bar-
gaining for a fair cost allocation scheme of the total
cost G(N): Let x̂ � (x1, : : : , xn) ∈Rn be a cost allocation

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2236 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

vector where xi, i ∈N, is the cost allocated to player i.
The efficiency condition, namely

Pn
i�1 xi � G(N), is pre-

liminary for a cost allocation vector. As mentioned in
Section 1, we focus here on the core of the game
denoted by C(N, G): The core, a notion attributed to
Gillies (1953), consists of all efficient cost allocation
vectors x̂ � (x1, : : : , xn) that satisfy the additional 2n � 1
coalitional rationality conditions of the form,

P
i∈Sxi ≤

G(S), one for each proper subcoalition S (N: As men-
tioned in Section 1, any cost allocation that satisfies
this set of conditions suggests stability as no subset of
players can reduce its cost by leaving the grand coali-
tion. A cooperative game whose core is nonempty is
said to be balanced, and if its core and the cores of all its
subgames are nonempty, the game is totally balanced.

Except for the notion of job splitting, taken from the
theory on PMS, we use in this paper a different type of
splitting related to cooperative games, where each
player is split into (at least one) subplayers. The game
generated by the subplayers is defined on a subset of
all the coalitions of subplayers called feasible coalitions,
namely those coalitions of subplayers that consist of all
the descendants of a certain coalition of players in the
original game. A game that is defined on a subset of all
possible coalitions of its grand coalition is called a con-
strained game. The grand coalition of the constrained
game is a feasible coalition by definition. As we are
going to see, splitting players of a PMS game may result
in a more tractable game than the original one.
Definition 1. Given a cooperative game (N, G) with n
players, the game (Ñ, G̃) is said to be generated from
the game (N, G) by splitting players of N if we have
the following.
• There is a splitting scheme Π�that maps N into Ñ ,

which satisfies the following properties. (i) For any i ∈N,
Π(i)≠ ∅, (ii) for any i, j ∈N, i ≠ j, Π(i) ∩Π(j) � ∅, and
(iii) ∪i∈NΠ(i) � Ñ .
• For any coalition S ⊆N, it holds that G(S) � G̃(∪i∈S

Π(i)).

Except for the degenerate case where each player of
the game (N, G) is split into a single subplayer, not all
coalitions of the subplayers’ game (Ñ, G̃) correspond
to a coalition of players in the game (N, G): We call a
coalition of the game (Ñ, G̃) a feasible coalition if it is
a collection of all subplayers that are descendants of a
certain coalition of players in the original game.

Definition 2. Let (N, G) be a cooperative game, and let
(Ñ , G̃) be a game that is generated from the game (N, G)
by splitting players using a splitting scheme Π. For any
coalition S ⊆N, the set of subplayers ∪i∈SΠ(i) is a feasi-
ble coalition of the game (Ñ, G̃): Denote the set of all fea-
sible coalitions of the game (Ñ, G̃) by C. Let the game

(Ñ,C, G̃) be the constrained game of the game (Ñ, G̃), to
feasible coalitions of Ñ:

The following definition follows naturally from Defi-
nition 2.

Definition 3. The constrained game (Ñ,C, G̃) is bal-
anced if and only if the set of cost allocation vectors of
the game (Ñ , G̃) that satisfy the efficiency constraint
and the coalitional rationality constraints for all feasi-
ble coalitions, that is, all coalitions of C, is nonempty.

Example 1. Let (N, G) be a cooperative game with two
players, N � {a, b}: Suppose that player a is split into
two players: a1 and a2: Let Ñ � {a1, a2, b}: The con-
strained game (Ñ ,C, G̃) is associated with three feasible
coalitions in C, namely {a1, a2}, {a1, a2, b}, and {b}, which
correspond to the three coalitions of the game (N, G),
whereas the additional four coalitions of the game (Ñ ,
G̃), namely {a1}, {a2}, {a1, b}, and {a2, b}, are infeasible
coalitions of (Ñ ,C, G̃):

The following observation follows directly from
Definition 3.

Observation 1. If the game (Ñ , G̃) is totally balanced,
then the constrained game (Ñ,C, G̃) is also totally balanced,
and as the constrained game (Ñ ,C, G̃) is equivalent to the
game (N, G), the game (N, G) is also totally balanced.

The literature describes a few classes of games that
have been proven to be totally balanced. The most
structured class of games that allow for a full charac-
terization of the core is the class of concave games.

Definition 4. A game (N, G) is concave if its characteristic
function is concave (i.e., for any two coalitions S ⊂ T ⊂N
and i ∈N \T, G(S ∪ {i})�G(S) ≥ G(T ∪ {i})�G(T)).

Concave games are subadditive but not the other
way around. It is shown in Shapley (1971) that the
core of a concave game possesses n! extreme points,
each of which being the marginal contribution vector
of the players for one of the n! permutations of the
players. A few cooperative games in operations man-
agement have been proven to be concave; see, for
example, Anily and Haviv (2007) and its generaliza-
tion in Zhang (2009) that considers joint replenish-
ment models of one warehouse and several retailers.
However, the Q |split |

P
jCj game considered here is

not concave, as will be proven in Section 4.

4. The PMS Under the Job-Splitting
Cooperative Game

Let N � {1, : : : , n}, n ≥ 2, be a set of players. Each player
i ∈N is associated with (1) a set J({i}) of ψ({i}) ≥ 1 jobs
and (2) a nonempty set M({i}) of machines whose total
speed is positive. We further assume that for each

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2237

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

player i ∈N, the speed of her machines in M({i}) is a
positive rational number, implying that the total speed
of the machines in M({i}), denoted by v({i}), satisfies
v({i}) ∈Q++: For a coalition S ⊆N, let J(S), ψ(S), and
M(S) be the set of jobs, the number of jobs, and the set
of machines of the players of S correspondingly, and let
v(S) be the total speed of the machines in M(S): As dis-
cussed in Section 3, the number of machines in M({i}) is
immaterial (i.e., we can assume, without loss of gener-
ality (w.l.o.g.), that each player i ∈N is associated with
a single machine or alternatively, with ψ({i})machines;
i.e., one machine for each job). Note that our model
allows the machines to also be associated with rational
operating costs. Let ôc({i}) ∈Q++ be the operating cost
of the machines of player i. In such a case, we redefine
the speed of the machines of player i to be v({i})=
ôc({i}): Therefore, in the sequel, we do not consider the
machines’ operating costs explicitly.

Any job j ∈ J(N) belongs to a certain player in N, called
its father, and therefore, is denoted by f (j) ∈N: In addi-
tion, each job j ∈ J(N) is associated with its processing
requirement, denoted by pj ≥ 0, which is the processing
time duration of the job on a unit-speed machine (v�1).
Players are allowed to have no jobs. In such a case, we
say that the player has a single job whose processing
requirement is zero, called an empty job. Other players,
namely players that have real jobs, are not allowed to
have empty jobs. Note that the players that have no jobs
are the most valuable in the game as they contribute
their resource (machines) for processing of the jobs of
the other players without consuming any resources as
they do not have jobs to process. As mentioned in Sec-
tion 3, under the job-splitting property, there exists an
optimal schedule where each job is partitioned into as
many split parts as the number of available machines,
and these parts are processed simultaneously on all the
machines. Therefore, the processing time of a job j ∈ J(N)
on the machines of coalition S is pj=v(S).

The jobs in the set J(N) are indexed from one up to
ψ(N) in a nondecreasing order of their processing require-
ments. Let (p1, : : : , pψ(N)) be the processing requirement
vector of the jobs of J(N), where ties are broken arbi-
trarily. Let p0 � 0: Note that the order of the jobs of J(N) is
preserved in all subsets of J(N), and that is, if the index of
job j precedes the index of job k in J(N), then this will be
the case in all subsets of J(N) that contain both jobs j and k.
Accordingly, the jobs of J(S), for any coalition S ⊆N,
are indexed from one up to ψ(S): In particular, let pS

k be
the processing requirement of the kth job of J(S): Let jSk ,
0 ≤ k ≤ ψ(S), be the index in J(N) of the kth job of J(S),
where jS0 � 0: Thus, the processing requirement pS

k of
the kth job in J(S), 1 ≤ k ≤ ψ(S), is equal to pjSk

, where
1 ≤ k ≤ jSk ≤ ψ(N)� (|S | � k): As a consequence, the se-
quence (pj)

ψ(N)
j�1 coincides with the sequence (pN

j)
ψ(N)
j�1 :

According to the shortest processing time (SPT) rule (see
Smith 1956), the minimum sum of completion times of
jobs on a single machine is achieved by processing the
jobs in a nondecreasing order of their processing require-
ments. Let P : 2N→R be the set function that returns, for
any coalition of players S ⊆N, the minimum sum of
completion times of the jobs of J(S) on the machines in the
set M(S). Following the results in Xing and Zhang (2000)
and as explained, P(S) is achieved by splitting up the jobs
of J(S) into |M(S) | split parts that are processed simulta-
neously, according to the SPT rule, on all the machines in
the set M(S), whose total speed is v(S):

In Section 4.1, we present a few properties of the PMS
game (N, P) that are based on the optimal solution of the
scheduling problem Q |split |

P
jCj: In Section 4.2, we first

present the characteristic function P of the PMS game
that follows directly from the structure of the optimal
solution of the PMS Q |split |

P
jCj problem. Then, we

present an equivalent formulation of the PMS game as a
constrained PMS game whose players are the jobs of
J(N), under a set of feasible coalitions of J(N):

4.1. Some Properties of the PMS Game (N, P)

Claim 1. The PMS game (N, P) is subadditive.

