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STRUCTURED PARTITIONING PROBLEMS 

S. ANILY 
University of British Columbia, Vancouver, Canada, and Tel A viv University, Tel A viv, Israel 

A. FEDERGRUEN 
Columbia University, New York, New York 

(Received March 1987; revisions received September 1988, November 1989; accepted December 1989) 

In many important combinatorial optimization problems, such as bin packing, allocating customer classes to queueing facilities, 
vehicle routing, multi-item inventory replenishment and combined routing/inventory control, an optimal partition into groups 
needs to be determined for a finite collection of objects; each is characterized by a single attribute. The cost is often separable in 
the groups and the group cost often depends on the cardinality and some aggregate measure of the attributes, such as the sum or 
the maximum element. An upper bound (capacity) may be specified for the cardinality of each group and the number of groups 
in the partition may either be fixed or variable. The objects are indexed in nondecreasing order of their attribute values and 
within a given partition the groups are indexed in nondecreasing order of their cardinalities. We identify easily verifiable 
analytical properties of the group cost function under which it is shown that an optimal partition exists of one of three 
increasingly special structures, thus allowing for increasingly simple solution methods. We give examples of all the above listed 
types of planning problems, and apply our results for the identification of efficient solution methods (wherever possible). 

Jn many important combinatorial optimization prob- 
lems, an optimal partition into groups needs to be 

determined for a finite collection of objects, each of 
which is characterized by a single attribute. The cost of a 
given partition is often separable in the groups and the 
group cost often depends on the cardinality and some 
aggregate measure of the attribute values in the group, 
e.g., the sum or the maximum element. Upper bounds 
(capacities) may be specified for the cardinalities of the 
groups and the number of groups in the partition may 
either be fixed or variable. 

It is well known that this class of partitioning problem 
is NP-complete for general choices of the group cost 
function. See, for example, Chakravarty, Orlin and 
Rothblum (1982) who base this observation on the fol- 
lowing example. 

Example 1. (This is one of the first problems to be 
identified as NP-complete; see Karp (1972).) Given N 
integers r,, .. . , rN, verify whether a subset S C 
.1,.. ., N} exists for which ZieSri = R/2 where 
R = EN 1 rp. An equivalent formulation of this problem 
is to verify whether a partition of the collection 
{1, . . ., N} into two sets X1, X2 exists with 

f (1E ri) +f( E ri) = 0 

where the group cost function ft*) is defined by f( x) = 

(x - R /2)2. (This example shows, in addition, that the 
above defined class of partitioning problems remains 

NP-complete when the number of groups is restricted to 
be equal to two and when the group cost is independent 
of the cardinality of the group.) 

Examples 10 and 11 (discussed in Section 7) describe bin 
packing problems (that, e.g., arise in the allocation of 
records on computer auxiliary storage devices) and a 
problem of allocating customer classes in general queue- 
ing systems with multiple service pools. Both represent 
special cases of the defined class of partitioning prob- 
lems for which no efficient exact solution method ap- 
pears to exist. On the other hand, Chakravarty, Orlin 
and Rothblum (1982) treat the problem of determining 
optimal groupings of items in a multicommodity inven- 
tory system with joint replenishment costs, and derive an 
efficient solution method for this special case of the class 
of partitioning problems (Example 12). Examples 13, 14 
and 15 cover partitioning problems (of the above type) 
that arise in vehicle routing, multi-item, two-stage inven- 
tory/production and combined vehicle routing/inventory 
models, and for these we derive even faster solution 
methods. 

The objective of this paper is to identify a nested set of 
simple conditions for the group cost function under 
which an optimal partition may be determined by in- 
creasingly simple, efficient algorithms that exploit in- 
creasingly stronger structural properties of this partition. 

Thus, let X= {xl, . . ., XN} be a collection of ob- 
jects. Each object xi is characterized by a single at- 
tribute ri and the objects are numbered in ascending 
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order of their attribute values, i.e., r, c r2 < ... rN. 
Let L denote the (fixed or variable) number of groups in 
the desired partition. Within a given partition we number 
the groups in nondecreasing order of their cardinalities. 
Let Ml denote the capacity of the lth group (1 = 
1, ... , L). (In view of our numbering convention, 

Ml M2*c ... <ML*.) In a given partition, let 1(i) 
denote the index of the group to which the ith object is 
assigned; we refer to the index function 1(*) as the 
group index function. 

A partition is called consecutive if it consists of 
consecutive sets; i.e., sets in which the indices of the 
elements are consecutive integers. For example, X = 

{ X1, X2} = { {4, 5}; { 1, 2, 3} } is a consecutive partition 
of X = { 1, ... , 5} . A partition is called monotone if 
the group index function is nondecreasing. Note that a 
monotone partition is consecutive; the partition X fails to 
be monotone, but X* ={ X, X2*} = {{ 1, 2}; {3,4, 5}} 
is. 

In this paper, we specifically identify easily verifiable 
conditions with respect to the group cost function under 
which the partitioning problem is: 

i. optimized by a consecutive partition; 
ii. optimized by a monotone partition; 

iii. extremal, i.e., a monotone optimal partition exists 
and the cost of any monotone partition X = 

{X1, . . ., XL} does not increase by shifting the 
highest indexed object in any of its groups to the 
next group, i.e., by transferring the highest indexed 
element of some set XI to Xl+ 1, 1 ? l ? L. 

We also show how increasingly simple and efficient 
algorithms may be employed when the partitioning prob- 
lem satisfies conditions i-iii, respectively. 

Chakravarty, Orlin and Rothblum (1982) consider un- 
capacitated partitioning problems of the above defined 
type, in which the group cost depends on the attribute 
values in the group through their sum. It is shown that 
an optimal consecutive partition exists if the group cost 
function is concave in the attribute value sum, and may 
thus be determined by computing the shortest path in an 
acyclic network with N nodes. As pointed out, their 
paper was motivated by a multifacility (or multi-item) 
inventory replenishment problem with joint setup costs. 
Chakravarty, Orlin and Rothblum (1985) consider a 
generalization where each object is characterized by two 
attributes and where the group cost function is concave 
in the sum of the values of each of these two attributes, 
but otherwise is independent of the number of elements 
in the group. It is shown that in the absence of con- 
straints on the groups' cardinalities an optimal partition 
may be determined by a similar shortest path calculation. 
The generalization allows for the treatment of more 

general, joint setup cost structures in the above men- 
tioned multi-item inventory replenishment problem. 

The latter paper also discusses the case where the cost 
of a partition is a nonseparable function of the sums of 
the values of the two attributes in each group. Barnes, 
Hoffman and Rothblum (1989) consider further general- 
izations where the objects are characterized by an arbi- 
trary number (p) of attributes. Each object is thus 
characterized by a point in the p-dimensional attribute 
space. The authors show that an optimal partition exists 
whose groups have (pairwise) disjoint conic hulls in the 
attribute space. A weaker property holds if the cardinal- 
ity of each group is prespecified; namely, there exists an 
optimal partition whose groups have disjoint (pairwise) 
convex hulls. These characterizations do not-as of 
yet-result in general efficient solution methods except 
for the separable, two attribute case identified by 
Chakravarty, Orlin and Rothblum (1985). 

There are, of course, many partitioning problems in 
which the objects are characterized by one or a limited 
number of attributes, but in which the group cost de- 
pends on the attribute values in the group according to 
(aggregate) measures that are different from the attribute 
sum or maximum. 

Examples arise in the areas of clustering (see, e.g., 
the excellent survey text of Spdth (1985); see also Hwang 
1981 and Hwang, Sun and Yao 1985), graph partition- 
ing, layout of circuits on computer boards and computer 
program segmentation (Danath and Hoffman 1973, 
Barnes and Hoffman 1984, Barnes 1982, 1985). 

We conclude this section with an outline of the paper. 
In Section 1, we introduce some notation. Next, in 
Sections 2-4, we show how properties i-iii allow for 
increasingly simpler solution methods. In Sections 5 and 
6 we obtain sufficient conditions for properties i-iii to 
apply to partitioning problems in which the group cost 
depends, respectively, on the sum and the maximum 
element of the attribute values in the group. In Section 7 
we apply our results to several example models. Section 
8 completes the paper with a discussion of related parti- 
tioning problems and properties. 

1. NOTATION 

For any partition X = { Xi,..., XL} of X, let ml= 
I XI I, = 1, ..., L. A partition X= { Xl,..., XL} is 

feasible if and only if the number of elements in Xl 
does not exceed the capacity bound Ml*, / = 1, . . ., L. 
If I XI I < Ml*, the set XI is said to have slack. Let 
M* = ML* = max ,M,*. As pointed out in the Introduc- 
tion, L may be treated as a given parameter or as a 
variable. 

We assume that the cost of a partition X= 
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{ X1,..., XI is given by a separable functional of the 
form 

L 
(I ) E ( E jilm IMI 

1= 1 jail1 

or 

= fmax r 1,m 
1=1 3G<1 

where f: 2 T4 is a general real-valued function. 
Next we define the two partitioning problems. 

Problem P' 

V1(X) = min{ U1(X): X= {X1,* , XL} 

partitions X and m, 1I1,... e IL}. (la) 

Problem P2 

V2(X) ==min{U2(X): X {XI, XL} 

partitions X and ml M l, 1,.. L}. (lb) 

2. WHEN AN OPTIMAL CONSECUTIVE PARTITION 
EXISTS 

Assume that an optimal consecutive partition exists for 
P1 or P2. We need to distinguish between four cases: 

Case 1. L is variable and Ml = M*, I=1.. I .L. 
In this case an optimal partition may. be determined by 
computing a shortest path in an acyclic network. Let 
Fl(j) = V'({xi+,..b, XN}), i= 1,2 and for any 
YCX define g,(Y) E= yrj/ fY I and g2(Y)= 

maxj1Y rj. Note that F'(O) = V'(X), i = 1, 2. 
Clearly, F'(O) and the corresponding optimal partition 

Xi may be determined from the dynamic programming 
recursion 

PO ( )ljmin M*f{ ( gi(1XJ+1, *+ Xj}) j, - 
j) 

1!5]'-]-<M* 

+F1(j') } (2) 

with F'(N) =0. 
In case M* is a constant independent of N it is easily 

observed that NM* operations are required to solve the 
recursion and we conclude that the complexity of the 
algorithm is linear in N. If M* = N (the uncapacitated 
case), the complexity is 0(N2). 

