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A batch production process that is initially in the in-control state can fail with constant failure rate to the out-of-control
state. The probability that a unit is conforming if produced while the process is in control is constant and higher than
the respective constant conformance probability while the process is out of control. When production ends, the units
are inspected in the order they have been produced. The objective is to design a production and inspection policy that
guarantees a zero defective delivery in minimum expected total cost.

The inspection problem is formulated as a partially observable Markov decision process (POMDP): Given the observa-
tions about the quality of the items that have already been inspected, the inspector should determine whether to inspect
the next unit or stop inspection and possibly pay shortage costs. We show that the optimal policy is of the control limit
threshold (CLT) type: The observations are used to update the probability that the production process was still in control
while producing the candidate unit for inspection. The optimal policy is to continue inspection if and only if this proba-
bility exceeds a CLT value that may depend on the outstanding demand and the number of uninspected items. Structural
properties satisfied by the various CLT values are presented.
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1. Introduction

In a world of growing, complexity targeting zero defectives
becomes an absolute necessity if the possibility of complex
and expensive systems becoming inactive due to the failure
of quite simple components is to be avoided. This reality
may lead to meticulous inspection procedures, which some-
times are more costly than manufacturing. Juran (1993)
expressed a view about the increasing role of quality con-
trol in supporting the firm’s long-term competitive strat-
egy as follows “While the twentieth century has been the
Century of Productivity, the twenty first century will be
the Century of Quality” (p. 47). The need for elaborate
inspection is particularly important when products are cus-
tom made, in small quantities, because often in such situa-
tions neither the manufacturer nor the customer has genuine
experience concerning the product’s quality.

We consider a batch production process as described
in Montgomery (2001): Items in a batch are processed
sequentially. A production process in (statistical) control
is operating with only chance causes of variations, i.e.,
a background noise that results in an inherent (acceptable)
amount of natural variability. Other types of variability
may arise as a result of improperly adjusted or controlled
machines, operator errors, or defective raw material. These
are called assignable causes. A process operating in the
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presence of such causes is said to be out of control. The
production process switches to the out-of-control state at
the first occurrence of an assignable cause. While in con-
trol, the production process may get out of control with a
constant failure rate while producing the next unit in the
batch. Once the process becomes out of control, it remains
in this state until the batch production is completed. Ross
(1983, p. 25) referred to continuous-time constant fail-
ure rate processes whose failure time is exponentially dis-
tributed. We consider the analogous discrete-time case of
such processes where the failure time is geometrically
distributed.

Set-up operations take place before initiating the produc-
tion of a batch to restore the optimal operating conditions.
Manufactured units are classified by attributes as either
conforming or nonconforming to the customer’s require-
ments. More specifically, while the process is in control,
the probability that a produced unit is conforming is con-
stant and higher than the constant respective conformance
probability while the process is out of control. We assume
that it is impossible to carry out a direct inspection of the
production process as long as it works due to the inaccessi-
bility of some of the process’s components, but the process
deterioration can be measured indirectly by inspecting the
output.
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A major objective of statistical process control (SPC) is
to perform online inspection to detect as early as possi-
ble the occurrence of assignable causes, which enables the
operator to undertake corrective actions. The literature dis-
tinguishes between two types of inspection rules: (1) static
SPC rules with fixed parameters (sampling interval, sample
size, and control chart limits) and (2) dynamic SPC (DSPC)
rules, where one or more parameters are variable; see
Tagaras (1998). Because the Bayesian approach in develop-
ing SPC rules for online inspection bears similarities with
our formulation of offline inspection, we mention briefly
some relevant SPC-oriented works. Calabrese (1995) ana-
lyzed, based on the Bayesian approach, SPC schemes with
fixed sample sizes and sampling intervals in the finite time
horizon: The samples’ observations are used to derive the
optimal decision rule on whether to continue production
for the next interval or to stop and inspect the process
for assignable causes. Porteus and Angelus (1997) ana-
lyzed similar infinite- and finite-horizon practical problems
where inspection time and restoration time are not neces-
sarily negligible. They questioned the effectiveness of static
SPC rules that are widely used in practice, in comparison
to DSPC rules. Tagaras and Nikolaidis (2002) compared
the economic performance of various Bayesian dynamic
X charts in finite productions runs when the sample interval
and the sample size are allowed to be determined dynam-
ically. They find that adaptive sample intervals have the
most positive impact on the economic performance. The
main criticism about DSPC rules, which were shown to
be optimal, is their complexity; see Parkhideh and Case
(1989). Still, DSPC rules have been used in practice for
many years (see Western Electric Inc. 1958), and the prac-
tical interest in them keeps growing. Tagaras (1994, 1996)
showed by a numerical study that at least 10% quality cost
savings can be achieved by using DSPC policies rather than
static rules.

Sometimes online inspection is impossible, usually
because the inspection is performed in an exogenous facil-
ity where special equipment is installed. Offline inspec-
tion, which is the subject of this paper, is performed after
completing the production of the batch, and its main pur-
pose is to test the quality of the manufactured units. The
use of offline inspection is very popular, for example, in
the printed circuit assembly industry: Offline manual X-ray
inspection allows detection of solder defects in specific
areas of the board. The technology employed by these
systems has improved over time and many provide high-
quality X-ray images. Some systems also provide software
tools that help in detecting defects—especially for area
array packages such as ball grid array (BGA). The impor-
tance of such nondestructive testing by X-ray continuously
increases in the inspection of small to medium-size lots.

In accordance with the just-in-time philosophy, we
assume that it is the producer’s responsibility to ensure
a delivery free from defects. In the yield distribution
described above, the only way to guarantee zero defects

is by employing a 100% inspection procedure. We assume
that the items in a lot are inspected sequentially in the
order they have been produced by an offline nondestructive
and error-free procedure. Note that our model is closely
related to lot-by-lot acceptance sampling for attributes and
item-by-item sequential sampling, which sentence lots to
acceptance or rejection based on a random sample; see
Montgomery (2001). These two methods are usually not
exhaustive sampling schemes, except for the case of very
high cost of defectives, where 100% inspection may prove
to be optimal; see Hald (1981) and Tagaras and Lee (1987).
Many authors considered the inspection of goods produced
by a process with constant failure rate, e.g., Grosfeld-Nir
et al. (2000), Hassin (1984), He et al. (1996), Porteus
(1986, 1990), and Raz et al. (2000). In contrast to our
model, these papers assume that all units produced while
the process is in control (out of control) are conforming
(defective), and their main objective was to minimize the
expected number of inspections required to detect the fail-
ure point. The detection of the failure point in such pro-
cesses completely reveals the quality of all the items, as
only the ones produced before the failure point are con-
forming; thus, it is equivalent to 100% inspection.

Our model assumes that the manufacturer faces a cer-
tain demand of a made-to-order product, and is restricted to
producing a single batch whose size is a decision variable.
This last restriction may be a result of a rush order, lead
time considerations, and/or limited availability of produc-
tion and inspection resources. Zipkin (2000, §9.4.8) consid-
ers such single-attempt production models. Defective and
conforming units in excess of the demand are assumed to
have no value. Thus, once the inspector detects a sufficient
number of conforming units to fulfill the demand, inspec-
tion is stopped and all uninspected and defective units are
scrapped. If inspection terminates while the number of con-
forming units is short of the demand, a per-unit shortage
cost is incurred.