Proof. In order to prove the subadditivity of the PMS
game (N, P), we need to show that for any two disjoint
coalitions of players S, T ⊂N, P(S ∪ T) ≤ P(S) +P(T):
Note that P(S ∪ T) is the solution of a minimization
problem of the sum of completion times of the jobs in
J(S ∪ T) by the machines in M(S ∪ T). The solution of
P(S) +P(T), on the other hand, is achieved by a sched-
ule of the jobs J(S ∪ T) on the machines of M(S ∪ T)
under the restriction that the jobs of S and T are
assigned according to the set they belong to, so that the
jobs of J(S) are processed by the machines of M(S) and
the jobs of J(T) are processed by the machines of M(T):
Thus, the cost P(S) +P(T) is the cost of optimally sched-
uling J(S) on M(S) and J(T) on M(T), implying that it is
the cost of a feasible but not necessarily optimal sched-
ule for the minimization problem that P(S ∪ T) is its
solution, implying that P(S ∪ T) ≤ P(S) +P(T): w

The next two examples show that the PMS game is
neither monotone nor concave.

Example 2. Consider the instance N � {1, 2}, v({1}) � 2,
v({2}) � 1, J({1}) � {1}, J({2}) � {2}, p1 � 1, p2 � 2. Thus,
P({1}) � 1

2 , P({1, 2}) � 4
3 , P({2}) � 2, implying that P({1})

< P({1, 2}) < P({2}), and therefore, the PMS game is not
monotone.

Example 3. Consider the instance N � {1, 2, 3}, v({i})
� 1, and J({i}) � {i} for i ∈N, p1 � p2 � 1, and p3 � 2. Let
S � {3}, T � {2, 3}, and i�1. Then, P(S ∪ {i})�P(S) � 4

2

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2238 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

�2 � 0 < 1
3 �

7
3�

4
2 � P(T ∪ {i})�P(T), proving that the

PMS game (N, P) is not concave.

There exist several cooperative games that were
proved to be totally balanced by identifying a core
allocation where each player is assigned a simple non-
negative function of its parameters. Such a cost alloca-
tion, by definition, is symmetric (i.e., any two identical
players will be assigned exactly the same cost). For
example, in Anily and Haviv (2010), each server is
associated with an M=M=1 queueing system defined
by its service rate and its arrival rate. The servers can
form coalitions by pooling their service capacities to
serve the union of the respective individual streams of
customers. The characteristic function value of any
coalition is its steady-state mean number of customers
in the pooled system. The first observation of the paper
is that a simple symmetric cost allocation vector that
assigns each server the system’s steady-state number
of customers of that server when all servers cooperate
and form the grand coalition is in the core. We note that
the core of the queueing game may also contain alloca-
tion vectors with some (but not all) negative entries, but
its nonnegative core (i.e., the part of the core that consists
of nonnegative vectors) is nonempty. Similarly, the non-
negative Bird cost allocation for the minimum spanning
tree game (see Bird 1976) and the allocation provided for
pooling risk games in Alon and Haviv (2020) are simple
nonnegative core allocations for the associated games.
We emphasize that there is nothing special about non-
negative core allocations, as identifying any cost alloca-
tion in the core proves that the game is totally balanced.
As shown by the next example, for the PMS game, the
set of nonnegative core allocations, hereafter called the
nonnegative core, might be empty, implying that there
exist instances of the PMS game in which any core
cost allocation contains negative entries, meaning that
some players will be paid by other players. One of the
reasons for this phenomenon is that a player that
owns a speedy machine but her jobs are relatively
short might be valuable as other players may be inter-
ested in cooperating with her in order to reduce the
cost of their coalition. In such a case, some players
may be ready to pay such “valuable players” in order
to persuade them to join their coalition.

Example 4. Consider the following instance of the PMS
game (N, P): N � {1, 2, 3}, v({1}) � 10, v({2})� v({3})� 1,
J({i}) � {i} for i�1, 2, 3, and p1 � 1, p2 � p3 � 10, imply-
ing the following characteristic function values: P({1})�
1
10 , P({2})� P({3})�10, P({1, 2})� P({1, 3})� 12

11 , P({2, 3})
� 15, and P({1, 2, 3}) � 2:75. The vector x→ � (x1, x2, x3) �

(�1:25, 2, 2) satisfies the efficiency and all the coalitional
rationality conditions, implying that the instance is bal-
anced. We show that the nonnegative core allocation
set of this instance is empty. Suppose by contradiction

that x→ � (x1, x2, x3) is a nonnegative core allocation. As
x1 ≥ 0, the coalitional rationality constraint for coalition
{1, 2}, namely x1 + x2 ≤

12
11 , implies that x2 ≤

12
11 : By sym-

metry, also x3 ≤
12
11 : By summing up the last two in-

equalities with the stand-alone condition x1 ≤ 0:1, we
obtain that x1 + x2 + x3 ≤

251
110 < 2:282 < P(N), contradict-

ing the efficiency constraint. Thus, the nonnegative part
of the core of this instance is empty.

4.2. The PMS Game (N, P) and the Constrained
PMS Game (J(N),C,F)

The well-known cost set function P : 2N→R of the sched-
uling problem Q |split |

P
jCj proposed in Smith (1956) is

given by

P(S) � 1
v(S)

Xψ(S)

k�1
(ψ(S)� k+ 1)pS

k

�
1

v(S)
Xψ(S)

k�1
(ψ(S)� k+ 1)pjSk

: (1)

The PMS game (N, P) whose characteristic function is
given in (1) can also be considered as a constrained
PMS game (J(N),C, F) whose players are the jobs of
J(N), now called job players. As described, the players
of N are split (see Definition 1) into job players in the
set J(N): The set C contains all feasible coalitions J(S) ⊆
J(N), namely coalitions of job players that are descen-
dants of a coalition of players S ⊆N: More specifically,
each job player is an offspring of a certain player i ∈N;
the feasible coalitions contain all the offspring of the
players in some coalition S ⊆N. Each job player j ∈ J(N)
is associated with its processing requirement pj ≥ 0: As
mentioned at the beginning of this section, players that
do not have jobs are assumed to have a single empty
job. In order to complete the definition of the con-
strained PMS game, we need to associate a speed with
the (virtual) machine of each job player. Recall that the
speed of the machine of any player i ∈N is a positive
rational number. We assume w.l.o.g. that in the con-
strained PMS game (J(N),C, F), each of the ψ({i}) job
players in J({i}), i ∈N, owns a machine whose speed is
v({i})=ψ({i}) ∈Q++, namely the speed v({i}) of the
machine of player i, i ∈N, is equally allocated among
its ψ({i}) job players in J({i}), also implying that the
speeds of the machines of the job players are rational
numbers.

The characteristic function satisfies the following
equation for any coalition S ⊆N :

F(J(S)) � P(S):

Note that all properties of the PMS game (N, P) men-
tioned in Section 4.1 continue to hold for the constrained
PMS game (J(N),C, F):According to Observation 1, if the

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2239

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

PMS game (J(N), F) is totally balanced, then the con-
strained PMS game (J(N),C, F) is also totally balanced.

For the rest of the analysis, we assume that the speeds
of the machines of all the job players are natural num-
bers. This assumption is w.l.o.g. as it can be achieved by
rescaling the time unit.

Assumption 1. The speeds of the machines of all job
players in J(N), that is, the ratios v({i})=ψ({i}), for i ∈N,
are natural numbers.