Case lb. L is a given constant and Mt* M*, I- 
1, . . . , L. Let F'(j, 1) = min{U'(X): X - 
{XI+1 ... ** X L} partitions { xi+ 1, . .. , XN } and 
I Xk | c M*, k=I + 1, . . ., L}. Note that F(0, 0) = 

V'( X), (i = 1, 2), which together with the optimal parti- 
tion X ', may be determined via the dynamic programming 
recursion 

1 <j 
1 

I<M* { f(giQ xi+1, j' j) 

+F'(I , l+ 1)} l?I and 0O... ,N (3) 

with F'(N, I) o, I= O,. .L- 1; '(j, L) -o for 
j < N and F'(N, L) 0. 

In case M* is a finite constant independent of N the 
recursion is solved with Dijkstra's algorithm in 
O(NLM*) operations. If M* = N (the uncapacitated 
case), the complexity is O(N2L). 

Case Ic. General capacities and L is variable. 

Case Id. General capacities and L is constant. 
In the case of general, i.e., nonidentical capacities, it 
does not appear that the restriction to consecutive parti- 
tions, by itself, allows for efficient solution methods. 
For example, in a straightforward dynamic programming 
formulation, one would have to keep track in the state 
description of the capacities that are available at any 
stage. In general, this results in an exponential number 
of states. Only if C, the number of distinct capacity 
levels, is small (e.g., C= 2 or C = 3) does the straight- 
forward dynamic programming approach result in an 
algorithm whose complexity bound is a polynomial of 
reasonable degree (C + 1). 

3. WHEN AN OPTIMAL MONOTONE PARTITION 
EXISTS 

The monotonicity property of an optimal partition may 
be exploited to derive an efficient solution method for 
the most general case with nonidentical capacities. For 
the case of identical capacities, the monotonicity prop- 
erty may be exploited to simplify the dynamic program- 
ming recursions. 

Case Ia. (Identical capacities, L is variable) 
For any j =O. . . , N - 1 consider a monotone optimal 
partition of { xj11, . . ., XN} with maximal cardinality 
for the first set (i.e., the set to which xj, is assigned) 
and let m(j) denote this cardinality. We define m(N) = 
M*. If optimal monotone partitions exist for all sets 
{Xj, .. , IXN} (U = 1, . ., N) it is possible to imple- 
ment the dynamic programming recursion as 
follows. 

DP for Monotone Optimal Partitions (DPMOP) 

Step 0. j := N; F'(N) :- 0; m[Nj I= M*. 
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Step]. Whilej>Odo 
begin 
j' := j; j := j - 1; FP(j) :=f(gQ({xj+I}), 1) +F1(j 
+ 1); m(j) :=1, 

while j' < N do 
begin 
j' := j' + 1; if j' - j > m' j] then go to end do; 
y := f( gi({ xj+ ,,4..,xj}, j' -j) +Fir j'); 
if y?F'(j) then begin F(j) :=y; m(j) :=j' 
-j end; 
end do 

end. 

It is easy to verify that the DPMOP algorithm gener- 
ates a monotone optimal partition with V'(X) = F'(0). 

With the help of the simple test 

-js m( 1') (4) 

the DPMOP algorithm thus allows for the elimination of 
a significant number of values of j' when evaluating the 
minimum in (2). However, since the inequality (4) needs 
to be checked for all j' = j + 1, .. ., min(j + M*, N), 
no reduction in the above mentioned worst case complex- 
ity bounds can be achieved. The DPMOP algorithm 
ensures, on the other hand, in contrast to standard 
implementations of the dynamic programming recursion 
(2), that a monotone optimal partition is generated. 

Case lb. (Identical capacities, L is fixed) 
Assume that for any fixed value of L and 1, 1= 
0,...,L - and any j=0,...,N-(L- 1) an opti- 
mal partition of {xj+1 ... , XN} into exactly (L - 1) 
sets exists which is monotone. Among all such optimal 
monotone partitions, consider one with maximal cardi- 
nality of the first set (i.e, the set to which xj+I is 
assigned) and let m(j, 1) denote this cardinality. 

Assume that an optimal (monotone) partition of X 
into L = L* sets is required. A straightforward adapta- 
tion of the DPMOP algorithm results in an efficient 
implementation of the dynamic programming recursion 
(3), which is, in addition, guaranteed to generate mono- 
tone (optimal) partitions: Evaluate the vectors {IF( , l)} 
and {m(, l)} recursively for 1 = 0,1, . .. , L*- 1. For 
a given value of 1, the vectors {F'(, l)} and {m(, l)} 
may be computed by an obvious modification of the 
DPMOP procedure, replacing Fi(j) by Fi(j, 1), m(j) 
by m(j, 1), FP(j) by F'(j', I + 1), m(j') by m(j', / + 1) 
and setting F'(j', 0) = oo if 1 _ j' _ N, Fi(N, 
L) = O, F'(N, I) = oo if l < L and m(N, L) = M*. 

Case Ic. (General nonidentical capacities and L is 
variable) Assume that for every integer 1 = 0, . .. , N 

and all j .= . ,1 N - / the partitioning problem 

F'( ,l)-min UJ'(X): X= {Xl+l, X, XL} 

partitions { xi+ l** XN} 

and I Xk | I Myk, k l + 1, * ,L} 

is optimized by a monotone partition. Among all such 
monotone optimal partitions, consider one with maximal 
cardinality for the first set (XI+,) and let m(j, 1) denote 
this cardinality. As before, F'(0, 0) = V'(X) (i = 1,2), 
which together with the optimal partition Xi, may be 
determined via the recursion 

F'(], 1) 

minI {f(gi({xj+1, I -j'-j-cmin{M,* ; m(j', 1+ 1)} 

..,x,,j' - j) + Fi( j, 1 + 1)}I 

1?]-j and j=O,... N 

with 

F'(N,) = 0, 11,.. ., N, 

m(N, I) = Ml+1 if 1 l? N 

and F'(j,0) = oo if 1 ?j?N. The vectors {F'(,l} 
and { m(-, l)} are determined recursively for / = N, 
N- 1, ... , 1; for any given value of 1, the vectors 
{F'( l I)} and { m( I)} are obtained by a straightfor- 
ward adaptation of the DPMOP algorithm. In case M* 
is a finite constant independent of N, the recursion is 
solved in O(N2M*) operations. 

Case Id. (General capacities: L is a given constant, 
independent of N) Define F'(j, 1) as above for / = 
0, ... I L - 1 and j= 0. . . , L -1. The dynamic pro- 
gramming recursion for Ic may be applied in this case as 
well, restricting the values of / to the set {o,..., 
L - 1} and with boundary conditions F'(j, L) = oo for 
j< N, F'(N, l) = oo for I < L, m(N, L)= ML* and 
F' (N, L) = 0. Assuming once again that M* is a con- 
stant that is independent of N, the recursion is solved in 
O(NLM*) operations. 

4. WHEN THE PARTITIONING PROBLEM IS 
EXTREMAL 

In this section, we assume that for all n = 1, ... , N and 
any combination of capacities { Ml*: 1= 1, ... , LI, 
the partitioning problem min{ U'(X): X 
{X1 . 7 XL} partitions X and m,?Ml* 1- 
1, . . ., L} is extremal. 

Examples 14 and 15 in Section 7 discuss several 
logistical planning models in which partitioning prob- 
lems need to be solved, which can be shown to be 
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extremal. Sections 5 and 6 exhibit several easily verifi- 
able analytical properties of the group function f(-) 
under which extremality is guaranteed. In this section, 
we demonstrate that a partition exists that is optimal 
under any group cost function f() under which the 
partitioning problem is extremal, and this partition may 
be determined by the Extremal Partitioning Algorithm, 
which is considerably simpler than the dynamic pro- 
gramming algorithms (2) and (3). We first consider 
Cases Ia, b and d. The insensitivity of this optimal 
partition with respect to the specific choice of the group 
cost function f( ) plays an essential role in the analyses 
of the models discussed in Examples 14 and 15. 

Extremal Partitioning Algorithm (EPA) 

Step 0. Initialize n := N; 

L if L a given constant 
1 if L variable 

Step], If 1<Ml <n-1+1 then 
begin the set { n - Ml* + 1 ... ., n} is the next set to be 

added to the partition; n := n - Ml*; if 1> 1 then 
:= /- 1; repeat Step 1; 

end 
else 
begin if Ml = 1 add the sets {1} ..., {n} to the 

partition; exit; if Ml > 2 and 1> 1, add the 
sets {1}, ... . {1- 1},{,I . . .,n} to the partition; 
otherwise add the single set {1, . . ., n} to the par- 
tition; exit; 
end. 

The EPA thus generates a partition that consists of a 
possibly empty collection of singletons followed by at 
most one set with slack and full sets thereafter. The EPA 
partitions the elements of X in descending order of their 
indices. At the beginning of each iteration of Step 1, n 
denotes the number of objects not yet partitioned; like- 
wise, in case L is a given number, I denotes the number 
of sets that need to be added to the partition. (If L is 
variable, / = 1 throughout the algorithm. Note also that 
if the major test, 1 <Ml* < n - 1+ 1, in Step 1 is 
satisfied, n > Ml so that additional objects remain to be 
partitioned after the current execution of Step 1.) 

Note that the partition generated by the EPA depends 
merely on the value of L and the capacities Ml (I= 
1, . . , L); this partition is, in particular, independent 
of the function f, a robustness property suggested by the 
definition of extremality. 

To assess the complexity of the EPA, note that as long 
as the test in Step 1 is satisfied, M,* > 2. Thus, Step 1 is 
repeated at most F N/2'1 times and in each iteration at 

most 4 operations (comparisons or subtractions) are per- 
formed. The complexity is thus bounded by 4 1 N/2 I 
while only the integers n, l and { M ,..., ML} need to 
be kept in memory. Alternatively, for the case where L 
is fixed the complexity is bounded by 4 min 
{L; I N/2 I}, which is 0(1) as N- oco! These bounds 
compare very favorably with the bounds for the dynamic 
programming recursion. 