An optimal policy minimizes the expected total of pro-
duction, inspection, and shortage costs. A policy is defined
by the lot size to be produced and a dynamic rule that
determines when to stop inspection. Referring to the sec-
ond decision, note that the true state of the core process
(production process) can only be inferred from the quality
of the inspected units: Many defectives make it plausible
that the process is out of control, and therefore it is eco-
nomical to cease inspection even though the demand has
not yet been satisfied. The decision on whether to cease
inspection is taken with incomplete information about the
core process. Thus, we formulate the inspection problem
as a finite-time partially observable Markov decision pro-
cess (POMDP). As will be demonstrated later, the resulting
formulation is unusual in the sense that it consists of two
“time-parameters:” the outstanding demand and the num-
ber of as yet uninspected units. The optimal batch size is
determined based on the optimal solution to the inspec-
tion problem. Lot-sizing issues in the context of inspec-
tion and restoration were also addressed by Porteus (1986),
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Rosenblatt and Lee (19864, b), Lee and Rosenblatt (1987),
and Porteus (1990).

Sondik (1971) and Bertsekas (1976) showed that, using
Bayes’ rule, a POMDP can be converted into a Markov
decision process (MDP): With each new observation, the
probability distribution of the core process can be evalu-
ated. These updated probabilities serve as state variables
of the MDP. The main problem in solving the resulting
MDP is its continuous state space. Sondik (1971) was the
first to address and solve finite-time POMDPs by an exact
“one-pass” algorithm. He showed that the optimal expected
total reward as a function of the state variables is piece-
wise linear and concave. One of the main results when
two actions are possible (Albright 1979, Bertsekas 1976,
Lovejoy 1987, and White 1979) is that the optimal policy
has a control limit threshold (CLT) structure, i.e., performs
a certain action if and only if the state variable exceeds the
CLT. In this paper, we show that all these properties prevail
in our two “time-parameter” formulation. More precisely,
for any number of yet uninspected units and any outstand-
ing demand, the optimal inspection rule is of the CLT type,
i.e., inspect the next unit if and only if the probability that
the process was still in control exceeds the CLT. We also
introduce a procedure for computing the various CLT val-
ues and prove structural properties that they satisfy.

In contrast to fully observed MDPs, analytically,
POMDPs are usually hard to solve because of the pro-
hibitively large size of the state space. Apart from a method
developed by Grosfeld-Nir (1996) for a two-state POMDP
with uniformly distributed observations, no analytical for-
mula has yet been proposed to resolve the practical issue
of computing the CLT. For algorithms, solution techniques,
and bounds, see Lovejoy (1991a, b), White (1991), White
and Scherer (1989), and Lauritzen and Nilsson (2001). For
applications of POMDPs in a variety of areas, see Lane
(1989), Monahan (1982), and references therein. Still, the
major application is in machine maintenance/replacement
and quality control. Calabrese (1995) used the POMDP
methodology to solve an SPC problem.

In the context of random yield, our model is categorized
as nonrigid demand. Yano and Lee (1995) reviewed the lit-
erature on random-yield production models with constant
and random nonrigid and rigid demand. White (1970) con-
siders a production setting similar to ours with a single
run and a nonrigid constant demand, but without inspection
costs. A recent paper by Scarf (2005) considers an infinite-
horizon nonrigid demand model where the inventory man-
ager is allowed to meet only a fraction of the demand in
each period: Exercising this option may be profitable even
at the risk of potential loss of good will if the sales price
in a period is low relatively to the restocking cost.

This paper is organized as follows: In §2, we intro-
duce notation, formulation, and preliminary results. In §3,
we analyze the resulting POMDP and the structure of the
optimal policy. Section 4 provides some numerical results.
Section 5 concludes the paper with a discussion on the
contribution of the results and possible extensions.

2. Problem Description

A manufacturer faces a nonrigid demand for D, units.
A single batch is produced. Production involves a fixed
setup cost a and a variable cost 8, i.e., the cost of pro-
ducing a batch of size N is (¢ + BN). Units are inspected,
at a cost vy per unit, according to a first-come first-served
(FCFS) policy, and only conforming units are delivered to
the customer. When stopping inspection, if the number of
good units is short of the demand, a cost s per unit shortage
is incurred. Noninspected as well as defective units have no
value. Clearly, s > vy because otherwise inspection is never
profitable. The objective is to minimize the expected total
of production, inspection, and shortage costs. A policy is
defined by the lot size and the stopping inspection rule.

2.1. Preliminaries and Notation: The Production
and Inspection Processes

We consider a production process that can be in control or
out of control. The true state of the process is unobserv-
able and can only be inferred from the quality of the prod-
ucts. A unit produced while the process is in control (out
of control) ends up conforming with probability 6, (6,);
presumably, 6, > 6,. Let Z be the state of the production
process while producing a specific unit, where Z = 0 if
the process is in control and Z =1 if it is out of control.
Also, let Y =0 (Y = 1) denote that this unit is conforming
(defective). Then,

P(Y=0|Z=0)=6, and P(Y=0|Z=1)=6,. (1)

The process is probabilistically deteriorating with constant
failure rate equal to (1 — ). That is, let Z denote the state
while producing a specific unit, and let Z be the state while
producing the next unit in the batch. Then,

P(Z=0|Z=0)=r and P(Z=0|Z=1)=0. (2

Moreover, we assume that Z is conditionally independent
of Y given Z, i.e.,

P(Z=0|Y=y,Z=0)=P(Z=0|Z=0)=r. (3)

After terminating the production of a batch, inspection
begins. The inspection process perfectly reveals the qual-
ity of the inspected units. Based on these observations, we
calculate the probability that the production process was in
control while producing the candidate unit for inspection.
This conditional probability is the key information neces-
sary for solving the inspection problem.

Let x be the probability that the process was in control
while producing the unit that is currently a candidate for
inspection, i.e., x = P(Z = 0). Initially, when considering
the inspection of the first unit in the batch x = r because
there is a chance of 1 —r that the process gets out of control
while producing the first unit. In general, the value of x is
based on the quality of the inspected units. We refer to x
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as the information state. It will become apparent that x is
the state variable based on which decisions are made.

Let P.(A) represent the probability of event A given the
information state x, and note that by definition P,(Z =0) =
x and P .(A|Z =z) = P(A|Z = z) because, given the cur-
rent state of the production process (i.e., Z=0 or Z =1),
the information state x that is based on the quality of the
inspected items is irrelevant. Let Y denote the quality of the
unit that is currently a candidate for inspection. We define
p(x)=P. (Y =0) and g(x) =1— p(x) =P, (Y =1). Note
that x is the probability that the process was in control
while producing the current unit, while p(x) is the proba-
bility that this unit will end up conforming. By using the
rules of conditional probability, we obtain p(x) = P.(Y =
0)=2. 0 1 P(Y=0[Z=2)P(Z=2)=} ., P(Y =
0|Z=2)P(Z=2z)=x0,+ (1 —x)6,. Thus, we get that
p(x) =6, + (6, — 6,)x. The function p(x) is linear and
strictly increasing as 6, > 0,.

Note that Y is observable, whereas Z and 7 are unob-
servable. The next information state, i.e., the one attached
to Z, is updated based on x and the observation Y as fol-
lows: h,(x) = P.(Z=0]|Y =y). The next lemma investi-
gates the functions h,(x) and &, (x).

LEMMA 1. (a)

rx6, _rxb,
x0,+(1=x)8, p(x)’
rx(1—6,) _rx(1—46,)
x(1=6;) + (1 =x)(1—6,) B q(x)

(b) Both hy(x) and h,(x) are continuous and strictly
increasing functions, hy(x) is strictly concave, and h,(x)
is strictly convex for 0 < x < 1. hy(0) = h,(0) =0, hy(1) =
hi(1) =r, and h(x) < rx < hy(x) for 0 <x < 1. More-
over, the inverse functions hy'(-) and hi'() of hy(x)
and h,(x), respectively, are well defined and are strictly
increasing as well.