Next, we present an alternative formulation of the
characteristic function F for any feasible coalition of job
players as a function of the nonnegative marginal in-
crement vector of the processing requirement vector
(p1, : : : , pψ(N)): For this sake, let ∆j � pj� pj�1 ≥ 0 be the
marginal increment of the processing requirement of
job player j ∈ J(N), implying that pj �

Pj
ℓ�1 ∆ℓ: Recall

that for a given feasible coalition J(S) ∈ C and the ℓth job
player in J(S), 1 ≤ ℓ ≤ ψ(S), the index jSℓ�returns the
index of that job player in J(N): In addition, let ∆S

ℓ�be the
marginal increment of the processing requirement of
job player jSℓ�with respect to coalition J(S), where jS0 � 0,
implying that

∆S
ℓ � pjS

ℓ
� pjS

ℓ�1
�
XjS
ℓ

t�jS
ℓ�1+1

∆t: (2)

Thus,

P(S) � F(J(S)) �
Xψ(S)

k�1
CjSk
�

1
v(S)

Xψ(S)

k�1

Xk

ℓ�1
pjS
ℓ

�
1

v(S)
Xψ(S)

k�1

Xk

ℓ�1

Xℓ

t�1
∆S

t

�
1

v(S)
Xψ(S)

k�1

Xk

ℓ�1
(k� ℓ + 1)∆S

ℓ

�
1

v(S)
Xψ(S)

ℓ�1

Xψ(S)

k�ℓ
(k� ℓ + 1)∆S

ℓ �
1

v(S)
Xψ(S)

ℓ�1
∆S
ℓ

Xψ(S)�ℓ+1

k�1
k

�
1

v(S)
Xψ(S)

ℓ�1

(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)
2 ∆S

ℓ : (3)

In order to gain some insight into (3), note that the ℓth
marginal increment of the processing requirement of job
player ℓ ∈ {1, : : : ,ψ(S)}, namely ∆S

ℓ , should be summed
up while considering the completion time of the last
ψ(S)� ℓ+ 1 job players of S: that is, job players k ∈ {jSℓ ,
: : : , jSψ(S)} ⊆ J(N): Therefore, when considering the com-
pletion time of any job player k ∈ {jSℓ , : : : , jSψ(S)}, ∆S

ℓ�is
taken into account k� ℓ+ 1 times. Thus, in total, ∆S

ℓ�
should be counted 1+ 2+⋯ +(ψ(S)� ℓ+ 1) � 0:5((ψ�
(S)� ℓ+ 2)(ψ(S)� ℓ+ 1)) times in (3).

For any feasible coalition J(S) � {jS1 , : : : , jSψ(S)} ∈ C, and
for any job player j ∈ J(N), let ℓS(j) � {ℓ : jSℓ�1 ≤ j < jSℓ } be
the smallest indexed job in J(S) whose index in J(N) is at
least as large as j. If j > jSψ(S), then ℓS(j) �def

ψ(S) + 1: In
addition, let

KJ(S)(j) � ψ(S) + 1� ℓS(j): (4)

Note that KJ(S)(j) is the number of job players of J(S)
whose index in J(N) is at least as large as j.

Lemma 1 presents an alternative expression of the
characteristic function value of any feasible coalition
J(S) ∈ C given in (3) by using the values KJ(S)(j), for j � 1,
: : : ,ψ(N), defined in (4). This presentation will turn out
to be helpful later.

Lemma 1. The characteristic function value of any feasible
coalition J(S) ∈ C in the constrained PMS game (J(N),C, F)
is equal to the following nonnegative linear combination of
the marginal increments of the processing requirements of
the jobs in J(N) :

P(S) � F(J(S)) �
Xψ(S)

ℓ�1
CjS
ℓ
�
Xψ(N)

j�1
∆j

KJ(S)(j)(KJ(S)(j) + 1)
2v(S)

:

(5)

Proof. Define jS0 � 0. Using (2) and (4) (recall that for
j > jSψ(S), KJ(S)(j) � 0), we have

Xψ(S)

ℓ�1
(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)∆S

ℓ

�
Xψ(S)

ℓ�1
(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)

XjS
ℓ

t�jS
ℓ�1+1

∆t

�
Xψ(S)

ℓ�1

XjS
ℓ

t�jS
ℓ�1+1

(ψ(S) + 1� ℓ)(ψ(S) + 2� ℓ)∆t

�
X
jS
ψ(S)

j�1
(ψ(S) + 1� ℓS(j))(ψ(S) + 2� ℓS(j))∆j

�
Xψ(N)

j�1
∆jKJ(S)(j)(KJ(S)(j) + 1),

and the proof is completed by (3). w

5. The PMS Game (N, P) Is
Totally Balanced

The total balancedness proof of the PMS game is a con-
structive one. The proof consists of a few steps that gen-
erate a line segment within the symmetric core of the
game as described.

1. In Section 5.1.1, we define ψ(N) constrained basic
(CB) PMS games, denoted by (J(N),C, F(j)), j � 1: : :ψ(N),

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2240 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

that share the same set of ψ(N) job players and set of
feasible coalitions as in the constrained PMS game. The
processing requirement vector of the constrained basic
PMS game (J(N),C, F(j)), j � 1: : :ψ(N), is the nonde-
creasing zero-one vector whose first j�1 entries are
zero. The characteristic function value of the constrained
PMS game (J(N),C, F) for any feasible coalition J(S),
namely F(J(S)), is proved to be a weighted sum of the
characteristic function values F(j)(J(S)) for j � 1: : :ψ(N),
where the corresponding weights are the marginal pro-
cessing requirements ∆j � pj � pj�1 of the job players in
J(N):

2. In Section 5.1.2, based on Assumption 1, each job
player ℓ ∈ J(N) of a constrained basic PMS game, (J(N),
C, F(j)), j � 1: : :ψ(N), is split into unit-speed job players.
Consequently, we obtain v(N) unit-speed job players,
where similarly as in the constrained basic PMS game
(J(N),C, F(j)), ψ(N)� j+ 1 of them are assigned a unit
processing requirement, whereas the others are assigned
a zero processing requirement. Hence, we obtain ψ(N)
unit-speed constrained basic PMS games, called for short
UCB PMS games, each having v(N) unit-speed job players
whose processing requirement is in {0, 1}, and their set of
feasible coalitions consists of all the unit-speed job players
that are descendants of a certain feasible coalition J(S) ⊆
J(N) of the constrained PMS game. Yet, we consider a sub-
set of the core of each UCB PMS game by assuming that
all the 2v(N) coalitions of the v(N) unit-speed job players
are feasible and show that this subset of the core is none-
mpty. We call the UCB PMS games where all coalitions of
unit-speed players are feasible unit-speed {0, 1} PMS games.

3. In Section 5.2 and Theorem 2, we fully character-
ize the symmetric core of unit-speed {0, 1} PMS games,
namely PMS games in which all job players have a
unit-speed machine and their processing requirement
is zero or one.

4. In Section 5.3, we wrap up the proof. Theorem 4,
the key theorem of the paper, proves that the PMS
game is totally balanced. Thereafter, by combining
the symmetric cores of the ψ(N) unit-speed {0, 1} PMS
games according to the nonnegative linear combination
of the constrained basic PMS games, mentioned in the
first item of this description, we derive a line segment
in Rψ(N), which is an infinitely large subset of the sym-
metric core of the constrained PMS game.

Figure 1 presents a tree diagram that shows the rela-
tions among the various games.

5.1. The Constrained Basic PMS Games
In this subsection, we present auxiliary PMS games
that will enable us to prove the total balancedness of
the PMS game.

5.1.1. The Constrained Basic PMS Games. We start
by presenting ψ(N) games of a special form called con-
strained basic (CB) PMS games. The constrained PMS
game (J(N),C, F) shares with the CB PMS games the
same set of job players J(N), the same speed of the
machines, and the same set of feasible coalitions C: In
other words, the constrained PMS game and the ψ(N)
CB PMS games differ only in their processing require-
ment vectors. Let (J(N),C, F(j)), j � 1: : :ψ(N), be the jth

Figure 1. A Tree Diagram That Represents the Relations Among the Various Games

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2241

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

CB game. Its processing requirement vector is the non-
decreasing 0� 1 vector whose first j�1 entries are
equal to zero, implying that its marginal processing
requirement vector u→

j
is the jth unit vector in Rψ(N),

namely the vector u→
j
j � 1, and u→

j
k � 0 for k ≠ j: By using

Lemma 1, we conclude that the characteristic function
value of the CB PMS game (J(N),C, F(j)) for any feasible
coalition, J(S) ⊂ J(N), is given by

F(j)(J(S)) �
Xψ(N)

k�1
u→

j
k
KJ(S)(k)(KJ(S)(k) + 1)

2v(S)

�
KJ(S)(j)(KJ(S)(j) + 1)

2v(S) : (6)

By combining Equations (5) and (6), we get the follow-
ing theorem.