Theorem 1 proves that the EPA generates an optimal 
partition. We first need the following lemma. 

Lemma 0. Assume that the partitioning problem Pi 
(i = 1,2) is extremal. There exists a monotone opti- 
mal partition with the property 

if for some I = 1, . . . , L XI has slack( XI < Ml*) 

either I = 1 or XI -1 is a singleton. (5) 

Proof. Assume to the contrary that in each monotone 
optimal partition (5) is violated for some 1 = 1, .. . , L. 
Let X be a monotone optimal partition lexicographically: 
i) minimizing the index, and ii) maximizing the cardinal- 
ity of the highest indexed set violating (5). Let 1 > 2 be 
the index of the largest indexed set in X violating (5). 
Let X' = {Xi. ..,Xi2, XI-, X, X1+11, .., XL} 
be the partition obtained by transferring the highest 
indexed element of X, - to XI, which is feasible since 
1 < j l XI I < Mls. In view of the extremality 
properties of the problem, U'(X') < U'(X); hence, X' is 
optimal. Decompose X - X 1 U X (2) and x' as X'= 
(x'1', x'(2X) where X(')- {X1_ . ., AX.}, XI (2 = 

{ XI . . ., X}j and X'(l) partitions X(1). Note that x'(2) 
is monotone since I XlI | Ml* Ml+I = I X+1 1 . In 
view of the optimality of X and X', X'(1) is an optimal 
partition for the partitioning problem of X(') using 
I - 1 sets with M -Il Xr, r = 1, .. .,- 2 and 
Ml = I X/-, 1. Next, consider the relaxation of this 
partitioning problem where the capacity of the 1 - 1st set 
is increased to I XI - M/- I + 1. A monotone parti- 
tion *(') of X(1) can be found that optimizes 
this relaxed partitioning problem of X('), hence, with 
U(i)(ill) c UO(X '(1). Hence, let X - {I , x(2) }; note 
that X is monotone and U'(*) U'(*~')) +Ui(XX(2))? 
Ui(X,'I') +Ui(X,'2)) = Ui(X) = Ui(X), so X is a 
monotone optimal partition for the original partitioning 
problem. Note that if in this partition some set violates 
(5), the highest indexed such set has an index < / while 
the 1th set in this partition (Xl) has a larger cardinality 
than the lth set of the partition X, thus contradicting the 
definition of X. 

Theorem 1. Assume that the partitioning problem 
pi, (i = 1. 2), is extremal . 
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a. If L is variable and Ml* = M*, (=1, .. ., L), 
the EPA generates a monotone optimal partition us- 
ing the lowest possible number F N/M*] of sets. In 
this partition, all sets, with the possible exception of 
the first one, are full. X1 = {X1, .. ., X",, XI= 
{ n+(I- 2)M*+ 1' * * Xn +(I- 1)M*}, 1 = 2, ..., 
F N/M*] where n = M* if N is a multiple of M* 

and n = N- F N/M*] M* otherwise. 
b. If L is fixed, the EPA generates the unique 

monotone partition X* which satisfies (5) and this 
partition is optimal. 

Proof. a. One easily verifies that the EPA generates the 
specific partition X, that this partition is monotone and 
that only the first set may have slack. Assume to the 
contrary that X is not optimal. Let X' be a monotone 
optimal partition which lexicographically: i) minimizes 
the index, and ii) maximizes the cardinality of the high- 
est indexed set with slack, among all monotone optimal 
partitions that satisfy (5). Such a partition exists in view 
of P' (i = 1, 2) being extremal. (If an optimal monotone 
partition exists in which all sets are full, then this 
partition is equal to X, thus contradicting the nonoptimal- 
ity of X.) Let 1 be the index of the highest indexed set in 
X' with slack. If 1 = 1, X' = X, contradicting the nonop- 
timality of X. Thus, 1>- 2 and Xl- is a singleton, by 
Lemma 0. 

In view of the extremality of the partitioning problem, 
the partition X" obtained by merging Xl_ 1 and X' into 
a single set, has U'(X") ? U'(X'), hence, X" is also 
optimal, which contradicts the definition of X' 

b. By induction with respect to I = L, L - 1, .. . , 0. 
Assume that the last (L - 1) sets in any monotone parti- 
tion that satisfy (5) coincide with the last (L - 1) sets of 
X*. The claim is clearly true for 1 = L. Let n = max{ i: 

xieXI}, which in view of the induction assumption, is 
identical for all monotone partitions that satisfy (5). If 

Ml* ? n - 1 + 1, then the lth set of any monotone parti- 
tion satisfying (5) must be full, so that the last (L - 1 + 1) 
sets are identical to the corresponding sets in X*. Simi- 
larly, if Ml* > n - 1 + 1 the lth set of any monotone 
partition that satisfies (5) must have cardinality (n - I + 
1) to allow for a feasible choice of X1,. . . , X, 1. We 
conclude that in this case as well, the last (L - 1 + 1) 
sets of the partition coincide with those of X* Thus, 
there exists a unique monotone partition that satisfies (5) 
and in view of Lemma 0 this partition is optimal. 

The remaining Case Ic, where L is variable and the 
capacities are nonidentical, is treated by solving the 
problem repeatedly with a fixed value of L for L = 

1, . . ., N. The resulting algorithm is thus completed in 
at most 3 N2 /2 operations which, again, compares fa- 

vorably with the complexity bound obtained for the 
dynamic programming recursion (3). 

The following procedure may be used as an alternative 
to EPA for the case where L is fixed. (Assume without 
loss of generality that L _ N? EL 1Ml*; if N is out- 
side this range, no feasible solution exists.) 

Let C(l) = 1- I + EZ=lMk* (1= 1,. . . , L) and C(L 
+ 1) = 0. Find the unique integer l* (1 c 1* _ L) with 
C(l* + 1) < N ? C(1*). (1* exists because 
C(L + 1) = 0 and C(1) = EL=1Mk*.) Let X* be the 
(unique) consecutive partition with ml = 1, 1 < 1*; 
m, = Ml, 1 > 1* and m* = Ml** - (C(l*) - N). The 
value of l* (and the optimal partition) may be efficiently 
computed by the following algorithm. 

Extremal Partitioning Algorithm II (EPA II) 

Step 0. C := L - + ML*; :=L 
Step 1. While C < N do 

begin 1 := l - 1; C := C + Ml* I 

end 
Step 2. 1* := 1; m := Ml** - (C - N); an optimal 

partition consists of the sets {1 }, .. I, {1* - 
1},{1*,... ,1* + m - 1} and (L - 1*) full-size sets 
thereafter. 

Step 1 is repeated at most L times, each time requir- 
ing three elementary operations. In Step 2 we obtain the 
boundary indices of the groups in the optimal partition 
with L + 1 additions. The overall complexity is thus 
bounded by (4L + 1) elementary operations, which is 
quite similar to that of the original version. (The latter is 
slightly more efficient if L > N/2.) Alternatively, 1* 
may be found by bisection on the interval [I, L] after 
computing all { C(l): 1 = 1, . . . , L} recursively. This 
alternative implementation of EPA II requires 3L + 
410g2L elementary operations. 

For the case where all capacities are identical, i.e., 

1= ... = ML* = M*, 1* is the largest integer 1 to 
satisfy the inequality C(l) = 1 - 1 + (L - 1 + 
1)M* - N, that is 

((+I)M*-N-1)] 

L(M* - lj ) 

The results of Sections 2-4 are summarized in 
Table I. 

5. SUFFICIENT CONDITIONS FOR P1 

In this section, we derive sufficient conditions with 
respect to f under which P 1: i) has a consecutive 
optimal partition, ii) has a monotone optimal partition, 
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Table I 
The Complexity of Computing the Optimal Partitiona 

No. of Evaluations 
No. of Elementary of the Cost 

Problem Type No. of Sets Capacity Constraints Operations Function 

Yes Identical 4NLM* NM* 
Nonidentical No efficient 

Optimal algorithm is known 
consecutive Given 

partitin .No N 2L /2 N2/2 
partition 

exists Identical NM* NM* 
Yes Nonidentical No efficient 

algorithm is known 
Variable 

No N2 N 2/2 

Yes Identical 4NLM* NM* 
Given Nonidentical 4NLM* NM* 

Optimal No N2L /2 N2/2 
monotone . monotone 

Identical NM* NM* 
partition Yes 
existsYe 

Variable Nonidentical 2N2M* NM* 
No N2 N2/2 

Yes Identical 4min{L, r-N/M*7] } 0 
Given Nonidentical 4 min{L, -N/22-] } 0 

Problem is No 0 
extremal Yes Identical 4 FN/M* - 0 

Variable Nonidentical 4 r-N/2-2 0 

No 1 0 

aThe complexity counts given in Table I assume the points are numbered in ascending order of their attribute values. 

and iii) is extremal. Let 

F' = {I: (0, m) is nondecreasing in 0} 

and 

F1 = {I eFo: 0 (O, m) is concave in 0}. 

The next result is based on a simple modification of 
the lemma in Chakravarty, Orlin and Rothblum. 

Lemma 1. Let feF1. There exists an optimal parti- 
tion for P 1 which is consecutive. 

Proof. For each subset S of X, let the span sp(S)= 

max{ i: xi E S} - min{ i: xi E S}I. Let x* = 

{ X ..., XL*} be an optimal partition that minimizes 
Lii sp(X,) among all such partitions. Assume that X* 

is not consecutive. Then there exist two sets X* and 
X* with mini: xieXI} I<min i: xieXI,} <max{i: 
i E X1 }. Employing the interchange argument in 
Chakravarty, Orlin and Rothblum we may repartition 

XI* U X* into two sets with cardinalities I X* I and 

I X K2 such that the resulting partition of X has an 
optimal cost value and a lower value for Zlsp(X,), thus 
contradicting the definition of X*- 

It is worth mentioning that Lemma 1 remains valid when 
the function fOFo, i.e., fails to be monotone in 0. 