(c) If r6, < 0y, then 0 < hy(x) < x for x € (0,1]. If
ry > 0,, let x* =(r6,—6,)/(6, — 6,). Then, hy(x*) = x*,
x* < hy(x) < x for x > x*, and hy(x) > x for 0 < x < x*.
(See Figure 1.)

ho(x) =

4)

hy(x) =

Figure 1.  The functions hy(x) and &,(x) for r6, > 6,.

hy(x)

1

’
ho(x*) = x*

ho) v =x

hy(x) =rx
hy(x)

PROOF. (a) (2) and (3) together with PX(Z =0|Y =y,

Z=0)=P(Z=0|Z=0)=r imply that

hy(x)=P(Z=0]Y =y)
=P(Z=0|Y=y,Z=0)P(Z=0|Y =y)
=rP(Z=0|Y =y).

Recall that x=P (Z=0) and P(Y =y |Z=2)=P(Y =

y|Z=2z)=40, for z=0,1 and apply Bayes’ formula to
obtain

_ rxP(Y=y|Z=0)
T xP(Y=y|Z=0)+(1—x)P(Y=y|Z=1)"

h, (x)

(b) The proof follows directly from the definitions of
ho(x) and h,(x) and verification of their first and second
derivatives. Note also that the linear function rx coincides
with the functions Ay(x) and 4,(x) at x =0 and x = 1. The
fact that hy(x) and &, (x) are strictly increasing implies that
their inverse functions A '(-) and h;'(-) are well defined,
and they are strictly increasing.

(c) This part follows by comparing h,(x) to the func-
tion x, and by the fact that both functions are strictly
increasing and #,(x) is strictly concave. O

According to Lemma 1(c), the information state can
improve (increase) by observing the quality of a new unit
only if (i) the unit is conforming; (ii) r6, > 6,; and (iii) the
information state x is sufficiently small, i.e., x < x*. Oth-
erwise, the information state deteriorates. This means that
the information state can deteriorate even after revealing
a good unit. This is in contrast to Porteus and Angelus
(1997), which stated in the context of DSPC that the prob-
ability that the process is out of control jumps up if the
inspected unit is found to be bad, and it dips down if it
is found conforming. The reason for this counterintuitive
result is the hazard rate (1 — r): If the hazard rate is rela-
tively large, the identification of a conforming unit may be
insufficient to counterbalance the deterioration caused by
assignable causes.

2.2. The Expected Cost Functions

Given a candidate unit for inspection, the manufacturer
should determine whether to continue or stop inspection,
based on the quality of the inspected units. We denote these
two actions by INSP (inspect) and STOP. We refer to this
subproblem as the inspection problem. In the following, we
formulate the inspection problem as a POMDP that depends
on the information state x. For that sake, we define the
following cost functions:

Vi, (n) for n > 1 is the expected total cost if a batch of
size n is produced while the demand is D,,, and an optimal
(FCFS) inspection policy is followed thereafter.

Gp. g (x) is the remaining expected inspection and short-
age costs for outstanding demand D, if the K, K > 0, last
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units in the batch are available for inspection, the informa-
tion state is x, and an optimal inspection policy is followed.

GILI)‘{SIE (x) is the remaining expected inspection and short-
age costs for outstanding demand D if the K, K > 1, last
units in the batch are available for inspection, the informa-
tion state is x, the current action is INSP, and thereafter
an optimal inspection policy is followed. We also define
GY¥ (x) =sD.

Note that G} (x) and G, x(x) are nonincreasing in K,
because any additional uninspected unit can be discarded
at no extra cost. Thus,

Q

i1 (x) for K >1, (5a)
=

p.x_1(x) for K>1. (5b)

Q
o

=

=
NN
Q

GH¥(x) = sD is the shortage cost incurred when
stopping inspection while the outstanding demand is D.
Therefore, G}/ (x) is independent of K, and G, x(x) =
min{GRSF (x), GST9F (x)).

If K < D, then at most K units of demand can be sup-
plied and a shortage cost for at least (D — K) units must
be incurred by any policy. Thus,

GRY () =GR (x)+s(D—K) for0OKK<D.  (6a)
Recall that s > 7y, which implies the following inequality:
Gl x(x) < GpX(x)+s forK>D>0, (6b)

because the left-hand side represents the expected remain-
ing cost of an optimal policy for demand D + 1 and K
uninspected units given that the first unit is inspected. The
right-hand side represents the expected remaining cost of a
feasible policy in which the K uninspected units are used
to satisfy at most D units of demand, and a shortage cost
for at least one unit is incurred. In the sequel, we assume
that if G, «(x) = GS¢(x) =sD, i.e., both the STOP and
the INSP policies have the same expected cost, then STOP
is used. Technically, we need this assumption to be able to
assign to each information state a single optimal policy.

2.3. The Production Problem

The production problem is to determine the elements of
the set

Np, = argmin{V, (n): n > 1},
where V), (n) = a+Bn+Gp, ,(r). (7)

That is, the set Nj, is the set of optimal production lots
for demand D,. Thus, given G, ,(r) for n > 1, the opti-
mal lot size can be calculated via a search over n in (7).
Note that the set-up cost o has no effect on the optimal
policy. Its effect is on the strategic decision on whether the
contract is profitable. In this paper, we design the optimal
policy, assuming that a batch of size n > 1 is produced.

Each inspected unit costs at least S+ y. If s < 3+, then it
is optimal to produce the minimum lot size, i.e., Np, = {1}.
Thus, a necessary condition for producing a batch of size
n>1is s> B+ . In the following, we develop two upper
bounds on the optimal lot size by considering the expected
cost of two specific policies, namely, producing a batch of
size 1, and producing a batch of size D,. The existence of
the upper bounds shows that theoretically the search for the
optimal lot size is finite in the problem’s parameters. These
bounds were helpful in searching for the optimal lot sizes
in §4. Further properties on Vj, (n) as a function of the lot
size n should be explored in future research to enable a
more efficient search on the optimal lot size.

The derivation of the upper bounds is based on the fact
that for n € Np, , Vp, (n) <min{V}, (1), Vp, (Dy)}. Note also
that for any lot size, V, (n) > @+ Bn+ yD, because yD,
is a lower bound on the total of inspection and shortage
costs. We consider each of the two upper bounds mentioned
above separately: If a single unit is produced, then Vj, (1) <
@+ B+ sD,. Thus, any optimal lot size n € Np, satisfies
n< 1+ ((s—¥)Dy)/B.

The other upper bound on Np, is obtained by consider-
ing Vp, (Dy): The minimal expected inspection and short-
age costs when a lot of size D, is produced are bounded
from above by the expected cost of the policy of inspect-
ing the whole batch. Let D denote the random variable
of the number of good units in a batch of size D,. Then,
Vi, (Do) < Ela + BDy + yDy + s(Dy — DF)] = . + (B +
Y + s)Dy — sE(D§). To compute E(D§), we define an
additional random variable B(D,) that represents the last
unit in a batch of size D, where the process was still in
control. Clearly, 0 < B(D,) < D,. The random variable
B(D,) is distributed according to the truncated geomet-
ric probability distribution with a hazard rate of (1 — r),
thus P(B(D,) = m)=r" for m=0,...,D,, E(B(D,)) =
P pm=r(1=rP)/(1—7r), and

m=1

E(D(?) = EB(DU)[EDOG (Dg/B(Do))]
= EB(DO)(OOB(DO) +6, (Do - B(Do))
_0,Dy+ (0, — 0))r(1 —r)
- 1—r ’
Thus, for n € Ny, a+pn+yD, < Vp (n) < Vp (D), and
therefore,
[B+s(1—6)]Dy  s(6,—60)r(1—r™)
B B(1—r)

The minimum of the two bounds provides an upper bound
on the optimal batch size.
In the rest of the paper, we solve the inspection problem.

n<

2.4. The Inspection Problem

The objective here is to find an optimal stopping-inspection
rule given the outstanding demand D and K > 1 unin-
spected units. The action INSP is optimal if and only if
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GP%(x) < GY¥(x) =s- D. To simplify the analysis, we
define the following:

Ap k(x) = Gpg (x) = Gpg (1) = GpY (x) =5+ D

forK>1and D>1. (8)

In particular, Aj, ((x) =0 and Aj x(x) =0 for K >0 and
D> 0.