Theorem 1. The constrained PMS game (J(N),C, F), satisfies

F(J(S)) �
Xψ(N)

j�1
∆jF(j)(J(S)): (7)

In view of Theorem 1, in order to prove the total balanc-
edness of the constrained PMS game (J(N),C, F), it is suf-
ficient to prove the total balancedness of the CB PMS
games. This observation follows immediately from two
properties that the core of a cooperative game satisfies;
see Peleg and Sudhölter (2007, pp. 19–21). In order to
simplify, we present the properties in their least general
form that fits the needs of our proof. For this sake, let
C(M, G) be the (possibly empty) core of a cooperative
game (M, G): Then, (i) the core satisfies the covariant
under strategic equivalence property; that is, if G2 � αG1,
for α > 0, then C(M, G1) � αC(M, G2): (ii) The core satis-
fies the superadditivity property; that is, C(M, G1) +C(M,
G2) ⊆ C(M, G1 +G2):

As it turns out, the CB PMS games (J(N),C, F(j)), j �
1: : :ψ(N), are still too tricky to analyze. Yet, as the
speed of the machine of each job player in J(N) is a natu-
ral number, we further simplify the CB PMS games in
Section 5.1.2 by splitting each job player into unit-speed
job players.

5.1.2. The UCB PMS Games. In this subsection, we
associate with each CB PMS game (J(N),C, F(j)), j � 1
: : :ψ(N), a unit-speed constrained basic PMS game, which
is a CB PMS game where each job player has a unit-
speed machine. For this sake, consider a certain CB PMS
game (J(N),C, F(j)), j � 1: : :ψ(N), and a job player ℓ ∈
J(N) whose father is player i ∈N, and that is, f (ℓ) � i:
Recall that the speed of the machine of job player ℓ,
denoted by v′({ℓ}) � v({i})=ψ({i}), is assumed to be a
natural number; see Assumption 1. In order to get a
UCB PMS game, we split each job player ℓ ∈ J(N) into

v′({ℓ}) unit-speed job players, where one of them is asso-
ciated with the same processing requirement (zero or
one) as its father (i.e., job player ℓ ∈ J(N),) and the others
are associated with a zero processing requirement. Let
JU(N) �def

{1, : : : , v(N)} be the resulting set of v(N) unit-
speed descendants of J(N): The set of feasible coalitions
of each of the ψ(N) UCB PMS games is denoted by CU,
where |CU | � 2n, exactly as the number of coalitions in
the original PMS game (N, P): In fact, any coalition S ⊆N
is associated in each of the ψ(N) CB PMS games with the
coalition J(S) ⊆ J(N), and J(S), in turn, is associated with
the coalition of unit-speed job players JU(S) ⊆ JU(N) in the
UCB PMS games. Applying this procedure on each CB
PMS game (J(N),C, F(j)), j � 1: : :ψ(N), generates ψ(N)
UCB PMS games, each of which is defined on the set
JU(N) of unit-speed job players under the set of feasible
coalitions CU: Let (JU(N),CU, F(j)U), j � 1: : :ψ(N), be the
UCB PMS games that are associated with the PMS game
(N, P): Note that the ψ(N) UCB PMS games (JU(N),
CU, F(j)U) are identical to each other, except for their zero-
one processing requirement vectors. More precisely, in the
UCB PMS game (JU(N),CU, F(j)U), ψ(N)� j+ 1 job players
are associated with a unit processing requirement, where
the others have a zero processing requirement.

In Section 5.2, we consider UCB PMS games in which
all coalitions are allowed. Each job player of such a game
owns a unit-speed machine and a job whose processing
requirement is in {0, 1}. We call such games unit-speed
{0, 1} PMS games. We fully characterize the symmetric core
of these games, proving that they are totally balanced.

5.2. The Symmetric Core of Unit-Speed {0, 1}
PMS Games (NU,FU)

The whole symmetric core of a unit-speed {0, 1} PMS game
is derived in this subsection.

Definition 5. A unit-speed {0, 1} PMS game (NU, FU) is
a PMS game in which each job player owns a machine
of unit speed and a job whose processing requirement
is either zero or one; the job players whose processing
requirement is zero are called unit-speed 0 job players,
and the others are called unit-speed 1 job players.

In what follows, we fully characterize the nonempty
symmetric core of a unit-speed {0, 1} PMS game (NU,
FU) with n ≥ 2 job players, where z ≥ 0 is the number of
unit-speed 0 job players and u � n� z ≥ 0 is the number
of unit-speed 1 job players. We first consider the two
trivial cases where zu � 0, and that is, the unit-speed job
players are all of the same type, implying a single symmet-
ric core allocation; if z � n, all coalitions of NU have a zero
cost, and therefore, assigning a cost 0 to all job players is
the only symmetric cost allocation in the core. If u � n, all
job players are unit-speed 1 job players, implying that the
cost of the grand coalition is n(n+ 1)=2n, and therefore,

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2242 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

the only symmetric core allocation assigns a cost
n+ 1

2n � 0:5 1+ 1
n

� �

to each job player.
In general, the cost of the grand coalition is

FU(NU) �
u(u + 1)
2(u + z) �

u(u + 1)
2n :

The cost of any other coalition is computed in a similar
way. In the rest of this subsection, we assume that zu ≥
1, and that is, the grand coalition contains both types of
unit-speed job players, implying that the symmetric core
of the game, if it is nonempty, consists of a collection of
pairs (α,β) ∈R2, where α�is the cost allocated to unit-
speed 0 job players and β�is the cost allocated to unit-
speed 1 job players.

In unit-speed {0, 1} PMS games, unit-speed 0 job players
are the most valuable players as they do not have jobs to
process, but they own machines that speed up the com-
pletion time of the jobs of the other job players. Thus, we
expect that if the core is nonempty, in any symmetric core
cost allocation, the unit-speed 0 job players will be com-
pensated for by the unit-speed 1 job players in order to
persuade them to join the grand coalition. This observa-
tion is justified by the fact that FU(S) � 0 for any coalition
S of unit-speed 0 job players, implying that in any sym-
metric core cost allocation, the unit-speed 0 job players
will be compensated for by the unit-speed 1 job players or
they will pay nothing for joining the grand coalition; that
is, any core allocation (α,β) satisfies α ≤ 0 and β ≥ 0:
From now on, we refer to the compensation �α ≥ 0 that
unit-speed 0 job players get for joining the grand coalition
rather than to the corresponding cost.

In Observation 2, we provide an upper bound on
the compensation �α ≥ 0 paid to the unit-speed 0 job
players and a lower bound β ≥ 0 on the cost imposed
on unit-speed 1 job players. The upper bound on �α�
is based on the fact that in any cooperative game, a
player cannot expect to get a compensation that is
higher than the marginal reduction in the total cost
when this player is the last to join the grand coalition.
Similarly, the lower bound on β�is based on the fact
that a player cannot expect to pay less than the mar-
ginal increase in the cost of the grand coalition when
this player is the last to join the grand coalition.

Let c(z, u) for 0 ≤ z ≤ n, and u � n� z, be the cost of
a coalition that consists of z (u) unit-speed 0 (1) job
players in a unit-speed {0, 1} PMS game. Observation
2 follows directly from the discussion.

Observation 2. Suppose that the symmetric core of a
unit-speed {0, 1} PMS game with z (u) unit-speed 0 (1)
job players is nonempty. Then, any symmetric core
allocation (α,β) of the game satisfies

1. �α ≤�(c(z, u)� c(z� 1, u)) and

2. β ≥ c(z, u)� c(z, u� 1).
Let �α̃1 �

def
�(c(z, u)� c(z� 1, u)) and β̃2 �

def c(z, u)�
c(z, u� 1): In the next theorem, we prove that the sym-
metric core of unit-speed {0, 1} PMS games is nonempty
and that the bounds specified in Observation 2 are
tight; that is, there exist core allocations in which (i)
�α̃1 assigns the maximum compensation to the unit-
speed 0 job players and thus, the maximum cost to
unit-speed 1 job players and (ii) β̃2 assigns the mini-
mum cost to the unit-speed 1 job players and thus, the
minimum compensation to the unit-speed 0 job players.
For given z ≥ 1 and u ≥ 1, let

α1 ��
u(u+ 1)

2(u+ z)(u+ z� 1)

β1 �
(u+ 1)(u+ 2z� 1)
2(u+ z)(u+ z� 1) (8)

α2 ��
u(u� 1)(z� 1)

2z(u+ z)(u+ z� 1)

β2 �
u(u+ 2z� 1)

2(u+ z)(u+ z� 1) : (9)

It is easy to verify that α̃1 and β̃2, as defined, are equal
to α1 and β2, respectively. The values of α2 and β1 are de-
rived by the efficiency property of the core. We prove
now that unit-speed {0, 1} PMS games are totally bal-
anced by fully characterizing their symmetric core. In
Theorem 2, (8) and (9) will be proven to be the two ex-
treme symmetric core allocations. The theorem will also
imply that the convex hull of these two cost allocations is
the whole symmetric core of a unit-speed {0, 1} PMS
game with z (u) unit-speed 0 (1) job players. We defer the
technical proof of Theorem 2 to the appendix.