It is often convenient to verify sufficient conditions for 
the existence of a monotone partition, or for the ex- 
tremality of the problem, in terms of the function h: 
R --R, defined by h(O, m) f(e/m, m). We also 
define 

N m+l 

R*= ri, Rm m+i Z r 
i=1 ~ ~ ~ = 

Rm m+f Rm m+i/(l+ 1) for all mi= 1,m N and 
all integers 1, with the convention that Rmm ?+ 
Rm m+l 0 for I negative. 

Definition 1. A function 0: R 2- R has antitone dif- 
ferences if O(0 + A, m) - 0(0, m) is nonincreasing in 
m for A > 0. 

The condition in Definition 1 does not distinguish 
between the first and second variables because O(0 + 
A,iM) -(Om)-(O +A,im+l)- (0,nml) if 
and only if 0(0, m + 1) - 0(0, m) _ (0+ - A, m + 
1) - O(0 + A, m) for all A, 1 > 0. 
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Remark 1. Let 4): p2+- n be twice differentiable with 
41 and 42 as its partial derivatives. Then 4 has antitone 
differences if and only if (iff) a2/ a6 am ? 0 for all 
0 > O, m > O. (Observe that O(6 + A, m) - 0(0, m) - 
(0(0 + A, m + I) - 0(0, m + 1)) - 0 iff Jfo 1(6 + 

u, m) du - Jo 01(0 + u, m + I) du-0 which can be 
written as - JO Jf112(0 + u, m + X) dXdu > 0 and holds 
for all A, 1>0 iff 4)12?0.) 

The following are examples of functions with antitone 
differences: i) 0(0, m) = m-aOb with ab > 0; ii) let 
P(m) and Q(6) be monotone, nonnegative polynomial 
functions in m and 0, respectively. Let 4)(0, m) = 
(P(m)) a(Q(6))b and assume that P'(m)Q'(0)ab - 0; 
iii) 4(O, m) = P(6)Cam+b where P(6) is a polynomial 
in 6 and aP'(0) ?0. 

The term "antitone differences" was, to our knowl- 
edge, introduced by Topkis (1968, 1978); see also 
Topkis and Veinott (1972). The antitone differences 
property is equivalent to submodularity (see Theorem 
3.2 in Topkis 1978): a function f(6, m) is submodular if 
f((6 1, m 1) A (62, M2)) + f(( 1, m1) V (62, M 2)) < 

f(0, iml) +f(02, M2) where (06, m,)A(02, M2) = 

(min(61, 02), min(m1, iM2)) and (0, m1)0V(02,m2) = 

(max( 1, 02), max(m1, M2)). The economic interpreta- 
tion of the antitone differences (or submodularity) prop- 
erty is that the marginal increase in the group cost due to 
an increase of the aggregate attribute measure (the cardi- 
nality) of the group, is smaller for groups of larger size 
(aggregate attribute measure) than for groups of smaller 
size (aggregate attribute measure). 

The antitone differences (submodularity) property 
plays a central role in the theory of lattice programming, 
which is used to verify whether optimal solutions to 
certain types of optimization models are monotone in 
some of the model's parameter. The theory is, e.g., used 
in dynamic programming problems to establish that opti- 
mal actions are monotone in the (certain) state variables) 
(see Topkis 1978), the excellent survey on the topic in 
Chapter 8 of Heyman and Sobel (1982) and the discus- 
sion in Section 8. While the term "antitone differences" 
is due to Topkis, the underlying concept has played a 
central role in microeconomics, in particular, in the 
classical theories of production and consumer choice. 
Production functions are functions of the levels of em- 
ployed production factors (e.g., labor, capital) and utility 
functions have the consumption levels of different prod- 
ucts as arguments. When these functions have antitone 
differences, the production factors (products) are called 
substitutes because more of the one decreases the 
marginal benefit of the other. 

Theorem 2 shows that the existence of a monotone 
partition is guaranteed if f or h belongs to the class 

F2= { eF,: k has antitone differences}. We first need 
the following lemma. 

Lemma 2. Assume that feF2 or h eF2. If 1 ? k < 
n - k 

U1 ({X, ... * Xk}, {Xk+1 *, X}) 

< U({xI,..., xnk},{xln-k+l ,... xn}). (6) 

Proof. Assume first that f has antitone differences. 

U1({x1, ... * Xn-k} I{Xn-k+l I I . Xn}) 

- U'({xi, . . ., Xk}, {Xk+?, .. * , X}) 

=f(Rll n-k, n -k) +f(in-k+l n, k) 

-f(Rlk, k) -f(Rk+1,n, n - k) (7) 

f( n - k) +f(Rk+ln, k) 

-f (Rl k, k) -f (Rk+ i n, n - k) 
?0. 

(The first inequality follows from k < n - k, and hence, 

Rin -k?>Rlk andR n-k+1,n >Rk+1,n, using the fact 
that f eFo. The second inequality holds since 

f(RIl,k, n - k) - f(Rl,k, k) > f(Rk+l n, n - k) - 
f(R k + 1, n, k) in view of f having antitone differences 
and Rlk?Rk+lfln) 

Assume next that heF2. Since h has antitone differ- 
ences and R 1 k < R -R 1 n -k it follows that 

h(R* -R, n-k k) -h(RlIk, k) 

> h(R* - Rl n-k' n - k) - h(Rl,k, n - k). (8) 

Since R* - RI k_ R* - RI n-k and h is concave in its 
first argument, we have 

h(R* - RI n-k, n - k) - h(Rlk, n - k) 

_ h(R* - Rlk, n - k) - h(Rlfnk, n - k). 

This inequality together with (8) proves the lemma. 

Theorem 2. There exists an optimal monotone parti- 
tion for P1 provided that feF2 or h eF2. 

Proof. Assume to the contrary that every optimal con- 
secutive partition fails to be monotone. For the purpose 
of this proof only, assume that in any given consecutive 
partition the groups are indexed to achieve a nondecreas- 
ing group index function, i.e., not necessarily in nonde- 
creasing order of their cardinalities. Thus, let X * be an 
optimal consecutive partition that maximizes (among all 
consecutive optimal partitions) the index of the lowest 
indexed set whose cardinality is larger than that of its 
successor in the partition; i.e., X* = {XI*> X2*,..., 
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XI } achieves the maximum in 

max min{l: I XIl > I XI+, I 
X: X consecutive 

optimal 

I= 1,..L - 1}. (9) 

Let I* be the value of I that achieves the minimum in 
(9). We show that the following repartitioning procedure 
transforms X* into a new partition X which is optimal, 
consecutive and with i X1 I < I X21 < ... I XI*I ?_ 

I XI* l I, thus contradicting the definition of 1 and X*. 
We conclude that an optimal monotone partition must 
exist. 

Repartitioning Procedure 

Step 0. Initialize X = X*; k =1. 

Step I. If | Xk I > Xk+l then repartition XkU 
Xk+l into the pair of consecutive sets Xk and X+I 
with IXkI = IXk+l I < IX = IX+1 1. Otherwise, 
terminate. 

Step 2. Xk := X; Xk+l = Xk+l; k: k -1. If 
k > 1, return to Step 1. 

The repartitioning procedure clearly generates a con- 
secutive partition in each iteration, which in view of the 
monotonicity of the bounds Ml (1 1 ... L) is feasible, 
in view of Lemma 2 is at least as good as the previous 
partition, and hence (in view of the optimality of X*) is 
optimal. One easily verifies using the definition of l* 
that at the end of Step 2, I Xk+lI .. . i XI* 
I Xi*+I Il 

The next example shows that the antitone differences 
property is indeed required to guarantee the existence of 
a monotone optimal partition. 

Example 2. Let f(O, m) = m3/401/2. Note that feEF. 
In fact f is even concave in both of its arguments. 
However, f fails to have antitone differences and neither 
does h(89, m) = f(O/m, m) = m /4E /2 

Consider the set X with N = 11, ri= 0.01 (i= 
1,... ,10) and r11 = 900. Let L be variable and 
Ml*= 11 (1 = 1, ..., L). Clearly in view of Lemma 1 a 
consecutive optimal partition exists. The cost associated 
with the single set partition { X} is given by 
1 11/4(900.1)1/2 = 54.63. Next consider any set 
{ X1, . . . , Xk with k < 11 and note that the cost associ- 
ated with any partition X = { X1i..., XLJ of this set is 
given by 

L L 3f4 

XI 
l 
X/3/4(0. 1) >.0. I = X 0. I 014 

with strict equality only for the single set partition 

{ I XI.I - , XkI}. Also, the cost of the partition 
{I{ xl, .., x}, {x11 } } is given by 0.1(10)3/4+ 30 - 
30.56. We conclude that the only consecutive partitions 
of X that may be optimal are of the form 
{X{l, * * *, { Xk+l, * * *, X11}} with I _ k?c 10. The 
cost of the latter partition is given by g(k) = 0.1k374 + 
(11 - k)V/4(900 + (10 - k)0.01)1/2. Note that g'(k) < 
3/4(0.1)k 1/4- 1/4(11 - k) -3/4(900 +0.01(10 -k))'2 
? 0.075 - 1/4(10-3/4)(30) < 0 for all I < k ? 10. (The 

second inequality follows from maximizing each term 
and each factor of the second term separately.) We 
conclude that the partition {{x1, . . ., x10}, {xII}} is the 
unique optimal partition of X. 

In Theorems 3 -6 we identify sufficient conditions 
with respect to f (or h) guaranteeing that P1 is ex- 
tremal. Let 

F13= {eF2; k(0, m) is concave in m}. 

Theorem 3. P1 is extremal if heF3. 