Note that A, ,(x) represents the expected savings if
inspection is stopped. Thus, for given D and K, STOP is
an optimal policy if and only if Aj ,(x) > 0. A recursive
system of the A functions enables us to use a constant ref-
erence value of 0 instead of s - D if the recursive system of
the G functions was used. We rewrite (5a), (6a), and (6b)
as follows:

Ap x(x)<Ap x_1(x) for D>0and K > 1, 9)
Ap x(x) =Ag x(x) for 0K D, (10a)
Api x(x) <Ap k(x) for K>D>0. (10b)

We also let AP'%(x) = Gp «(x) — s - D. Note that
Gp. x(x) <s-D implies that AP} (x) < 0. Thus, AP R (x) =
0 if and only if the policy STOP is optimal. Otherwise,
APFR (x) < 0. If APF% (x) <0, then |ADFE (x)| represents the
expected savings that result from continuing inspection rel-
ative to the policy that stops inspection.

The following recursive equations define the inspection
problem:

Agﬂ(x) = GD,K(x) —s-D
=min{0, A, (x)} for K>0and D >0,
Ap x(x)= Gg\{SIE(X) —s-D
=7+ p()Gpi k-1(ho(x))
+q(x)Gp g1 (h(x)) —5-D
=y=s5:p(X)+pN)[Gp_ k-1 (ho(x)) —s(D—1)]
+4()[Gp x-1(hi(x)) —s- D]
=7y =5 p(x) + p(N)ALT g (ho(x))

+q() AR ki (1 (x)),
(11)

where the last equation holds for D > 1 and K > 1. The
boundary conditions are

Ao x(x)=0 and A, ,(x)=0. (12)

In the context of POMDPs, K—the number of yet unin-
spected units—is usually interpreted as a time parameter—
the number of remaining periods to the end of the horizon.
This interpretation is also valid here: Assume that the dura-
tion of inspecting a unit is one time period—entailing a
cost y. However, in contrast to traditional POMDPs, we

also need to consider the outstanding demand D. It is as
if, in the context of POMDP’s, there are two “time param-
eters” (K and D) with the problem terminating as soon as
we run out of one of the two “time resources.” Furthermore,
one of the “time parameters,” the number of uninspected
items, is policy dependent. To the best of our knowledge,
this is the first time that such a POMDP is explored. In the
next subsection, we discuss a certain type of functions that
turns out to be helpful in our analysis.

2.5. PLDC Functions

A continuous function is said to be PLDC if it is piece-
wise linear, strictly decreasing, and concave. If y/s > 0,,
Ap (x) formin{D, K} > 1is PLDC, and therefore is asso-
ciated with a single root L), , that satisfies Aj, x(Lp x) =
0.If L x <7, Lp g is said to be CLT. In this case, the
optimal action is INSP if and only if the information state x
is greater than L, x. The next lemma, which is proved in
the appendix, is helpful in the proof of Theorem 1.

LEMMA 2. Suppose that the continuous function f(x) is
piecewise linear decreasing and concave for x > 0. More-
over, there exists 7, > 0 such that f(x) =0 for x € [0, 7,].
Then, the function

(1) p(x)f(hy(x)) is piecewise linear decreasing and
concave,

(i) g(x)f(h,(x)) is piecewise linear decreasing and
concave, and

(i) k(x) = g(x) + p(X)f(ho(x)) + q(x)f(hi(x)) is
PLDC for any function g(x) that is PLDC.

THEOREM 1. If y/s > 0, then Ap ¢ (x) for D> 1, K > 1,
is PLDC with a unique positive root.

Proor. The proof is by induction on K. For any D > 1 and
K =1, according to (11) and (12), Aj, | (x) =y —s-p(x) =
v —s5-6, —s(6, — 6,)x, which is PLDC. The condition
v/s > 6, implies that the root of A, |(x), namely, L, | =
(v/s—61)/(6,—6,) > 0.

Suppose that for any D, A, ,(x), k <K —1, is PLDC
with a unique positive root. We show that also A, (x)
is PLDC. By hypothesis, A,_; x_;(x) and Ap ,_,(x) are
PLDC, each associated with a positive root; therefore,
AP x_1(x) and APF% | (x) are piecewise linear decreas-
ing and concave and are equal to O near 0. Consequently,
there exists 7 > 0 such that in [0, 7), AQ™ ( (hy(x)) =
A% _(hy(x)) = 0. Thus, in this interval A, ,(x) =7y —
s - p(x) (see (11)). By Lemma 2, the function Aj x(x)
is PLDC. Because Aj, x(0) =7y —s-p(0) =7y — 56, >0,
Ap, x(x) has a unique positive root. [

Figures 2a and 2b demonstrate the form of the functions
Ap k(x) and AP (x) if y/s > 6, and r = 0.9; because
L, x—the root of Aj ((x)—is less than r, it serves as
the CLT.
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Figure 2.  (a) The function Aj x(x). (b) The respective
function AP (x).
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3. The Solution to the
Inspection Problem

In §3.1, we identify sets of parameters for which the opti-
mal solution is degenerate (always STOP or always INSP),
independently of D or K or the information state x. In §3.2,
we analyze the inspection problem for the nondegenerate
cases. We will use the following notation: &, = (y/s—¥6,)/
(6, —0,) and Q,(x) =7y — s - p(x). Note that &, is the
unique root of Q,(x), i.e., Q, (&) =0.

3.1. When Is the Optimal Inspection Rule Static?

Here we identify combinations of the parameters for which
the optimal inspection policy is static, i.e., it does not
depend on D and K. As is demonstrated below, the criti-
cal factor is the ratio between the inspection cost and the
shortage cost, that is, the size of y/s.

THEOREM 2. Consider the inspection problem with D > 1,
K > 1. Then,

1) Ify/s =2 p(r)=0,+(6,— 0,)r, the optimal policy is
STOP, i.e., AY%(x) =0 for any x €[0, r].

(ii) If y/s < 0,, then the optimal policy is INSP, i.e.,
AR (x) =Ap x(x) <0 for x > 0.

(iii) If max{6,, r - 0,} < y/s < p(r), the optimal pol-
icy is INSP if and only if x > &), ie, Ly x =<, inde-
pendently of D and K. Moreover, Aj, (x) = Q,(x) for
x < hy' ().

ProoF. (i) In view of (11) and (12), y/s = p(r) implies
that A, (x) =y —s-p(x) >0, and therefore AP’} (x) =0

for x € [0, r]. Assume by induction that ADF{(x) =0 for
k< K-—1,D>1, and any x € [0, r]. We will prove that
AR (x) =0 for x € [0, r]. According to the inductive
assumption and (11),

Apx(x)=y—s-p(x)=y—s-p(r)=0.

Thus, APF%(x) =0 and STOP is optimal for any triplet
D>1,K>1,and x €0, r].

(ii) Note that y/s < 0, implies A, |(x) =y —s-p(x) <
0 (because p(x) > 6,), and therefore AP"T(x) < 0 for x > 0.
Assume by induction that A, ,(x) <O forx >0,k <K —1,
and D > 1. We will prove that AP (x) <0 for x > 0.