Theorem 2. Any symmetric core allocation of a unit-speed
{0, 1} PMS game (NU, FU), where |NU | � n � z+ u, zu > 0,
assigns a cost α�(β) to each unit-speed 0 (1) job player, such
that α � ρα1 + (1� ρ)α2, β � ρβ1 + (1� ρ)β2 for ρ ∈ [0, 1],
for α1 and β1 defined in (8) and α2 and β2 defined in (9). If
zu � 0, the core is a singleton; if u � 0, each unit-speed 0 job
player is assigned a cost α � 0, and if z � 0, each unit-speed 1
job player is assigned a cost β � 0:5+ 1=2n:

As stated in Theorem 2, for any given unit-speed {0, 1}
PMS game with z> 0 unit-speed 0 job players and u> 0
unit-speed 1 job players, all cost allocations in the convex
hull of (α1,β1) and (α2,β2) are within the symmetric core
of the game. Yet, not all cost allocations are identical in
terms of fairness. As mentioned, the cost allocation (α1,
β1) is the best to unit-speed 0 job players but the worst
for unit-speed 1 job players, where the opposite holds
for the cost allocation (α2,β2), which is the worst for the
unit-speed 0 job players and the best for unit-speed 1
job players. In this sense, the core cost allocation that

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2243

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

may reduce to the minimum the gap between the un-
happiness of one type of job players versus the happi-
ness of the second type of job players is the average of
the two extreme cost allocations, namely the cost allo-
cation 0:5(α1 +α2,β1 + β2): The idea behind this cost
allocation is similar to the idea behind the well-known
EGS rule proposed as a core allocation for sequencing
games; see Curiel et al. (1989). Later, Hamers et al.
(1996) generalize the EGS rule and propose the split core
of a sequencing game by dividing the gain generated
by the switch of two players not necessarily equally.
We call the average of the two extreme core costs alloca-
tions for the unit-speed {0, 1} PMS game the equal cost
splitting rule or for short, the ECS rule. Thus, let

αECS � 0:5(α1 + α2)

βECS � 0:5(β1 + β2), (10)

implying Definition 6.

Definition 6. The equal cost splitting rule for unit-speed
{0, 1} PMS games generates the cost allocation (αECS,βECS):

As a side remark, note that the core of a unit-speed
{0, 1} PMS game also contains nonsymmetric cost allo-
cations. For example, consider a unit-speed {0, 1} PMS
game with three unit-speed job players; two of them
are zero job players, and the third is a one job player.
The nonsymmetric cost allocation that allocates one
of the zero job players a cost 0, the second a cost � 1

6 ,
and the one job player a cost 0.5 is within the core.

5.3. The Basic Core of the PMS Game (N, P)
In this subsection, we wrap up the results of this section
and prove that the PMS game (N, P) is totally balanced,
and then, we show how to derive a line segment within
the symmetric core of the game.

The next theorem follows from Theorem 1, the dis-
cussion following the theorem, and Observation 1.

Theorem 3. The PMS game (N, P) is totally balanced if
and only if the UCB PMS games (JU(N),CU, F(j)U), j � 1: : :
ψ(N), are totally balanced.

The next theorem is the key theorem of the paper.

Theorem 4. The PMS game (N, P) is totally balanced.

Proof. According to Theorem 2, unit-speed {0, 1} PMS
games are totally balanced, and therefore, in view of
Observation 1, the UCB PMS games (JU(N),CU, F(j)U), j � 1
: : :ψ(N), which are constrained unit-speed {0, 1} PMS
games, are also totally balanced, implying by Theorem 3
that the PMS game (N, P) is totally balanced. w

Definition 7. We call the symmetric part of the core of
the PMS game, which is generated by the procedure
described in this paper and in particular, by splitting
players into unit-speed players whose processing require-
ment is zero or one, the basic core of the PMS game.

In the rest of this subsection, we derive the basic core
of the PMS game (N, P), which is a line segment in Rn:

The following corollary follows from Theorem 2,
(8), and (9).

Corollary 1. The core of any UCB PMS game (JU(N),CU,
F(j)U), 1 ≤ j ≤ ψ(N), contains the core of the respective unit-
speed {0, 1} PMS game with v(N) unit-speed job players,
where uj � ψ(N)� j+ 1 is the number of the unit-speed 1 job
players and the rest (i.e., zj � v(N)� uj players) are unit-
speed 0 job players. Except for the case j�1 and v(N) �
ψ(N), its set of symmetric core allocations is a line segment in
Rv(N), which covers the following nondegenerate line segment
defined by the following two extreme points. The first (second)
point assigns a cost αj

1 (α
j
2) to each unit-speed 0 job player in

JU(N) and a cost βj
1 (βj

2) to each unit-speed 1 job player in
JU(N), where αj

1 < α
j
2 < 0 and βj

2 < β
j
1; that is,

αj
1 ��

(ψ(N)� j+ 1)(ψ(N)� j+ 2)
2v(N)(v(N)� 1) ,

βj
1 �
(ψ(N)� j+ 2)(2v(N)�ψ(N) + j� 2)

2v(N)(v(N)� 1) , (11)

αj
2 ��

(ψ(N)� j+ 1)(ψ(N)� j)(v(N)�ψ(N) + j� 2)
2v(N)(v(N)� 1)(v(N)�ψ(N) + j� 1) ,

βj
2 �
(ψ(N)� j+ 1)(2v(N)�ψ(N) + j� 2)

2v(N)(v(N)� 1) : (12)

If j� 1 and v(N) � ψ(N), then the UCB PMS game
(JU(N),CU, F(1)U) coincides with the constrained basic PMS
game (J(N),C, F(1)): In this game, all job players are unit
job players, and therefore, a single symmetric core allocation
exists, where each job player of JU(N), and of J(N), is allo-
cated a cost of (ψ(N) + 1)=2ψ(N):

Recall that each job player k ∈ J(N) is associated with
its father, namely player i ∈N, denoted by f (k) � i: In
the CB PMS games, job player k is assumed to have a
machine whose speed is v′({k}) � v({f (k)})=ψ({f (k)}): In
Lemma 2, except for the case considered in Corollary 1,
where j�1 and v(N) � ψ(N), we present, for any j �
1, : : : ,ψ(N), a line segment in Rψ(N), which is a subset of
the symmetric core of the CB PMS game (J(N),C, F(j)):

Lemma 2. The symmetric core of any CB PMS game
(J(N),C, F(j)) for j � 1, : : : ,ψ(N), except for the case j�1
and v(N) � ψ(N), considered in Corollary 1, contains the
convex hull of the following two nonidentical symmetric
cost allocation vectors (α̈j

t(k), β̈
j
t(k)) for t � 1, 2 :

α̈j
t(k) � v′({k})αj

t 1 ≤ k ≤ j� 1,

β̈
j
t(k) � β

j
t + (v′({k})� 1)αj

t j ≤ k ≤ ψ(N): (13)

Proof. Recall that the job players of any CB PMS game
(J(N),C, F(j)) for j � 1, : : : ,ψ(N), are split into unit-speed

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2244 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

{0, 1} job players, resulting in the corresponding UCB
PMS game (JU(N),CU, F(j)U), for which we identified in
Corollary 1 two nonidentical symmetric core allocations.
In the proof here, we fold back these two symmetric
core allocations into two symmetric core allocations of
the corresponding CB PMS game. The proof is based on
the fact that in order to generate the UCB PMS game
(JU(N),CU, F(j)U), any job player k ∈ J(N) whose speed is
v′(k) in the CB PMS game is split into v′({k}) unit-speed
job players in the (JU(N),CU, F(j)U) game, where one of
them has the same processing requirement as that of
its father, namely job player k, and the others have
zero processing requirements. By summing up the cor-
responding first (second) symmetric core allocations of
the unit-speed job players in the feasible coalition of
job player k in the UCB PMS game (JU(N),CU, F(j)U), we
obtain two core allocations for job player k in the corre-
sponding CB PMS game (J(N),C, F(j)): Repeating this
process for any job player in J(N) results in two non-
identical core allocations of the CB PMS game (J(N),C,
F(j)) whose convex hull λ(α̈j

1(1), : : : , α̈
j
1(j� 1), β̈j

1(j), : : : ,
β̈

j
1(ψ(N))) + (1�λ) (α̈

j
2 (1), : : : , α̈

j
2(j � 1), β̈j

2(j), : : : , β̈
j
2(ψ�

(N))), for λ ∈ [0, 1], preserves the symmetry, efficiency,
and coalitional rationality conditions of the feasible coa-
litions in CU satisfied by the game (JU(N),CU, F(j)U): w

Similarly to Definition 6, we define the equal cost split-
ting allocation for the CB PMS game (J(N),C, F(j)), for j �
1, : : : ,ψ(N), by using Equations (10) and (13):

α̈j
ECS(k) � v′({k})αj

ECS 1≤ k≤ j� 1,

β̈
j
ECS(k) � β

j
ECS + (v

′({k})� 1)αj
ECS j≤ k≤ψ(N): (14)

The cost allocation specified in (14) is the average of the
two core cost allocation vectors of the CB PMS game
(J(N),C, F(j)), for j � 1, : : : ,ψ(N), given in (13).