Proof. Since h eF2 it follows from Theorem 2 that 
there exists an optimal partition which is monotone. Let 
X { X1,. * .., XL} denote such a partition. It remains to 
be shown that the total cost value associated with any 
two subsets Xi and Xj+I in X does not increase by 
shifting the highest indexed element from Xj to Xj+,. 
Without loss of generality we assume that Xi= 
{1,. .., k} and X.+1, = k+ 1,..., n}. Also, n - 
k >- k by the monotonicity of x, and define R* = R 1 n 
Consider these expressions 

HI = h(Rlk X kl - 1) + h(Rk,n, n-k + 1) 

H2 = h(Rl k-l, k) + h(Rk,n n - k) 

H3 = h(RI,k, k) + h(Rk+l,, n - k). 

We show that HI s H2 c H3. 

H1 = H2 

Note that 

h(Rk,,, n - k+ 1) - h(Rkf, n - k) 

< h(Rkfno k) -h(Rkfn k- 1) 

< h(R1 k-1' k) - h(Rlk-, k - 1). 

(The first inequality follows from the concavity of 
h(R k, d ) and the second from the antitone differences 
and the fact that R l, k c R k, n.) We conclude that 

Hi = h(R1 k-1 k- 1) + h(Rk, n, n - k 1) 

< h(R1 k-1 1 k) + h(Rkfl, n - k) = H2. 
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Note that 

h(Rk, n - k) - h(Rk+l n, n - k) 

c h(Rk n, k) - h(Rk+l n, k) 

c h(RI, k, k) - h(RI, k- , k). 

(The first inequality follows from h having antitone 
differences and the second from the concavity of 
h(, k).) Thus 

H2 = h(RIkl, k) + h(Rk n n - k) 

c h(R1,k k) + h(Rk+l n, n - k) = H3. 

Theorem 4. P 1 is extremal if feF3. 

Proof. Since feF2, there exists an optimal monotone 
partition X; see Theorem 2. It thus remains to be shown 
that the total cost value associated with any two subsets 

Xi and Xj+ in x is not increased by shifting the 
highest indexed element from Xj to Xj+1. Without loss 
of generality let Xj= 1, . .., k} and Xj+I = {k+ 
1,.. , n} where k ? n - k. Consider the expressions 

H= f(Rk-l k - 1) + f(Rk n, n - k+ 1) 

H2=f(RIk-l, k) +f(Rkkn n - k) 

H3 =f(RIk, k) +f(Rk+ln, n - k). 

We show that H1 ? H2 ? H3. 

H1 ' H2 

Note that 

f(RIklI, k) -f(RI k-l k- 1) 

>-f(Rkfnk) -f(Rkfn k- 1) 

?f(R k, n-k+ 1) -f(Rk nn-k). 

(The first inequality follows from f having antitone 
differences, using the fact that R 1, k- I-< R k, n * The 
second inequality follows from the concavity of f(O, * ) 

for any given 0 using the fact that n - k + 1 > k.) Thus 

H1 =f(R1,k-l, k- 1) +f(Rk, n - k+ 1) 

RI k-l k) +f(Rk,n, n-k)=H2. 

H2 < H3 

This is immediate from feFo and the inequalities 

RI, k- 1 ? RI, k and Rk, n < Rk+1, n- 

The following example shows that P1 may fail to be 
extremal if neither the function feF2 nor the function 
h eF2 is concave in their second argument (m). 

Example 3. Let f(O, m) = 0/rm. One easily verifies 
that feEF2. Also, h(C, m) =f( / m, m) = (/m2 eF2. 

Neither f nor h is concave in m. Let L = 2 and all 

ri= 1 (i = 1, . . ., N). Consider a consecutive partition 

{{X1 , * * iXk}, {Xk+l , * *, XN}} with 1 k c N; its 
cost is given by 1/ k + 1 /(N - k) which is a strictly 
convex function in k achieving its minimum for k = 

F N/2] and k = FN/2] only. The problem thus fails 
to be extremal. 

Theorem 5. Assume that feFo is concave in both 
arguments and the function h has antitone differ- 
ences. Then P1 is extremal. 

Proof. Note that h is concave in its first argument, 
since f is as such. Thus, in view of Theorem 2 there 
exists an optimal partition X which is monotone. It thus 
remains to be shown that the total cost value associated 
with any two subsets Xi and Xj +I in X is not increased 
by shifting the highest indexed element from Xi to 

Xi+ 1. Without loss of generality let Xj = (1, e . . , k} 

and Xj+1={k+1,...n} where k n-k. Also let 
R* = RIn 

Consider the expressions 

H1 = f(Rk-l, k- 1) +f(Rkfn, n - k+ 1) 

H2 =f(R1 k-i, k) 

+f((R* - kR1 k 1)/(n - k), n - k) 

H3 =f(RI k, k) +f(Rk+l n, n - k). 

We show that H1 c H2 ? H3. 

H1i H2 

Note that 

f(Rk-1, k) -f(RIl k-l, k - 1) 

?f(Rlk-l, n - k+ 1) -f(Rl kil, n - k) 

=h((n - k+ 1)RI k-i, n - k+ 1) 

- h((n - k)Rl k-l, n - k) 

> h(Rkn, n - k + 1) 

- h(R* - kR k-l, n - k) 

=f(Rk, n - k + 1) 

f((R* 
- kR1 k 1)/(n - k), n - k). 

The first inequality follows from the concavity of 
f(O, ) for any given 0. The second follows from h 
having antitone differences and the facts 

(n-k+1)RI, k- IRkn 
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and 

(n-k+ i)R, k- I- (n-k)Rlk- 

= Rlk-l 

= kRI k-I - Rlk-l 

= Rkn- (R* kRlk-l) 

This shows that 

H1 =f(R, k-1, k- 1) +f( Rk,f, n - k? 1) 

Rf(RIk-l k) 

+f((R*- kRI,klI)/(n - k), n - k) 

-H2 

H2 'H3 

f(Rlk, k) -f(RIkl k) 

= h(R1 k, k) - h(kR1, k-, k) 

_ h(RI k n - k) - h(kR1,k-I' n - k) 

? h(R* - kR1, k- 1 n - k) 

- h(Rk+l n, n - k) 

=f ((R- kRl,kl1)/(n 
- 

k) n - 
k) 

f(Rk+In, n - k) 

The first inequality follows from h having antitone 
differences and the fact that k c n - k. The second 
inequality follows from the concavity of h(, m) and the 
facts 

kRl k- IR1,k 

kRl k- I < Rk+l, n 

(since Rk+1, n? (n - k)rk+ I kkRk- 1) 

and 

rk -R k-I = RI, k - kR, k- 

= R*- kRk-I - Rk+ln 

We conclude that 

H2 =f(RIk-1' k) 

+f ((R* - kRkk-1)/(n - k),n - k) 

<f(Rlk,k) +f(kk+lf, n - k) 

-H3- 

Theorem 6. Let h eFo be jointly concave and twice 
differentiable while f has antitone differences. Then 
P 1 is extremal. 

Proof. Since h is twice differentiable and concave in its 
first argument, so is f. Let fi (i = 1, 2) be the partial 
derivative of f with respect to its ith argument and fij 
(i, j = 1, 2) be the partial derivative of fi with respect to 
its jth argument. Similar definitions apply to hi and hi, 
(i, j = 1, 2). One easily verifies that f2 = Oh1 + h2 
and f22 = 02h1, + 20hI2 +h22< max{x2h1, + 2xhI2 
+ h22: xeR}. Since h is jointly concave we have 
hIh22 - h2 O> 0, h1, < 0 and h22 <0. Thus, if h1I < 0, 
the quadratic form in x is nonpositive, while if h1I = 0 
we have h12 = 0, and since h22 : 0 the quadratic form is 
nonpositive as well. We conclude that f22 C 0, i.e, f is 
concave in its second argument as well. The theorem 
follows from Theorem 4. 

It remains an open question whether concavity of 
h eF0, in both of its arguments separately, in combina- 
tion with f having antitone differences, is sufficient for 
P1 to be extremal. If this result were true, Theorems 
3-5 could be summarized by stating that Pl is extremal 
provided that one of the two functions f or h is concave 
in both of its arguments and one of the two functions has 
antitone differences. The sufficient conditions in Theo- 
rems 3 and 4 are stated with respect to a single function 
(f or h) and, therefore, appear simpler and more natural 
than their counterparts in Theorems 5 and 6. It is worth 
noting, however, that extremality of the partitioning 
problems, which arise in Anily (1986) and Anily and 
Federgruen (1988a, b, c), is most easily verified via the 
conditions in Theorem 5. All four theorems and their 
proofs appear necessary in view of the following 
observations. 

Example 4. Let f(O, m) = 0 m. While f is concave 
in 0 and m (separately), the function 

6 6 
h(O), m) = f m m o= is not. 

Example 5. Let h(?, m) = Om. While h is concave in 
0 and m (separately), the function f(O, m) = h(O m, m) 
= Om2 is not. 

Example 6. Let h(?, m) = m - 172. While h has anti- 
tone differences, f(o, m) - OmI/2 does not. 

Example 7. Let f(O, m) log log 0. While f has anti- 
tone differences, h(G, m) = log[log ( - log m] does 
not. To verify the latter, note that 

Ah 1 

a? e(log ( - log m) 
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and 

82h ~~~~~1 
>0. am aG mE(log ( - log m)2 

Our results are summarized in Table LI. 

6. SUFFICIENT CONDITIONS FOR p2 

In this section, we derive sufficient conditions with 
respect to f (or h) under which p2: i) has a consecutive 
optimal partition, ii) has a monotone optimal partition, 
and iii) is extremal. 

Theorem 7. If feFo, there exists an optimal consecu- 
tive partition for p2. 

Proof. Assume to the contrary that every optimal parti- 
tion fails to be consecutive. Let X be an optimal partition 
which maximizes, among all optimal partitions, the in- 
dex of the lowest indexed nonconsecutive set. (Let p be 
the index of the lowest indexed nonconsecutive set in X.) 