According to the inductive assumption and (11),
Ap x(x) <y—sp(x) <y—s6,<0.

Thus, Aj x(x) = APk (x) <0 for x > 0, i.e., the optimal
policy is INSP.

(iii) First observe that max{f,,r6,} < vy/s < p(r)
implies hy()) < &,, or equivalently, ¥, < hy'(<)),
because

y/s =6, _ rb—96,

S, = =x";
! 00_6| g 00_6| x

see Lemma 1(c).

For K=1,A, (x)=y—s-p(x)=Q,(x) with L,, | =
Z,. Note that A, ((0) =7y —s-6,>0 and A, (r) =
v—s-p(r) <0; thus 0 < &, < r. Assume that L, , =,
for k < K — 1. We will prove that L, , = &,. Assume
that x < hy'(Z£)). Then, h (x) < hy(x) < &Z,. Therefore,
Agli—rl,Kfl(hO(x)) = Agl,)%q (hy(x))=0and A, x(x) =7 —
s-p(x) =Q(x). Thus, Ay ((£))=0and L), , =%,. O

Note that &, satisfies p(<,) = y/s, and therefore x > £,
is equivalent to p(x) > y/s. Thus, under the condition of
Theorem 2(iii), inspection continues if and only if the prob-
ability that the first uninspected unit is conforming is higher
than y/s.

3.2. The Case of the Dynamic Optimal
Inspection Rule

In view of Theorem 2, the interesting set of parameters to
focus on is 8, < y/s < rf,. Theorem 1 implies that the
functions Aj, ((x) for D> 1 and K > 1 are PLDC, and
therefore their roots Ly, , are well defined. The following
observation is helpful in the analysis.

OBSERVATION 1. Note that 0, < y/s < rf, implies 0 <
&, < x* to conclude that h;' (%)) < Z,.

In light of Observation 1, and the fact that h,(x) <
rx < x for any x € (0, 1), we obtain that for problems with
v/s < r6,, the following inequalities hold:

h(;l(cw/ﬁ) <4< h?'(ffl)-
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Theorem 3 analyzes the case where D > K. Note that if
at some point the demand was at least as large as the num-
ber of uninspected units, i.e., D > K, then also in the future
D > K; because the number of uninspected units decreases
by a faster rate than the outstanding demand. In Theorem 3
we prove that if D > K, then the optimal inspection rule
depends only on K and the information state x, but it is
independent of the demand D. The proofs of the next two
theorems are in the appendix.

THEOREM 3. Suppose that 0, <y/s <r0, and K > 1.

(i) For D > K, the functions A (x) are independent
of D, so we denote Oy (x) =Ap (x) and let Ly =L g
be its unique root. For D > K, the INSP policy is optimal
if and only if x > Zy.

(ii) The functions Q(x) consist of at most 25 —1 linear
segments.

(ili) Assume that K > 2. For x < hy'(Zx_,), Qg(x) =
o= Q(x) =y — s - p(x), and for x > hy'(ZLy_)),
Qg (x) < Qg (x).

(iv) 0 <%y <Zg <--- <& <x*. Moreover, £y, €
(g (), L),

(v) There exists a constant <£*, <L* 2 0, such that
limg_, Ly = £*

In the sequel, we let &£ be the single root of the function
Qg (x) =Ag g(x) for K > 1. This definition is equivalent
to the one in Theorem 3(i). We also let £* =limy_, ., £y as
defined in Theorem 3(v). Theorem 4 completes Theorem 3
by considering the case D < K. In this range, the optimal
inspection rule depends on D and K.

THEOREM 4. Suppose that 0, <y/s <rf, and K > D.

(i) For D=1, L, x = &,. Moreover, A ((x) = Q;(x)
for x €0, k7' (£)].

(ii) For a fixed D(K), the sequence Ly, y is nonincreas-
ing in K(D) and &y < L x < L) Moreover, Ap ¢ (x) =
Q,(x) for x < hal (ZLx-1)-

4. Numerical Results

To solve the inspection problem numerically, we computed
recursively in D and K approximations for the functions

Ap x(x), K <14,D <10, x € {0,0.001,0.002, ..., r}. The
running time for each problem (including the search for
the optimal production lot) was less than two seconds. We
also tried a finer grid for the x-values, but this proved
unnecessary.

4.1. The Inspection Problem

As follows from Theorem 2, the interesting set of parame-
ters for the inspection problem satisfies 0 < 6, < y/s < r6,.
The CLTs of the inspection problems depend on the cost
parameters only via the ratio /s, and they do not depend
on the production cost parameters, namely, o and 3. The
variable production cost 3 is used only in determining the
optimal lot size. In our numerical test, we consider the fol-
lowing basic set of parameters, which we believe to be
realistic:

r 0, 0, b% s
0.98 0.90 0.40 2 3

For this set of parameters, we obtain the CLT values Lj, &
that are shown in Table 1.

Table 1 reveals, as proved in Theorems 3(iv) and 4(ii),
that the CLTs are nonincreasing in K(D) for fixed D(K).
Table 1 shows that for fixed K, the CLT values remain con-
stant for D > K, as proved in Theorem 3(i). Moreover, by
Table 1, for fixed D, the CLT values are strictly decreasing
in K for K < D, see Theorem 3(iv). Table 1, as well as
additional numerical examples that we have explored, sug-
gest that for fixed D, the CLT values remain constant as
long as K > D. We leave the further investigation of this
property for future research.

Table 2 explores the dependency of the CLT values on
v/s. Note that if y/s < 6, = 0.4, the optimal policy is
always to inspect, i.e., CLT = 0; see Theorem 2(ii). If
v/s > p(r) = 0.89, the optimal policy is always to stop.
That is, CLT = r; see Theorem 2(i). Also, if max{f,,r -
0} < v/s < p(r), ie., 0.882 < y/s < 0.89, the optimal
policy is INSP if and only if x > &, = (y/s—6,)/(6,—0,);
see Theorem 2(iii). Thus, in this last interval, the CLT is
strictly increasing in 7y/s. Our numerical study shows that
also for 0.4 < y/s < 0.882, the CLT values increase in 7y/s.

Table 1. The CLTs as a function of D and K for the basic set of parameters.
K

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 053 053 053 053 053 053 053 053 053 053 053 053 053 053
2 053 046 046 046 046 046 046 046 046 046 046 046 046 046
3 053 046 041 041 041 041 041 041 041 041 041 041 041 041
4 053 046 041 036 036 036 036 036 036 036 036 036 036 036
5 053 046 041 036 033 033 033 033 033 033 033 033 033 033
6 053 046 041 036 033 030 030 030 030 030 030 030 030 030
7 053 046 041 036 033 030 028 028 028 028 028 028 0.28 0.28
8 053 046 041 036 033 030 028 026 026 026 026 026 026 0.26
9 053 046 041 036 033 030 028 026 025 024 024 024 024 024
10 053 046 041 036 033 030 028 026 025 023 023 023 023 023
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Table 2. The CLTs for several values of +y/s for
our basic set of parameters, K = 9 and
1<D<10.