The following theorem is the main result of the paper
as it identifies the basic core (see Definition 7) of the
PMS game (N, P).

Theorem 5. The basic core of the PMS game (N, P) is the
nondegenerate line segment in Rn that connects the following
core allocation (f1, : : : , fn) and (g1, : : : , gn), where

fi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
1(k) +

Xψ(N)

j�k+1
∆jα̈

j
1(k)

0

@

1

A

gi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
2(k) +

Xψ(N)

j�k+1
∆jα̈

j
2(k)

0

@

1

A: (15)

The basic core coincides with the symmetric core of the
PMS game (N, P) only if each player of N has a single job

and the speed of the machine of each player is a positive
rational number.

Proof. According to Theorem 1, P(S) � F(J(S)) �
Pψ(N)

j�1
∆jF(j)(J(S)), for any coalition S ⊆N: By combining
Lemma 2 and the constructive method of generating
the cost allocation vectors in (15), we conclude that
(f1, : : : , fn) and (g1, : : : , gn), are two symmetric core allo-
cations of the PMS game (N, P), and their convex hull
is a line segment in Rn, which according to Definition
7, is the basic core of the PMS game (N, P):

In the case that all players have a single job and a
machine of the same speed v ∈Q++, then |N | � n �
ψ(N) � v(N); in particular, the n UCB PMS games coin-
cide with the respective n CB PMS games, and the con-
strained PMS game coincides with the PMS game (N,
P), implying that the symmetric core of the PMS game
(N, P) is fully characterized. w

We conclude this subsection by presenting the core
cost allocation for the PMS game (N, P) generated by
ECS rule by using the ECS cost allocation vectors of the
CB PMS games (see (14)):

ECSi �
X

k∈J({i})

Xk

j�1
∆jβ̈

j
ECS(k) +

Xψ(N)

j�k+1
∆jα̈

j
ECS(k)

0

@

1

A:

6. Conclusions
In this paper, we analyze the cooperative game of the
Q |split |

P
Cj problem, namely the PMS under job split-

ting for a set N of n players and a set J(N) of ψ(N) jobs.
Each player is assumed to own several machines whose
speeds are positive rational numbers and several jobs,
where each job is associated with its processing require-
ment. If a player has no jobs to process, we assume that
the player has an empty job with a zero processing
requirement. The characteristic function of the game is
the minimum sum of completion times of the jobs of
any coalition of players S ⊆N: We prove that the game
is totally balanced by generating an infinitely large sub-
set of its symmetric core. More precisely, we specify a
line segment in Rn, such that each of its points is a cost
allocation vector that assigns a cost to each player of N.
We call the line segment that we have identified the
basic core of the game as its derivation involves the use
of ψ(N) CB PMS games, namely PMS games that are
associated with independent zero-one processing re-
quirement vectors that form a basis for Rψ(N): The ψ(N)
CB PMS games are shown to linearly span the PMS
game. The complexity of the proposed algorithm is
linear in the number of jobs. This is most remarkable
as the core of a cooperative game is defined by an ex-
ponential number of constraints. In addition, in gen-
eral, symmetric core cost allocations are attractive in
terms of fairness, as any two players with exactly the
same characteristics are assigned the same cost. In fact,

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2245

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

symmetry is one of the four attributes that the Shapley
value satisfies. However, the Shapley value is a single-
cost allocation, which is not necessarily a member of
the core of the game.

We view the main contribution of the paper in the
new methodology that we developed for analyzing the
cooperative PMS game under job splitting. The meth-
odology is based on the unique presentation of the
PMS game as a nonnegative linear combination of the
CB PMS games. The original game is totally balanced if
and only if the CB PMS games are totally balanced.
This methodology has the potential to be helpful in the
analysis of other sequencing and PMS games, where
the order of the players plays a central role.

Appendix
We first introduce a proposition that presents properties satis-
fied by the cost allocations (8) and (9). These properties are
used in the proof of Theorem 2.

Proposition A.1. Consider a unit-speed {0, 1} PMS game (NU,
FU), |NU | � nU � z+ u, where z (u) is the number of unit-speed 0
(1) players. If zu ≥ 1, then the symmetric cost allocations (αi
(z, u),βi(z, u)) for i � 1, 2, defined in (8) and (9), respectively, sat-
isfy the following properties.

1. For any given u ≥ 1, β1(z, u) is decreasing in z to zero.
2. For any u, β2(1, u) � 0:5, and for any fixed z ≥ 2, β2(z, u) is

strictly increasing in u and limu→∞β2(z, u) � 0:5:

Proof.
1. The proof that β1(z, u) is decreasing in z follows by verify-

ing that the partial derivative of β1(z, u)with respect to z is neg-
ative. The convergence of β1(z, u) to zero as z grows to infinity
follows by applying the L’Hopital rule on limz→∞β1(z, u):

2. The proof for z� 1 is obtained by substitution of z by
one in (9). The proof for z ≥ 2 is obtained by showing that
∂β2(z,u)
∂u > 0, implying that β2(z, u) is increasing in u. By using

the L’Hopital rule, we obtain that limu→∞β2(z, u) � 0:5 for
any z ≥ 2, concluding the proof. w

Proof of Theorem 2. Consider a unit-speed {0, 1} PMS game
(NU, FU), where |NU | � u+ z, and zu ≥ 1: For any given pair
(z, u), the symmetric cost allocations (αi,βi), for i � 1, 2, are
distinct. Let ω(ℓ, k) denote the cost of a coalition with ℓ�unit-
speed 0 players and k unit-speed 1 players, where 0 ≤ ℓ ≤ z,
and 0 ≤ k ≤ u, and that is, ω(ℓ, k) � k(k+ 1)=2(k+ ℓ): It is suffi-
cient to show that both cost allocations (αi,βi), for i � 1, 2, are
the only extreme symmetric core allocations of the unit-speed
{0, 1} PMS game (NU, FU) in the sense that any symmetric
core allocation (α,β) satisfies α ∈ [α1,α2] and β ∈ [β2,β1], and
the rest of the proof follows by the convexity of the core.

The efficiency property of the cost allocations (αi,βi) for i �
1, 2, defined in (8) and (9), follows by verifying that the equations

zαi + uβi � FU(NU) �
u(u+ 1)
2(z+ u)

,

hold. It remains to prove that for any coalition S ⊂NU with ℓ,
0 ≤ ℓ ≤ z, unit-speed 0 players and k, 0 ≤ k ≤ u, unit-speed 1
players, where ℓ+ k < z+ u, the coalitional rationality condi-
tion holds; that is, αiℓ+ βik ≤ ω(ℓ, k) for i � 1, 2: For this sake,
let ∆i(ℓ, k) � ω(ℓ, k)�αiℓ� βik, for i � 1, 2:

Consider first the symmetric cost allocation (α1,β1): In view
of the first item of Proposition A.1, β1 � β1(z, u) ≤ β1(1, u) �
0:5 1+ 1

u
� �

for any z and u satisfying zu ≥ 1: We need to prove
that the function ∆1(ℓ, k) is nonnegative for all proper coali-
tions of NU: Coalitions that have no unit-speed 0 players, that
is, ℓ � 0, satisfy

ω(0, k) � 0:5(1+ k) � 0:5 1+ 1
k

� �

k ≥ 0:5 1+ 1
u

� �

≥ β1k:

This proves that ∆1(0, k) ≥ 0: Also, coalitions that contain just
one unit-speed 0 player, that is, ℓ � 1, satisfy the coalitional
rationality conditions as ω(1, k) � 0:5k, and the allocated cost is
α1 + β1k, implying that it is sufficient to prove that �α1 ≥

(β1 � 0:5)k: By using (8), this inequality boils down to the in-
equality u(u+ 1) ≥ k(u+ 3z� z2 � 1): The quadratic function
3z� z2 � 1 ≤ 1 for all natural numbers, implying that it is
sufficient to prove that u(u+ 1) ≥ k(u+ 1), which trivially
holds.