Since Xp is nonconsecutive there exists a set Xt (t > p) 
with min X ri < max Xicxri. Consider these two cases: 

i. maxxjeXprri<maxxjeXtri 
Repartition X U Xt into two consecutive sets X and 
Xt where IXp = IXtI = Xt I and Xp con- 
sists of the Xp I lowest indexed elements of Xp U Xt. 
Clearly 

max ri max r1 and max r max ri. (10) 
xGeXP xiEX xiEXp 

ii. maxxjEXpri> max xj xri 
Repartition X U Xt into two consecutive sets X and 
Xt where I Xp =Xt ,Xt= Xp and Xp con- 
sists of the I Xt lowest indexed elements of Xp U Xt. 
Clearly 

max r c max ri and max ri= max r,. (11) 
X iE XEXt XEkt xieXP 

Thus, in both cases U2({Xp, XP}) c U2({Xp, Xt}) 
in view of (10) and (11). The partition X1 of X which 

Table II 
Summary of Results for P1 

f h f h 
Antitone Antitone Concave Concave 

Case f/h EF Differences Differences in m in m Conclusion 

1 + a - - Optimal consecutive partition 
2 + - - + _ (see Lemma 1) no monotone 
3 + - - - + optimal needs to exist 
4 + - - + + (Example 2) 

5 + + - - - Monotone optimal partition 
6 + - + - - exists (see Theorem 2); 
7 + + + - - Partitioning problem not 

extremal (see Example 3) 

8 + - + - + Partitioning problem extremal 
(Theorem 3) 

9 + + - + - Partitioning problem extremal 
(Theorem 4) 

10 + - + + - Partitioning problem extremal 
(Theorem 5) 

11 + - + + + Partitioning problem extremal 
(Theorems 3, 5) 

12 + + - - + Optimal monotone partition 
exists, open question 
whether partitioning problem 
extremal (see, however, 
Theorem 6) 

13 + + - + + Partitioning problem extremal 
(Theorem 4) 

14 + + + - + Partitioning problem extremal 
(Theorem 3) 

15 + + + + - Partitioning problem extremal 
(Theorem 5) 

16 + + + + + Partitioning problem extremal 
(Theorems 3, 4, 5) 

aA "+" (" - ") denotes that the property holds (may fail to hold). 



142 / ANILY AND FEDERGRUEN 

results from this partitioning is thus optimal since X is 
optimal. Moreover, the first p sets in Xi are consecu- 
tive, thus contradicting the definition of X. 

Note that feFo iff heF0. The following theorem 
shows that an optimal monotone partition for p2 exists if 
feFo and has antitone differences; see Theorem 2 for 
the corresponding result with respect to P1. 

Theorem 8. Assume that feFo and f has antitone 
differences. 

a. If 1 _ k c n - k, U2({x1, . . .X, Xk, 

1Xk11, . . . , XJ}) C U2 
({X1,.I, Xn-kl {Xn-kelp 

,,,XnD) 

b. There exists an optimal monotone partition for p 2. 

Proof. a. U2({XI,.**IXn-k},{Xn-k+l*. Xn )= 

f(rn-k, n - k) +f(rn, k) )f(rk, n - k) +f(rn, k) > 
f(rk, k) + f(rn, n - k) = U2({XI, . . . , XkJ, 

{I Xk + ,, Xn}). The first inequality follows from feFo 
and the second from f having antitone differences. 

b. Given part a the proof is identical to that of 
Theorem 2. 

The following example shows that a monotone optimal 
partition may fail to exist if f fails to have antitone 
differences. 

Example 8. Let X and f be as defined in Example 2. 
Following the discussion there, one easily verifies that 
only the following two partitions may be optimal among 
all consecutive partitions. 

i. { X} and ii. {I{ xl, . . ., x1l}, { }} . The former 
has a cost 11314 /900 = 181.2 while the latter has a cost 
(103/4) .01 + 30 = 30.56. Thus, no monotone opti- 
mal partition exists. 

Theorem 9 shows that the conditions feFO, f has 
antitone differences and f is concave in m, guarantee 
that P2 is extremal. Recall from Theorem 4 that to 
guarantee the extremality of P' we require in addition 
that f be concave in 0, that is, feF3. 

Theorem 9. p2 is extremal if f(0, m)eFO is concave 
in m and has antitone differences. 

Proof. Since feFo and has antitone differences, there 
exists an optimal monotone partition X; see Theorem 8. 
It thus remains to be shown that the total cost value of 
two subsets Xi and Xi+ in X is not increased by 
shifting the highest indexed element from Xj to Xj+ . 
Without loss of generality let Xj = {1, . . ., k} and 
XJ+ 1 = { k + 1, . . ., n} where k c n - k. Note that 

U2 ({XI, * * Xk}, {Xk+1,. * - X}) 

=f(rk, k) +f(rn, n - k) 

zf(rk-l, k) +ff(rn, n - k). 

Also 

f (rn n - k+ 1) -f(rn, n - k) 

<f (rn, k) - f(rn, k -1) 

<f(rk-I, k) -f(rkI, k- 1). (12) 

The first inequality in (12) follows from f being 
concave in its second argument and the second inequality 
from f having antitone differences. Equation 12 implies 
that 

U2({XI, . .... Xk},{IXk .*, XJ}) 

?f(rk-l k) +f(rn, n - k) 

?f(rk-l, k- 1) +f(r,, n - k+ 1) 

= 
U2({Xl,-*., Xkl}, {Xk,.*Xn0) 

Example 3 shows that p2 may fail to be extremal if 
feF2 fails to be concave in its second argument m. 
Example 9 shows that the conditions hEF2 and heF3 
are insufficient to guarantee the existence of a monotone 
optimal partition or the extremality of p2, respectively, 
(This is in contrast to the sufficiency of these conditions 
with respect to P'; see Theorems 2 and 3.) This example 
shows in fact that even the condition hleF3 is insuffi- 
cient for the existence of a monotone optimal partition in 
p2 

Example 9. Let h(6, M) - '114. Clearly hliF3. (In 
fact, h is even jointly concave in e and m.) Note also 
that f(O, m) = h(Om, m) = O1/4n 1/4 is jointly concave 
in both arguments. Consider the set X = { x,. . ., XN} 

with N= 104 + 1, r1 = ... = rNl I = I and rN= 104. 
Let L be variable and all M,* = N. Clearly hiF0, so 
that a consecutive optimal partition exists. Fix k < N 
and observe first that for any partition X = 

{ XI, . . . , XL} Of { x1, Xk}, U2(X) = 

El=f X_/=1/4(f I XI )1/4k= 04 with a strict in- 
equality whenever L _ 2. Thus, the single set partition 
{X{19 ... . Xk}1} is the unique optimal partition of 
{ xI, . . ., Xk}1. Moreover, partitioning X into a single 
set results in a higher total cost value (- 100) than the 
partition {I{X, ... , XN-1}, {XN}}, which results in a 
cost value of 20. Thus, the optimal partition is of the 
form X(k) = {{x1, ... , Xk}, {Xk+l, -. - , xnI} for 
some k, 1 c k < N- 1. The cost value of X(k) is given 
by g(k) = 014+ ((104 + 1 - k)104)1/4 which is a 
strictly concave function in k; thus it attains its mini- 
mum only in one of the extreme points k = 1 or k = 104. 

A simple comparison shows that g(104) < g(1). Thus, 
the nonmonotone partition { { xI-,X1 1 }, { XN} } 
is the unique optimal partition. 
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Thus, in terms of conditions with respect to the func- 
tion h, the only sufficient conditions (for extremality) 
are given by the next theorem. 

Theorem 10. Assume that heFo is jointly concave 
and twice differentiable, while f has antitone differ- 
ences. Then p2 is extremal. 

Proof. As in the proof of Theorem 6 one verifies that f 
is concave in its second argument. Thus, Theorem 9 can 
be applied. 

We summarize the results of this section in Table ILL. 

7. APPLICATIONS 

In this section we apply our results to several optimiza- 
tion models. 

Example 10 (Bin Packing Problems). Many combina- 

torial optimization problems may be formulated as one- 
dimensional bin packing problems in which a list of 
objects { xl, . . ., xnJ is to be packed into a set of bins. 
Each object xi has an (integer) size ri. Applications 
include storage problems, packing trucks with a given 
weight limit, assigning commercials to station breaks on 
television (see Brown 1971) as well as cutting stock and 
machine scheduling problems. We refer to Coffman, 
Garey and Johnson (1988) for a survey covering more 
than one hundred papers on this class of partitioning 
problems. Here we mention a few versions of the bin 
packing problem which may directly be formulated as 
partitioning problems of the type P'. Chandra and Wang 
(1975) and Cody and Coffman (1976) study bin packing 
problems that arise in the allocation of records on com- 
puter auxiliary storage devices. The former models pag- 
ing drums where a given set of pages is to be partitioned 
among L sectors (bins/groups) of the drum to minimize 

Table III 
Summary Results for p2 

h h 
Concave Concave 

f f in (, in (, m; 
Antitone Concave Antitone Antitone Possible 

Case f/h Eo Differences in m Differences Differences Combination Conclusion 

1 + a - - _ _ Optimal consecutive partition exists 
(Theorem 7); does not need to be 
monotone, see Example 8 

2 + - - + - Optimal consecutive partition exists; 
does not need to be monotone; see 
Example 9 

3 + - - - + Cannot occur 
4 + - - + + Optimal consecutive partition exists; 

does not need to be monotone; see 
Example 9 

5 + + - - - Optimal monotone partition exists 
(Theorem 8) 

6 + + - + - Partitioning problem does not need to 
be extremal (Examples 3, 9) 

7 + + - - + Cannot occur 
8 + + - + + Cannot occur 

in view of 
Theorem 10 

9 + - + _ _ Optimal consecutive partition exists; 
10 + - + + - Cannot occur does not need to be monotone; see 
11 + - + - + Examples 8, 9 
12 + - + + + 

13 + + + - - 

14 + + + + - Cannot occur Partitioning problem is extremal 
15 + + + - + I 
16 + + + + + 

aA + ( - ") denotes that the property holds (may fail to hold). 
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average access time; the latter models arm contention in 
disk-pack computer storage. In this case, the objective is 
to minimize the contention that occurs whenever two 
items from the same bin are requested at the same time. 
Both models reduce to solving a partitioning problem of 
the type P1 with f(6, m) = m202 or h(O, m) = 02. It 
is assumed that any number of items may be stored in a 
bin; Eastman and Wong (1975) consider capacitated 
bins, i.e., M = . .. = ML < co. Since the functions f 
and h are convex in 0 and 0, respectively, the results 
of this paper fail to apply. In fact, using a straightfor- 
ward adaptation of the proof in Example 1, one easily 
verifies that both partitioning problems are NP- 
complete. The above authors have, however, demon- 
strated that a relatively simple heuristic is guaranteed to 
result in solutions whose cost value comes within a few 
percentage points of the optimal value; see Coffman, 
Garey and Johnson for details. 