K 9 9 9 9 9

D y/s=035 y/s=050 y/s=0.67 v/s=0.80 vy/s=0.89

1 0 0.201 0.534 0.801 0.98

2 0 0.158 0.463 0.756 0.98

3 0 0.129 0.407 0.715 0.98

4 0 0.109 0.363 0.679 0.98

5 0 0.095 0.329 0.648 0.98

6 0 0.085 0.301 0.622 0.98

7 0 0.076 0.279 0.600 0.98

8 0 0.069 0.259 0.580 0.98

9 0 0.066 0.248 0.565 0.98

10 0 0.066 0.248 0.565 0.98

4.2. The Production Problem

Next, we explore in our numerical test the dependency of
the optimal production lot size on B (all other parame-
ters of the basic set remain fixed). We assume in our runs
that « =0, and we let the optimal lot size be O if pro-
duction is not profitable, that is, if it is cheaper to pay
the shortage cost for the whole demand than producing
a lot. A necessary condition for production to be profitable
is B+ y < s. Thus, it implies that for the choice of our
basic parameters, 8 < 1. We should note that some offline
inspection systems are very costly relative to the produc-
tion cost in view of the special equipment that is needed.
For example, X-ray inspection of assembly printed circuits
mentioned in the introduction may necessitate the use of
complex machine vision systems, which are expensive in
comparison to the low unit production cost. Therefore, in
our computational test we allow 7y to be 2.5, and even
10 times higher than the unit production cost.

In Table 3 we search for the optimal lot size over the
range defined by the minimum of the upper bounds devel-
oped in §2.3. These bounds get tighter as (B is larger or

Table 3. Optimal expected costs and optimal produc-
tion lots for the problem with basic parame-
ters, various values of 3, and a =0.

B=0.2 B=0.4 B=06 B=0.8

D, Voo np, Vo np, Vo np, Vo, fp,

1 2.53 1 2.73 1 2.93 1 3 0
2 5.09 2 5.49 2 5.89 2 6 0
3 7.68 3 8.28 3 8.88 3 9 0
4 10.29 4 11.09 4 11.88 3 12 0
5 12.92 5 13.92 5 14.88 3 15 0
6 15.55 7 16.77 6 17.88 3 18 0
7 18.2 8 19.64 7 20.88 3 21 0
8 20.86 9 22.53 8 23.88 3 24 0
9 23.55 10 25.42 9 26.88 3 27 0

10 2624 11 28.33 10 29.88 3 30 0

D, is smaller. For example, for 8 = 0.8 (0.2), the upper
bound on the optimal lot size varies between 2 to 13
(6 to 51) as D, is increased from 1 to 10. Our limited com-
putational study seems to support the conjecture that the
function V, (n) is unimodal (with a single local minimum)
and possibly even convex in n. As mentioned in §2.3, we
believe that further research is needed to explore properties
of the function V), (n) to enhance the computation of the
optimal lot size.

We let nj, > 0 be an optimal lot size for demand D,. The
optimal expected cost for demand D, presented in Table 3
is the minimum between the shortage cost sD, and the
total of the production cost (& + fBnj, ) plus the expected
inspection cost, given that initially nj, units are available
for inspection.

Table 3 reveals that for high values of B, 8 =0.8, it is
still cheaper (as for 8 = 1) to pay the shortage cost for the
whole demand rather than producing a lot. This is intuitive,
as the strategy of producing a lot necessitates a cost of
at least B+ vy > 2.8 for each unit that is inspected, in addi-
tion to the extra cost incurred if the inspected unit turns out
to be defective. The policy of not producing, and paying
the shortage cost of s =3 per unit, is risk free. When S is
reduced to 0.6, the optimal strategy is to produce lots of a
size that do not exceed 3. Indeed, for D, < 3, the optimal
lot size equals the demand, but for D, > 3 the optimal lot is
of size three units. In this example, the variable production
cost is still too large, so the producer is better off not taking
the risk of producing a lot of a size that is larger than the
demand. Moreover, the relatively high unit production cost
does not make it profitable to produce lots of size greater
than 3 as the chance that the production system is still in
control while producing the fourth unit is not high enough
to offset the cost incurred if this unit is not inspected, or
if it is inspected and found nonconforming. When S is
decreased to B =0.4, the optimal lot size increases so that
for D, < 10, we produce a lot of a size that is as large
as the demand. When f3 is further reduced to 8 =0.2 and
demands are in the range D, < 5, the optimal lot size is
equal to the demand. However, for 5 < D, < 10, the opti-
mal lot size is slightly above the demand. The explanation
for this behavior is that for sufficiently small demands, the
problem parameters are such that the chance of getting a lot
where all of its first five units are conforming is reasonably
high, to make the expected cost of producing units beyond
the demand not profitable. However, for 5 < D, < 10, the
optimal lot size is greater than the demand by one unit,
meaning that the risk of obtaining at least one defective
unit among the first 6-10 units in the lot is high enough
to justify the production of one extra unit. From additional
runs that we performed, it is clear that as 3 gets smaller
the marginal cost of producing units beyond the demand
that may not be inspected is low enough in comparison to
the marginal expected savings on the shortage cost if these
units are inspected.
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The focus of this paper is on the inspection problem.
However, Table 3 seems to suggest two additional proper-
ties regarding the production problem: (i) the optimal lot
size never decreases in the demand given that all other
parameters are fixed; and (ii) the expected total cost is
not only increasing in the demand, but also the marginal
cost (per unit demand) is nondecreasing in the demand. We
leave these properties as open questions.

5. Conclusions

We consider a production and inspection problem that deals
with a lot-sizing and inspection policy. The manufacturer
is contracted to a zero-defect, nonrigid delivery. The objec-
tive is to identify a policy that minimizes the expected
production, inspection, and shortage costs. The optimal lot
size can be found by a bounded search once the inspec-
tion problem is solved to optimality. The inspection prob-
lem is formulated as an unusual POMDP with two “time
parameters:” the outstanding demand and the number of
uninspected items. The optimal policy for the inspection
problem is proved to be a simple CLT structure where the
decision whether to stop or continue inspection depends on
a single information state that is updated dynamically with
the acquisition of new observations. The CLT divides the
range of possible information states into two disjoint inter-
vals so that in one of the intervals the optimal policy is
to stop inspection, and in its complement it is preferable
to continue inspection. The CLT values can be computed
recursively in the demand and the number of uninspected
items.

It is interesting to note that Porteus and Angelus (1997)
observed that in online inspection the remaining lot size
affects the optimal DSPC rule. More specifically, towards
the end of the run more negative evidence is needed to war-
rant restoration of the production process; see also Crowder
(1992). Our results regarding offline 100% inspection sup-
port these findings in the sense that, in general, the optimal
inspection rule is not static: The operator should be more
conservative and careful (i.e., more negative evidence is
required) when stopping inspection and paying the short-
age cost the larger is the number of yet uninspected items
or the larger is the remaining demand.

In particular, Theorems 3(iv) and 4(ii) can be interpreted
as “monotonicity of the finite horizon control limits.” We
note that this is in contrast to Grosfeld-Nir (1996), which
showed that the finite-horizon control limits are not nec-
essarily monotone. This result accentuates the fact that
“two time parameter” POMDPs may differ from the tradi-
tional case.

Our problem is meaningful only for a finite demand D
and a finite number K of uninspected items; thus, it cor-
responds to the finite-horizon case. Furthermore, the hori-
zon length is policy dependent. The structural properties
of the various CLT values that we prove reduce the com-
putational effort involved in the explicit derivation of the

expected cost functions. However, in general, the calcula-
tion of the optimal policy is possible only for small values
of K because the expected cost PLDC functions consist
of a number of segments that grows exponentially with K.
These computational aspects suggest the need for applica-
tion of numerical approximation methods that reduce the
uncountably infinite state space that the information state
can assume to a finite grid of points. Some methods adjust
the grid dynamically as the algorithm progresses, whereas
others keep it fixed. Lovejoy (1991b) proposes an easily
manageable fixed-grid method to develop upper and lower
value function bounds, which help in generating policies
that are nearly optimal. That paper also provides references
for a number of alternative approximation techniques that
may be helpful in approximating the PLDC expected cost
function for sufficiently large D and K by a function that
is differentiable almost everywhere. The root of such a
function may serve as an approximation to L*—the limit-
ing CLT value when D and K increase. In our numerical
test we show that for reasonable demand levels, a simple
approximation of the expected cost functions on a grid pro-
vides good quality solutions in a few seconds.