By simple algebra, one can verify that the coalitional ratio-
nality constraint for z� 1 unit-speed 0 players and u unit-
speed 1 players is tight; that is, (z� 1)α1 + uβ1 � ω(z� 1, u):

Note that coalitions with no unit-speed 1 players satisfy the
coalitional rationality constraints as for any ℓ ∈ {1, : : : , z},
ω(ℓ, 0) � 0, and ∆1(ℓ, 0) ��α1ℓ ≥ 0: Thus, consider pairs (ℓ, k),
where ℓ ∈ {2, : : : , z} and k ∈ {1, : : : , u}: Let ∆k

1(ℓ) � ∆1(ℓ, k): For
the sake of the proof, we extend the function ∆k

1(ℓ) to be
defined on the interval [0, z]: We prove the following proper-
ties for any k ∈ {1, : : : , u} :. (i) The function ∆k

1(ℓ) is strictly con-
vex in ℓ�(ii) there exists a single real value ℓ1(k), 0 < ℓ1(k) < z,
where ∆k

1(ℓ) decreases in ℓ ∈ (0, ℓ1(k)) and increases in ℓ ∈
(ℓ1(k), z); (iii) the sequence ℓ1(k) for k ∈ {1, : : : , u} is strictly
increasing in k; and (iv) ℓ1(u) satisfies z� 1 < ℓ1(u) < z, and
∆u

1(ℓ1(u)) < 0, whereas for ℓ ∈ {0, : : : , z}, ∆u
1(ℓ) ≥ 0: We prove

these items as follows. (i) The convexity of the function ∆k
1(ℓ)

follows from its form, that is,

∆k
1(ℓ) �

k(k+ 1)
2(k+ ℓ)�α1ℓ� β1k,

or alternatively, from the fact that
∂∆k

1(ℓ)

∂ℓ
��

k(k+ 1)
2(k+ ℓ)2

�α1,

is increasing in ℓ; (ii) the unconstrained minimizer of ∆k
1(ℓ) is

obtained by equating its derivative to zero, that is, d∆k
1(ℓ)

dℓ � 0,
implying that

ℓ1(k) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(k+ 1)
2 |α1 |

s

� k; (A.1)

(iii) the sequence ℓ1(k) is increasing in k, as dℓ1(k)
dk > 0, and in

view of (8), |α1 | < 0:5 implying that the sequence ℓ1(k) is
strictly increasing in k; and (iv) by substituting k�u and the
expression for α1, see (8), into (A.1), we get

ℓ1(u) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u(u+ 1)
2 |α1 |

s

� u �
ffi
(u+ z)(u+ z� 1)

p
� u ∈ (z� 1, z):

As ℓ1(u) is the unique minimizer of ∆u
1(ℓ), and ∆u

1(z� 1) �
∆u

1(z) � 0, we conclude that ∆u
1(ℓ1(u)) < 0, but for any integer

ℓ ∈ {0, : : : , z}, ∆u
1(ℓ) ≥ 0:

In order to terminate the proof, it is sufficient to show that
for k ∈ {1, : : : , u� 1}, ∆k

1(ℓ1(k)) > 0, as it implies that ∆k
1(ℓ) > 0

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2246 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

for ℓ ∈ {0, : : : , z}: By using (8) and (A.1),

ℓ1(k) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 1)

p
ffi

(u+ z)(u+ z� 1)
u(u+ 1)

s

� k,

and

∆1(ℓ1(k), k) � k(k+ 1)
2(k+ ℓ1(k))

�α1ℓ1(k)� β1k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 1)

p
ffi

u(u+ 1)
(u+ z)(u+ z� 1)

s

� k (u+ 1)(2u+ 2z� 1)
2(u+ z)(u+ z� 1) :

In order to show that ∆1(ℓ1(k), k) > 0 for k � 1, : : : , u� 1, it
remains to check that

2
ffi
(k+ 1)u(u+ z)(u+ z� 1)

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(u+ 1)

p
(2u+ 2z� 1):

By taking the square of both sides of the inequality, it is
equivalent to showing that 4(k+ 1)(u3 + u2(2z� 1) + uz(z�
1)) ≥ k(4u3 + 4uz2 � 3u+ 8u2z+ 4zu+ 4 z2 + 1� 4z), which in
turn, is equivalent to showing that 4(k+ 1)(u3 + 2u2z� u2

+uz2 � zu) ≥ k(4u3 + 4uz2 � 3u+ 8u2z+ 4zu+ 4z2 + 1� 4z):As
both sides of the last inequality are positive and as 4(k+ 1)=k
is decreasing in k, the inequality gets tighter as k is larger.
Thus, it suffices to check the inequality for k � u� 1 : By
using some simple algebraic manipulations, we get that it
is sufficient to show that u(3u+ 8z� 4) + 4z2 � 4z+ 1 ≥ 0,
which clearly holds. This concludes the proof that the sym-
metric cost allocation (α1,β1) is in the core of the unit-speed
{0, 1} PMS game (NU, FU):

According to Observation 2 and the discussion in between
the observation and Theorem 2 in Section 5.2, there does not
exist any symmetric core cost allocation (α,β) for the unit-speed
{0, 1} PMS game (NU, FU) for which α > α1, and that is, the unit-
speed 0 players are compensated for by the maximum possible
according to the symmetric cost allocation (α1,β1):

Similarly, we prove that the symmetric cost allocation
(α2,β2), given in (9), is in the core of the unit-speed {0, 1} PMS
game (NU, FU) and that it is extreme in the sense that there
does not exist another symmetric core allocation (α,β) with
β < β2: Define the function ∆2(ℓ, k) � ω(ℓ, k)�α2ℓ� β2k, and
for any fixed ℓ ∈ {0, : : : , z}, let ∆ℓ2(k) � ∆2(ℓ, k): As the effi-
ciency condition holds, it remains to prove the coalitional
rationality conditions for all proper coalitions that consist of ℓ�
unit-speed 0 players and k unit-speed 1 players. If k�0, the
coalition’s cost is zero, whereas the cost allocated is α2ℓ < 0
for 1 ≤ ℓ ≤ z, proving the coalitional rationality conditions for
such coalitions. We proceed to verifying the function ∆ℓ2(k)
for ℓ ∈ {0, 1}, and k ∈ {1, : : : , u}: Recall from the second item of
Proposition A.1 that

β2 �
u(u+ 2z� 1)

2(u+ z)(u+ z� 1) ≤ 0:5,

and for z ≥ 2, β2 < 0:5:
Next, we prove that ∆0

2(k) ≥ 0 for k ∈ {1, : : : , u}: These
inequalities follow by the second item of Proposition A.1,
which implies that β2 ≤ 0:5, and therefore, ∆0

2(k) � (k+ 1)=2�
β2k ≥ 0: We consider now coalitions with a single unit-speed 0
player: that is, ℓ � 1: Under this case, ∆1

2(k) � 0:5k� α2 � β2k �
(0:5� β2)k�α2, which is positive as β2 ≤ 0:5 and α2 < 0: Thus,

the coalitional rationality constraints for ℓ � 1, hold too. In partic-
ular, the symmetric cost allocation (α2,β2) is in the core of unit-
speed {0, 1} PMS games (NU, FU)with z � 1:

In order to conclude the proof of the coalitional rationality
constraints for any z ≥ 2, we consider the continuous exten-
sion of the function ∆ℓ2(k) in the interval k ∈ [1, u]: We show
that the function ∆ℓ2(k) is strictly convex in k by verifying that
its second derivative is positive. Calculations reveal that

d
dk

∆ℓ2(k) � 0:5 1� ℓ(ℓ� 1)
(k+ ℓ)2

 !

� β2,

and
d2

dk2 ∆ℓ2(k) �
ℓ(ℓ� 1)
(k+ ℓ)3

> 0:

The unconstrained minimizer k2(ℓ) for any given ℓ�is obtained
by solving d

dk ∆ℓ2(k) � 0 :

k2(ℓ) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)
1� 2β2

s

� ℓ: (A.2)

Apparently, k2(ℓ) is increasing in ℓ�as the numerator of

d
dℓ k2(ℓ) �

0:5(2ℓ� 1)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p

is positive. To see this, note that 0:5(2ℓ� 1) is the average of
ℓ� 1 and ℓ, whereas

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ(ℓ� 1)

p
is their geometric mean. The

numerator is positive as the geometric mean is bounded from
above by the average. In addition, it follows from the second
item of Proposition A.1 that for z ≥ 2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2β2

p
< 1 as β2 <

0:5: In order to show that k2(ℓ) < u for any ℓ ∈ {2, : : : , z}, we
substitute β2 in (A.2) by (9), and we get that

k2(z) �

ffi

z(z� 1)(u+ z)(u+ z� 1)
(u+ z)(u+ z� 1)� u(u+ 2z� 1)

s

� z

�
ffi
(u+ z)(u+ z� 1)

p
� z,

thus u� 1 < k2(z) < u: In fact, simple calculations reveal that
in addition to the efficiency condition, the cost of the coalition
that consists of z unit-speed 0 players and u�1 unit-speed 1
players also satisfies ∆z

2(u� 1) � 0: As ∆z
2(k) is a decreasing

function of k, for k ∈ [1, k2(z)], we conclude that ∆z
2(k) ≥ 0 for

k ∈ {0, : : : , u}, implying the coalitional rationality conditions
for any number of unit-speed 1 players.