Example 11. Queueing models are increasingly used to 
model a wide variety of systems in which users 
(customers) compete for limited capacity. These include, 
for example, production systems, telecommunication 
processes and service facilities. Many such systems con- 
sist of a number of parallel servers or server pools and 
deal with multiple classes of customers, each of which is 
to be assigned to one of the server pools. 

Thus, let { 1, . . . , N} be the collection of customer 
classes. Assume, for example, that all customer classes 
arrive according to independent Poisson processes, and 
let Xi denote the arrival rate of class i (i = 1, . . . , N). 
All L server pools consist of c (> 1) identical servers. 
Customers have independent and identically distributed 
work loads. The service time distribution of a given 
server pool may depend on the number of distinct cus- 
tomer classes it is assigned to: The service rate of a 
server (pool) typically decreases with the number of 
distinct classes it is responsible for, with fully special- 
ized or dedicated servers (dealing with a single class) 
and general purpose, flexible servers (dealing with a 
large number of classes) as extremes. Thus, let G(, m) 
denote the general service time distribution of a server 
that deals with m distinct customer classes. 

Note that under any given assignment of classes, each 
server pool operates as an M/ G / c system. If the 
objective is to minimize the expected total number of 
customers (in the queue or in the system) or the overall 
average of the expected waiting times experienced by all 
customers, the assignment problem is easily translated 
into a partitioning problem of the type P1. The cost of 
assigning a group S C { 1, . . , N} of customer classes 
to a server pool depends on EisXi and I S I . 

For example, when minimizing the total queue size, 

the group cost function is given by 

rco 
00 if xij (1-G(u,ISI)du>1 

ies 

the expected number of customers in 

h 
l 

I an M/G/c system with arrival rate 

icS } ieS Xi and service time distribution 
G(, ISI). 

For general c > 1 and service time distributions G no 
exact characterizations of the f(, ) function can be 
obtained. However, it is well known that the function is 
convex when the service time distributions are exponen- 
tial (see Lee and Cohen 1983, Grassmann 1983), when 
c = 1 and G general (see the Pollatzhek-Khintchine for- 
mula), and in heavy traffic (see Boxma, Cohen and 
Nuffels 1979). For the general case, a widely used and 
extremely accurate approximation formula (see Krampe, 
Kubat and Runge 1973, Maalpe 1973, Stoyan 1976, 
Nozaki and Ross 1978, Hokstad 1978 and Tijms, Van 
Hoorn and Federgruen 1981) for the expected queue size 
exhibits a convex dependency on the (total) arrival rate 
as well. As in Example 10, since the group cost function 
is convex in the total assigned arrival rate, the results of 
this paper fail to apply. In fact, by using a simple 
adaptation of the proof of Example 11, one easily veri- 
fies that the problem is NP-complete even when the 
service time distribution is independent of the number of 
customer classes assigned to a given server and when the 
number of server pools L = 2. 

We now apply the results of this paper to several 
physical distribution management models. 

Example 12 (Joint Replenishment Problems). One of 
the major complications in managing multi-item inven- 
tory systems stems from the fact that various cost com- 
ponents, in particular, setup costs, are often jointly 
incurred between several items. The joint cost structure 
often reflects economies of scale which may be ex- 
ploited by combining different items in the same produc- 
tion batch or delivery order. 

Chakravarty, Orlin and Rothblum (1982) consider a 
variant of the Joint Replenishment Problem, in which 
demands are assumed to occur continuously, at item- 
specific but time-homogeneous rates. The authors con- 
sider strategies that employ a fixed partition of items into 
groups; each time the inventory of a given item is 
replenished, it is replenished jointly with the other mem- 
bers of the group, and the setup cost of that group is 
incurred. The joint setup cost is assumed to be given by 
a function K(m) where m denotes the number of items 
in the group. 
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Without loss of generality, the units in which the items 
are measured may be chosen such that each item's 
demand rate equals two. Each item i is thus character- 
ized by a single attribute, its holding cost Hi (i = 

1, ... , N). One easily verifies that the optimal inventory 
strategy in the above defined class is determined by 
solving a partitioning problem of the type P1 with group 
cost function h(O, m) = 2(K(m)O)112. An optimal con- 
secutive partition exists in view of Lemma 1; note, 
however, that neither h(, ) nor f(6, m) = 

2(mK(m)0)112 have antitone differences, i.e., one of 
the Cases 1-4 in Table II applies and therefore no 
monotone partition needs to be optimal. The dynamic 
programming algorithms of Section 2 may be used to 
solve these models. 

Example 13. In the classical Vehicle Routing Problem 
(VRP), a set of deliveries to a given collection of 
customers is to be assigned to a fixed or variable sized 
fleet of vehicles, each of which is of limited capacity. 
The objective is to find a set of routes, where each route 
starts at the depot and returns there after visiting a subset 
of customers, so that each customer is visited exactly 
once, the capacity of the vehicle is not exceeded and the 
total length of all routes is as small as possible. 
Haimovich and Rinnooy Kan (1985) considered a styl- 
ized version of the VRP in which the distances between 
customers are given by the Euclidean distances between 
the corresponding points, and deliveries to a given cus- 
tomer may be split between several vehicles. Thus, 
assuming that all delivery sizes are integers, a customer 
with delivery size d may be treated as d customers with 
demand 1, all located at the same location; the capacity 
of a vehicle may then be stated as an upper bound on the 
number of customers that may be included in a single 
route. 

For the above version of the VRP, and considering a 
fleet of identical vehicles, Haimovich and Rinnooy Kan 
derive easily computable lower and upper bounds for the 
optimal solution value R*(X) which are shown to be 
asymptotically accurate under mild probabilistic assump- 
tions. Following the basic approach of these authors we 
address the more general case with a fleet of L (possi- 
bly) nonidentical vehicles with capacities M* < ... 

' ML, respectively. 
Let { 1,... , N} be the collection of customers and ri 

denote the radial distance of customer i from the depot. 
For any collection of customers S C { 1, . . , N}, let 
R(S) denote the length of the optimal route starting and 
terminating at the depot and visiting all customers in S 
exactly once. Clearly 

R(S) > R(2)(S) > R(1)(S) (12) 

where 

R()( )= 2 (E ri/|Sl R( ( S) = 2 m asx ri. 
~icS iES 

(R(S) is at least as large as twice the distance to the 
farthest point in S, thus verifying the first inequality in 
(12); the second inequality is immediate.) Two lower 
bounds for R*(X)-the optimal routing cost-may thus 
be determined by computing V1(X) and V2(X), the 
solutions of P1 and p2 with f(6, m) = 20. Note 
V1(X) V2(X) C R*(X). 

It follows from Theorems 4 and 9, that both Pl and 
p2 are extremal. Thus, the partition X* generated by 
the EPA achieves both V1(X) and V2(X) in P1 and 
P2, respectively. Using a minor adaptation to the proofs 
of Haimovich and Rinnooy Kan one verifies that both 
lower bounds are asymptotically accurate as the number 
of customers tends to infinity (under the same probabilis- 
tic assumptions as ibid). The partition X* may also be 
used as a basis for several regional partitioning schemes 
that result in (heuristic) sets of routes which can be 
shown to be asymptotically optimal as well; see Anily 
and Federgruen (1988b, c) and Example 14. 

Example 14. Consider a one-warehouse multiple re- 
tailer system in which at each retailer xi customer 
demands for a given product occur at a constant deter- 
ministic rate Iti, with ti = kilt for integers ki ? 1 and a 
given base rate It > 0 (i = 1, ... , N). All stock enters 
the system through the depot from where it is dis- 
tributed, in efficient routes, to (some of) the retailers via 
a fleet of vehicles, each with a given load capacity of b 
units. 

Inventories are kept at the retailers but not at the 
depot. (A different, somewhat more complex, applica- 
tion of our class of routing models arises in systems with 
central inventories; see Anily 1987, Chapter 5). Inven- 
tory carrying costs are incurred at a rate h + per unit, 
per unit of time. Transportation costs include a fixed cost 
c per route driven and variable costs proportional with 
the total (Euclidean) distance driven. (The cost per mile 
is normalized as one.) We wish to determine replenish- 
ment strategies that enable all retailers to meet their 
demands while minimizing long-run average transporta- 
tion and inventory carrying costs. We refer to Anily and 
Federgruen (1988c) for a survey of related models on 
combined inventory control and vehicle routing 
problems. 

Define a demand point as a point in the plane that 
faces a demand rate of It. Each retailer xi (i = 1 . . . , N) 
with demand rate kiA may be replaced by ki indepen- 
dent demand points, all located at the same geographic 
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point. (This modeling device is similar to the one em- 
ployed in Example 13.) We restrict ourselves to the class 
of strategies that partitions the demand points into a 
collection of L regions such that each time one of the 
demand points in a given region receives a delivery, this 
delivery is made by one of the vehicles visiting all other 
demand points in the region as well. (See Anily and 
Federgruen 1988c for a discussion of this restriction.) In 
view of the limited vehicle fleet sizes and other consider- 
ations pointed out in Anily and Federgruen (1988c), we 
specify that a vehicle may be dispatched to a given 
region at most f * times per unit of time. This considera- 
tion implies, in itself, an upper bound M* = bf *// for 
the number of demand points that may be assigned to a 
single region (route). See Anily and Federgruen (1988c) 
for other constraints which may be translated into (possi- 
bly nonidentical) upper bounds M ML* for the 
regions. 