An interesting question for future research involves
the generalization of the production process to one with
increasing failure rate. Banerjee and Rahim (1988) and
Rahim and Banerjee (1993) considered such DSPC models.
In the offline 100%-inspection case the optimal inspection
policy will not only depend on D and K, but it will also
depend on the lot size for the production problem. This
problem is more complex because not only is the optimal
lot size dependent on the solution to the inspection problem
(see (7)), but also the solution to the inspection problem is
dependent on the optimal lot size.

Another interesting question deals with multiple lots
under rigid and nonrigid demand. Under rigid demand the
production problem has to be solved for all possible out-
standing demand levels. Under nonrigid demand, probably
a more involved version, the manufacturer has the right
to stop the production and inspection processes and pay a
shortage cost if necessary. In the first version the manufac-
turer faces two possible actions for the inspection problem,
namely, “inspect” or “produce,” where in the second, a third
option exists, which is STOP production and inspection and
pay shortage costs if necessary.

Appendix

PrOOF OF LEMMA 2. f(x) is assumed to be piecewise
linear. Therefore, there exists a collection of intervals
(70 =0,7), [T, )5 - o5 [Tos Tt [Tingrs Twga)s -+ such
that f(x) is linear in each of them. That is, f(x) = ¢,, +
w,x for x € [7,,7,,,) and m > 0. The fact that f(x) =0
near zero, and is decreasing, and concave implies that
(1) ® =0; (2) @, < @y for m>0; (3) w, =0; and
4) v, > o, form=>=0.

Let g (x) = p(x)f(ho(x)) and g (x) = q(x)f(h(x)).
Both functions are well defined for x > 0 because #,(x) >
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hy(x) > h,(0) =0, as follows from Lemma 1(b). The con-
tinuity of g, and g, follows from the continuity of the func-
tions p, g, f, hy, and h,.

(i) We start by proving that g, (x) is linear in each of the
following intervals [0, ' (7)), [hy' (7)), hy' (7)), ... .
Consider a specific interval x € [hy'(7,), ' (7,41)), i-€.,
ho(x) € [7,,, Tpuyr)- By definition, in this interval g,(x) =
p(x) (e, + 0, hy(x)) = ¢, p(x) + ,rx60, where the last
equality follows from the definition of hy(x); see (4). As
can be seen, g, is linear in x in this interval, which proves
that g, is piecewise linear. To prove that g, is concave,
we need to show that it is concave at the break points,
i.e., it is sufficient to show that the slope of g, to the
left of 7, is strictly greater than to the right of 7, .
This is equivalent to showing that ¢, (6, — 0,) + w,, 70, >
@160 —0,) + w,,,,r0,. Using the fact that g, is contin-
uous at 7, implies that (w,, — ®,, | )r0,T, . = (€1 —
@0, + (@11 — ©,)(0) — 0))7,,,,. Given that ¢, ., > @,
we obtain that the continuity implies the following inequal-
ity: (w,, — 0, )16y > (¢,,41 — ¢,,) (0, — 6,), which proves
that g,(x) is concave. In view of the concavity of g, it is
sufficient to show that it is flat in the first interval to prove
that it is decreasing. However, in the interval [0, i, (7)),
81(x) = p(x)(@y + wohy(x)) =0 because ¢y = wy=0.

(ii) To complete the proof of part (ii), consider the
function g,(x) in the collection of intervals [0, h;'(7))),
(A7 (7)), hN(75)), ... . Let x € [h7'(7,,), hy ' (T)00)), deees
h,(x) € [7,,, T);1)- By definition, in this interval g,(x) =
q(x)(¢, + @, h,(x)) = ¢,,4(x) + ©,rx(1 = 6,), where the
last equality follows from the definition of A,(x); see (4).
Thus, g, is linear in the interval, which proves that g, is
piecewise linear. We prove that g, is concave at the break
point 7,., in the same way as we did for g,. That is,
we show that —¢,, (0, — 6,) + w,,r(1 —6,) > —¢,, (6, —
0,) + w,.,,7(1 —6,). Using the continuity of g, at 7,
implies that (,, — @, )r(1 = 6,)7,,, = (6, — 0,)(¢, —
@) Twit + (@pir — @,)(1 — 6)). Using the fact that
@it > @,,, we conclude the concavity proof of g,(x). As in
the proof of part (i), we show that g, is decreasing by prov-
ing that it is flat near 0. Consider the interval [0, A, (7,)],
where g,(x) = g(x)(¢y + wyh,(x)) = 0 because ¢, =
w,=0.

(iii) Note that the function k(x) is the sum of three
piecewise linear decreasing and concave functions. The fact
that g(x) is strictly decreasing implies, therefore, that k(x)
is PLDC. O

PrOOF OF THEOREM 3. First note that part (v) is a direct
consequence of part (iv). According to Theorem 1, the
functions A, x(x) are PLDC. According to the definitions
of x* and ¥,, 0, < y/s < rf, implies that 0 < &, < x*.
We prove parts (i)—(iv) by induction on K. For part (i),
note that for any outstanding demand D > 1 and K =1,
the function A, |(x) =y — sp(x) = Q,(x) is independent
of D, linear, and strictly decreasing in x. The optimal pol-
icy is to inspect the uninspected unit if and only if x > &,.

Thus, L, | =%, for D > 1. We assume by induction that
the PLDC functions Q,(x) for 1 <k < K — 1, are well
defined. The inequalities Q,;(x) = Q,(x) = -+ = Qg _(x)
follow from (9). Their PLDC property implies the existence
of a unique CLT value for each ,(x), named &, for k <
K — 1. The fact that Q,(x) = Q,(x) = -+ = Qp_,(x)
implies that &y, < --- < &, < &, < x* and therefore,
by using Lemma 1(b) and 1(c) regarding the functions
ho(+), hy(-) and the definition of x*, we obtain that &, €
(ho' (L), hi' (&) for k< K —1.

We start by proving parts (i), (iii), and (iv) for K, and
any D > K > 2, namely: (i) the PLDC function A, x(x)
is independent of D; which implies that Q,(x) and its
root &y are well defined. (iii) For x < hy'(Zx_,), Qi (x) =
vy — sp(x) = Q,(x), and for x > hy'(%x_,), Qx(x) <
Qg (x); and (iv) Ly € (hy' (Lx_1), Lk_1), which implies
PLx_y > Ly > 0. As is shown below, hy'(Zx_,) and
hi'(Zk_,) are break points of A, ,(x). We distinguish
between three cases regarding the value of the information
state x:

(@) If x < hy'(%x_), then h(x) < hy(x) < Fx_;.
By the inductive assumptions, ¥y, < &, for K > 2.
Lemma 1(c) and &, < x* imply that hy'(Zx_,) < Lx_,.
Thus, after inspecting the first uninspected item, we obtain
a new problem with K — 1 uninspected items, and a new
information state that is either /,(x) or h,(x); indepen-
dently of the quality of the first item, the new informa-
tion state for K — 1 uninspected items does not exceed
Zx_,. According to the inductive assumption for K — 1,
the best policy after inspecting the first item is STOP.
Thus, AP ¢, (ho(x)) = AFE_(h,(x)) = 0 and by (11),
Ap x(x) =7 —sp(x) =Q(x). Let Qp(x) =Q,(x) in this
interval. Observe that Q,(x) > 0 in [0, %) and because
[0, ' (Zk_1)] C [0, %)), we obtain that Qg (x) > 0 for
x < hy'(Zk_,), which means that %y > hy' (Zx_,).