In order to complete the proof, let ∆k
2(ℓ) � ∆2(ℓ, k) be a con-

tinuous function of ℓ ∈ (1, z] for a fixed k ∈ {1, : : : , u}: By defini-
tion, ∆k

2(ℓ) is convex in ℓ: For k�u, note that
d
dℓ

∆u
2(ℓ) ��

u(u+ 1)
2(u+ ℓ)2

�α2,

which is an increasing function of ℓ, and its maximum is ob-
tained at ℓ � z:Thus,

d
dℓ

∆u
2(ℓ) ≤�

u(u+ 1)
2(u+ z)2

�α2 ��
u(2z(z� 1) + u(u+ 2z� 1))

2z(u+ z)2(u+ z� 1)
< 0,

proving that ∆u
2(ℓ) is decreasing in ℓ, and in view of the effi-

ciency condition, we conclude that ∆u
2(ℓ) ≥ 0 for any ℓ ∈

{0, : : : , z}: It can be proven, by similar arguments, that ∆u�1
2

(ℓ) is also decreasing in ℓ, and by using ∆u�1
2 (z) � 0, the coali-

tional rationality conditions also hold for coalitions that

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS 2247

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

consist of u�1 unit-speed 1 players and any number ℓ, 0 ≤
ℓ ≤ z, of unit-speed 0 players.

Similarly to the case of ∆k
1(ℓ), ∆k

2(ℓ) is convex, and its
unconstrained minimizer is

ℓ2(k) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k(k+ 1)
2 |α2 |

s

� k:

Next, we show that the coalitional rationality conditions hold
for any k ∈ (0, u), for which ℓ2(k) ≥ z, by using the following
facts. First, the function ∆k

2(ℓ) is strictly convex and decreasing
in ℓ ∈ (1, ℓ2(k)) ⊇ (1, z], which implies that it is decreasing
in ℓ ∈ (1, z), and second, ∆k

2(z) ≥ 0: By solving the equation
ℓ2(k) � z, we get the lowest value of k for which ℓ2(k) ≥ z,
which we denote by û, where

û � 4z |α2 | � 1+
ffi
8z |α2 | (z� 1) + 1

p

2(1� 2 |α2 |)
:

Thus, it remains to prove the coalitional rationality conditions
for any k ∈ (0, û): For this sake, note that the function, ∆k

2
(ℓ2(k)) �

ffi
2 |α2 |k(k+ 1)

p
+ (α2 � β2)k, is concave in k ∈ (0, û),

where at the extreme points of the interval, namely at k�0
and k � û, ∆k

2(ℓ) ≥ 0: In view of the concavity of the function
∆k

2(ℓ2(k)), the set {k : ∆k
2(ℓ2(k)) ≥ 0} is convex, completing the

proof that the symmetric cost allocation (α2,β2) is in the core
of the unit-speed {0, 1} PMS game (NU, FU):

According to Observation 2 and the discussion in between
the observation and Theorem 2 in Section 5.2, there does not
exist any symmetric core cost allocation (α,β) for unit-speed
{0, 1} PMS game (NU, FU) for which β < β2, and that is, the
unit-speed 1 players pay the minimum possible cost accord-
ing to the symmetric cost allocation (α2,β2): w

References
Alon T, Haviv M (2020) Pooling risk games. Internat. Game Theory

Rev. 22(3):1950015.
Anily S (2018) Full characterization of the nonnegative core of some

cooperative games. Naval Res. Logist. 65(4):303–316.
Anily S, Haviv M (2007) The cost allocation problem for the first order

interaction joint replenishment model. Oper. Res. 55(2):292–302.
Anily S, Haviv M (2010) Cooperation in service systems. Oper. Res.

58(3):660–673.
Bird CG (1976) On cost allocation for a spanning tree: A game theo-

retic approach. Networks 6(4):335–350.
Curiel I (2010) Cooperative Game Theory and Applications (Kluwer Aca-

demic Publishers, New York).
Curiel I, Hamers H, Klijn F (2002) Sequencing games: A survey. Borm

P, Peters H, eds. Chapters in Game Theory, Theory and Decision
Library C, vol. 31 (Springer, Boston), 27–50.

Curiel I, Pederzoli G, Tijs S (1989) Sequencing games. Eur. J. Oper. Res.
40(3):344–351.

Curiel I, Potters J, Prasad R, Tijs S, Veltman B (1994) Sequencing and
cooperation. Oper. Res. 42(3):566–568.

Gillies D (1953) Some theorems on n-person games. PhD disserta-
tion, Princeton University, Princeton, NJ.

Graham RL, Lawler EL, Lenstra JK, Kan AR (1979) Optimization and
approximation in deterministic sequencing and scheduling: A
survey. Ann. Discrete Math. 5:287–326.

Hamers H, Klijn F, Suijs J (1999) On the balancedness of multiple
machine sequencing games. Eur. J. Oper. Res. 119(3):678–691.

Hamers H, Suijs J, Borm P (1996) The split core for sequencing games.
Games Econom. Behav. 15(2):165–176.

Kushwaha M, Gupta S (2015) Various schemes of load balancing in dis-
tributed systems—A review. Internat. J. Sci. Res. Sci. Engrg. Tech.
4(7):741–748.

Moulin H (2007) On scheduling fees to prevent merging, splitting, and
transferring of jobs. Math. Oper. Res. 32(2):266–283.

Moulin H (2008) Proportional scheduling, split-proofness, and
merge-proofness. Games Econom. Behav. 63(2):567–587.

Peleg B, Sudhölter P (2007) Introduction to the Theory of Cooperative
Games (Springer Science & Business Media, New York).

Penmatsa S, Chronopoulos AT (2011) Game theoretic static load bal-
ancing for distributed systems. J. Parallel Distributed Comput.
71(4):537–555.

Pinedo M (2016) Scheduling: Theory, Algorithms and Systems, 4th ed.
(Springer International Publishing, Cham, Switzerland).

Potts CN, Van Wassenhove LN (1992) Integrating scheduling with
batching and lot-sizing: A review of algorithms and complexity.
J. Oper. Res. Soc. 43(5):395–406.

Serafini P (1996) Scheduling jobs on several machines with the job
splitting property. Oper. Res. 44(4):617–628.

Shapley LS (1971) Cores of convex games. Internat. J. Game Theory
1:11–26.

Shapley LS, Shubik M (1972) The assignment game I: The core. Internat.
J. Game Theory 1(1):111–130.

Slikker M (2006) Balancedness of multiple machine sequencing
games revisited. Eur. J. Oper. Res. 174(3):1944–1949.

Smith WE (1956) Various optimizers for single-stage production. Naval
Res. Logist. Quart. 3(1–2):59–66.

Tahar DN, Yalaoui F, Chu C, Amodeo L (2006) A linear program-
ming approach for identical parallel machine scheduling with
job splitting and sequence-dependent setup times. Internat. J.
Production Econom. 99(1–2):63–73.

Tijs SH, Parthasarathy T, Potters JAM, Rajendra Prasad V (1984) Per-
mutation games: Another class of totally balanced games. OR
Spectrum 6:119–123.

Xing W, Zhang J (2000) Parallel machine scheduling with splitting
jobs. Discrete Appl. Math. 103(1–3):259–269.

Yu Y, Benjaafar S, Gerchak Y (2015) Capacity sharing and cost allo-
cation among independent firms with congestion. Production
Oper. Management 24(8):1285–1310.

Zhang J (2009) Cost allocations for joint replenishment models. Oper.
Res. 57(1):146–156.

Alon and Anily: Basic Core of a Parallel Machines Scheduling Game
2248 Manufacturing & Service Operations Management, 2023, vol. 25, no. 6, pp. 2233–2248, © 2023 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

66
.1

66
.8

6]
 o

n
03

 A
pr

il
20

24
, a

t 0
1:

34
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

	The Basic Core of a Parallel Machines Scheduling Game
	Introduction
	Literature Review
	Notations and Preliminaries
	The PMS Under the Job-Splitting Cooperative Game
	The PMS Game (N, P) Is Totally Balanced
	Conclusions