Anily and Federgruen (1988c) derive two lower bounds 
V' and V2 for the optimal solution value V* which 
may be determined by solving a partitioning problem of 
the type P1 and p2, respectively, in both cases with 

h+,um/(2f*) +f*(O + c) 

if 0 +?c itmh+/(2f*) 

f(0, m) = (2h+ptm(0 + c))/2 

if vumh+/(2f *) c + c? b2h+/(2ptm) 

h+b/2 + (I/m / b) (6 + c) otherwise. 

Clearly, feF so that both lower bounds V1 and V2 are 
achieved by consecutive partitions. The function f(, ) 
also satisfies the assumptions in Theorem 5, so that P1 is 
extremal and V1 is achieved by the partition generated 
by the EPA. Note that none of the simpler theorems 3 or 
4 could be employed. 

On the other hand, the fact that f and h eF1, that f 
and h are concave in m and h has antitone differences 
(but f does not) is insufficient to demonstrate that an 
optimal monotone partition exists for p2 as well, as 
follows from Examples 8 and 9; see also case 12 in 
Table III. Thus, the computation of V2 is more complex 
than that of V1, and in the case of nonidentical regional 
capacities { M ,... , ML } no efficient evaluation meth- 
ods for V2 appear to be known; see Section 3. 

Both lower bounds V ' and V2 are shown to be 
asymptotically accurate, under mild probabilistic as- 
sumptions with respect to the distribution of radial dis- 
tances. It is also shown how the partition that optimizes 
P1 or p2 may be used as the basis for the construction 
of a collection of regions and associated inventory strat- 

egy, the cost of which is asymptotically optimal (under 
the above referred-to conditions). 

Example 15. Consider a continuous-time, two-stage 
production/inventory system. In the first stage a com- 
mon intermediate product is produced in batches and 
possibly stored. In the second phase the intermediate 
product is fabricated into N distinct finished products; 
several finished products may be included in a single 
production batch to exploit economies of scale. In partic- 
ular, assume that a fixed cost c is incurred for any 
(second stage) production run. Likewise, a fixed cost Ko 
is incurred whenever a new production run for the 
intermediate product is initiated. Inventories of the inter- 
mediate product incur carrying costs at a rate ho per unit 
of time while inventories of end item i are charged at a 
rate hi, i= 1,...,N. Let hi= hi-ho h >O (i= 
1, ... , N). Since holding cost rates usually increase 
with the (cumulative) value added, this assumption is 
almost always satisfied. 

Demands for the end items occur at deterministic, 
constant rates per unit of time, all expressed in a com- 
mon unit (pounds, gallons, etc.). These demands must be 
filled from available inventories, i.e., backlogging is not 
allowed. While different items may be combined in a 
single production batch, the total production volume per 
batch cannot exceed a capacity limit of b units. 

We are interested in determining a production/inven- 
tory strategy that minimizes long-run average costs. We 
assume that the variable production costs (in both stages) 
are linear in the production volumes; hence, these cost 
components may be ignored because their long-run aver- 
age value is identical for all relevant replenishment 
strategies, with long-run average production rates equal 
to the demand rates. 

Assuming (as above) that all demand rates are integer 
multiples of some base rate It, each finished product may 
be viewed as representing an integer number of indepen- 
dent demand-items, each with a demand rate It. 

Optimal policies may be very complex even without 
joint setup costs (see, e.g., Roundy 1985), and their 
complexity makes them difficult to implement even if 
they could be computed efficiently. As a consequence, 
we restrict ourselves to replenishment strategies which 
partition the demand items into a collection of families 
X = { X1, .., XL} such that in any (second-stage) pro- 
duction batch only one of the families in X is produced. 
Note that a finished product may be included in several 
families and may thus be produced by itself as well as in 
conjunction with different combinations of other end 
products. See Anily and Federgruen (1988a) for a dis- 
cussion of this restriction. As in the previous example, 
various constraints imply an upper bound M* for the 



Structured Partitioning Problems / 147 

number of demand items which may be assigned to a 
given family. 

In Anily and Federgruen (1988a), we derive a lower 
bound V for V-, the minimum long-run average cost 
among all strategies in the above defined class. This 
lower bound is of the form 

V= min V(T) 
T>O 

where 

V(T) =min{ hT(J hI XI) 
1= 1 iEX, 

X = {X1, ..., XL} 

is a feasible partition}. (13) 

See Anily and Federgruen for a specification of the 
function h T( * , * ) . 

For any T> 0, the corresponding function fT( ) 
satisfies the conditions of Theorem 5, so that the corre- 
sponding partitioning problem (of type P1) is extremal, 
and therefore optimized by the (unique) partition X * = 

{X1, .., XL} generated by the EPA. We conclude 
that the same partition X* achieves the minimum in (13) 
for all T > 0! Hence 

L 

V(T) = min ht(Zhi, lXll) (14) 
T>O I= 

I XI* 

The function to the right of (13) is clearly convex in T 
and its minimum may be computed in closed form! Note 
that if we had failed to recognize that the partitioning 
problem in (13) is extremal, we would suspect that the 
optimal partition in (13) depends on T and that the 
function V(T) fails to be convex, leaving us with a 
complex minimization problem over T. 

The lower bound V and the partition X* may be used 
as the basis for the construction of a replenishment 
strategy whose cost value comes within 6% of V (and 
hence of V*); see Anily and Federgruen (1988a) for 
details and even better optimality gaps that apply in 
special cases. 

8. RELATED PARTITIONING PROBLEMS 

Grdtschel, Lovasz and Schrijver (1982) consider the 
general partitioning problem. 

Problem P 

Minimize {U(X): x partitions X and m?Ml*, 1I 
1, . . . v L} where U(x) = ELZIg(X1) and g( ) is a 
general (normalized) monotone submodular set func- 
tion, i.e., g: 2x *R with 

i. g(o) = 0 (normalization), 
ii. g(S) c g(T) if S C T (monotonicity), 

iii. g(S U T) + g(S n T) c g(S) + g(T) for all S, Tc 
X (submodularity). Gr6tschel, Lova'sz and Schrijver 
prove that P can be solved by the ellipsoid method. The 
running time of this algorithm is polynomial, albeit of an 
unattractively high degree. 

Consider the case where g(S) = h(Zixiesri, I S 1). If 
heF3, it follows from Lemma 2 in Federgruen and 
Zheng (1988) that g is a normalized monotone and 
submodular set function. On the other hand, if hOF3, 
then g will generally fail to be submodular. But if 
h eF3, we know that P is extremal and the EPA solves 
the problem in no more than 3 N/2 operations and 
generates a partition of a strikingly simple structure; see 
Section 4 and cases 8, 11, 14, and 16 in Table II. 

Topkis (1978) deals with partitioning problems in 
which a consecutive partition is known to be optimal or 
in which only consecutive partitions are considered. As 
pointed out in Section 2, with L variable and Ml =M* 
1= 1, ... , L such problems may be solved by comput- 
ing a shortest path in an acyclic network with N nodes. 
The latter may, of course, be described by dynamic 
programming recursions of the form 

Fj) = min {cQj,)+F(1)} 1?<j?!tN 
1 lyj- 1 (18) 

F(O) = 0. 

Let s(j) denote the smallest optimal successor of j, i.e., 
s(j) is the smallest value of / achieving the minimum in 
(18). Topkis (1978) was primarily interested in condi- 
tions under which s(j) is nondecreasing in j. This 
property has important implications for the existence of 
planning and forecasting horizons; see his paper as well 
as Heyman and Sobel (Chapter 8). He shows that the 
successor function s( ) is nondecreasing if c has anti- 
tone differences, i.e., it is submodular: 

C0j2, i1) + C(jI, i2) _ C(j1, i1) + c(12, i2) 

if i1, i2?min(l,1 j2) 

This result comes as a corollary to a significantly more 
general treatment. Here we present a simple and self- 
contained proof (which to our knowledge has not ap- 
peared in the literature). 

Lemma 3. If c(i, j) is a submodular function (i.e., 
if c(, ) has antitone differences), then s(j) is a 
nondecreasing function of j. 

Proof. The proof is a contradiction. Assume that there 
exist jI <j2 such that s j() > S(j2)- 

j2? il <s(j2) < (SL). 
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Then 

F(j1) + F(j2) = C(ji, S(J1)) + F(s( ji) - 1) 

+ C(12, s(j2)) + F(S(Q2) - 1) 

> C(h2, S( j)) + F(s(j,) - 1) 

+ C(1, S(2)) + F(S(12) -1) 

> c(j2, S(Q2)) + F(S(j2) - 1) 

+ c(.1, s(j2)) + F(s(Q2) - 1) 

The first inequality follows from the submodularity of c 
and the second from the definition of s( ). We conclude 
that 

C(I i, S(j2)) + F(s(j2) - 1) 

c c(Ij, S(Ij)) + F(s(j1) - 1). 

Hence s(jI) does not achieve the minimum in (18) for 

i = jj, thus contradicting the definition of st(j). 

When the partitioning problem is extremal, it follows 
from Theorem 1 that the EPA in Section 4, when applied 
to a set { x1, . . ., x;} (1 c j _ N), generates a partition 
in which s(j), the index of the lowest indexed element 
of the last set, equals s(j). One also easily verifies that 
3(j) (= s(j)) is nondecreasing in j. Thus, the conditions 
in Theorems 3-6, 9 and 10 provide alternative condi- 
tions under which the successor function s( ) is nonde- 
creasing. It is noteworthy that these conditions may hold 
while the corresponding c(,) function fails to be 
submodular when viewed as a function of the lowest and 
highest index in the group; see Example 16. 

Example 16. Consider P1 and let f(O, m) = 0. The 
problem is clearly extremal. Let N 4, r1= 1, r2= r3 
= 5 and r4 = 10. Note that 

3 2 
c(3, 1) = r/3 = 3- 

i=1 3 
4 2 

c(4,2)= E rj/3=6- 
i=2 3 

4 

c(4, 1) = ri /4 = 5.25 
i=l1 

3 

c(3,2) = E r1/2 = 5. 
i=2 

Thus c(3, 1) + c(4, 2) > c(4, 1) + c(3, 2), which violates 
submodularity. 
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