(b) If hg'(Zx_) < x < hy'(Z_y), then hy(x) <
Fx_1 < hy(x). Thus, if the first item is found con-
forming, the new information state is hy(x), which is
strictly greater than & _,, and according to the inductive
assumption, inspection continues. Otherwise, if the item
is defective, the new information state h,(x) is smaller
than &, _, and inspection stops. Thus, A" _ (hy(x)) =
Ap_y k—1(ho(x)) = Qg1 (hy(x)) < Qg_(Lx_y) =0 and
A% _(h,(x)) = 0. Substituting into (11) results in
Ap k(x) =y —sp(x) + p(x) Qg _; (ho(x)) < (x).

(©) If x > hy"(%x_,), then hy(x) > h;(x) > Lx_,,
which implies by the inductive assumption that after
inspecting the first item, inspection continues inde-
pendently of its quality. That is, AD™ o (hy(x)) =
Ap_y k-1 (hy(x)) = Qg (hy(x)) <0 and Agl,)}fl(hl(x)) =
Ap k(B (x)) = Qg_(h(x)) < 0. By substituting
into (11), we get that A, (x) = v — sp(x) +
() Qg (ho(x)) + q(x) Qg (hy(x)) < O (x).

In all three intervals, Aj, ,(x) is independent of D, so
Qi(x) =Ap (x) for D > K and its unique root &y is
well defined. For K > 2, because Qg (x) < Qg_,(x), we
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obtain that the unique root of Q,(x), namely, &, satisfies
Ly < Lg_,. In general the form of O, (x) is as follows:

y—sp(x), x< ha‘(S’K—l),
Y —sp(x) + p(x) Qg_i (hy(x)),
Qg (x)= hy' (L) < x <hy' (Zxy), (13)

Y = sp(x) + p(x) Qg (ho(x))
+q() Qe ((x), x> h' (Eg )

This completes the proof of part (i).

To prove part (iii), note that we have already shown that
Qg (x) = Q,(x) for x < hy'(Zk_,). Moreover, for K =2,
we have also proved that Q,(x) < Q,(x) whenever x >
hy'(£,). Assume by induction that for x > hy'(Z,_)),
Q,(x) < Q,_(x), which implies that &, < ¥, _, for k <
K — 1. It remains to prove that for x > hy'(%x_;), Qg (x) <
Q4 _,(x). By the inductive assumption, the sequence <,,
k < K — 1, is strictly decreasing; thus, hy'(%x_;) <
hy'(£x_,). Moreover, to the left of hy'(Z_,), the
functions Qg (x) and Qg _,(x) coincide. We distinguish
between three cases:

Case 1. x € (hy' (%x_1), hy' (ZLk_»)]: Note that accord-
ing to the inductive assumption (iv) and according to
Lemma 1(b), hy'(Lx_) < Ly < b7 (ZLx_1). ho(x) >
ZLk_, implies that Qg _,(hy(x)) < 0, and h,(x) < Zx_,
implies that Q_,(h,(x)) =0. Thus, Qg (x) =y —sp(x)+
p(x)Qx_,(hy(x)). Therefore, in this interval Qg (x) <
Qg _,(x) =y —sp(x), where the form of Q_,(x) follows
from the inductive assumption (iii).

Case 2. If x € (hy'(%x_y), h{'(Zk_»)], then hy(x) >
Py 5 > Ly, According to (i), inspection continues if
the first unit is found conforming, thus A" . (hy(x)) =
Ap 1 k-1(ho(x)) = Qg_i(he(x)) < 0. (11) and
AYE” (1 () < 0 imply that Q(x) < ¥ — sp(x) +
P Q1 (ho() < ¥ — sp(x) + p()Q_o(hy(x)) =
Qg_,(x) where the strict inequality follows from inductive
assumption (iii) for Qg_, and Q4_, and the equality
follows from the general form of the function Q,_,(x);
see (13).

Case 3. If x > hy'(%x_,), then the following inequal-
ities hold: hy(x) > h(x) > £Lx_, > F,_,. That is, inde-
pendently of the quality of the first item, inspection
continues. Thus, Qg (x) =y —sp(x)+ p(x)Qg_, (hy(x)) +
q(x)Q_1(h(x)) < v = sp(x) + p(x)Qg_,(ho(x)) +
q(x)Qg_5(h(x)) = Qg_,(x), where the strict inequality
follows from inductive assumption (iii) for Q,_,(x) and
Qg _,(x), and the equality from the form of Q_,(x);
see (13). This concludes the proof of part (iii). Part (iv)
then follows directly from (iii).

It remains to prove part (ii), which is equivalent to prov-
ing that it has at most 2X — 2 break points. The statement
holds for K = 1 because ,(x) is linear. Assume by induc-
tion that the statement holds for Q,(x), for k < K — 1,
and we will prove it for Q,(x). For that sake, recall the
structure of Qg (x); see (13). Q(x) has break points at

hy'(Z%g_y) and h7'(Zk_,). The function is linear to the
left of hy'(Zk_,) but to the right of this point we should
consider all possible break points of both Q_,(4,(x)) and
Q_(h(x)). The inductive assumption implies that each
of the functions Qg_,(hy(x)) and Q,_,(h,(x)) is associ-
ated with at most 2X~! — 2 break points. Therefore, the total
number of break points of 4 (x) is bounded from above
by 2+2(2k-1-2)=2k-2. O

PrOOF OF THEOREM 4. (i) The proof is by induction on K.
For K =1, see Theorem 3(i). Assume that (i) holds for
any k < K — 1; we will prove that it holds for k = K.
Recall from Lemma 1(b) that h,(<¥,) < &, or, equiva-
lently, h;'(,) > &#,. We will show that for x < h7'(¥)),
Ay x(x) = Q(x), and for x > h7' (%)), A x(x) < Q;(x).
This will imply that L, , coincides with the root of €, (x).
Thus, the optimal policy for D =1 is INSP if and only if
x>

Let x < h7'(¥,). In this interval, if the first item is
inspected and is found defective, then the new information
state is h,(x) < &,. According to the induction assump-
tion for D =1 and K — 1, the optimal policy is STOP,
ie, AP (h(x)) =0. Thus, (11) and (12) imply that
A gk(x) =7y —s-px)=Q(x). Let x > h'(¥4)). In
this interval h,(x) > &£,, thus if the first unit is found
to be defective, then the new information state h,(x) is
larger than &#,. According to the inductive assumption
for D=1 and K — 1, the optimal policy is INSP. Thus,
AT (h,(x)) < 0 and A, ¢(x) <y — 5 - p(x) =, (x).
This proves that the two PLDC functions A, ,(x) and
Q,(x) coincide on the first interval x < h;'(¥,). Because
&, is within this interval, &, is also the root of A, ,(x)
forK>1,ie, L y=%, for K> 1.

(if) For K > D, according to (9) and Theorem 3(i),
Ap x(x) <Ap g_1(x) < Ap p(x) = Qp(x), which implies
that for K > D, the sequence L), ; is nonincreasing in K
for fixed D. (10b) implies that for K > D, the sequence
L x is nonincreasing in D for fixed K. Thus, & =
Ly x S Lpx <Lpp=Zp In view of Theorem 3(iii),
it remains to show that for K > D and x < hy'(%x_)),
Ap x(x) =Q,(x): In this interval & (x) < hy(x) < L <
Lpx 1 <Lp g, ie., independently of the quality of
the first item, the optimal policy is STOP inspection.
Thus, AQ™ ¢ (hy(x)) = A%, (h,(x)) =0 and therefore
Apx(x)=y—s-p(x)=Q(x). O
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