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Abstract: We consider the Inventory-Routing Problem (IRP) where n geographically dis-
persed retailers must be supplied by a central facility. The retailers experience demand for the
product at a deterministic rate, and incur holding costs for keeping inventory. Distribution is
performed by a fleet of capacitated vehicles. The objective is to minimize the average transpor-
tation and inventory costs per unit time over the infinite horizon. We focus on the set of Fixed
Partition Policies (FPP). In an FPP, the retailers are partitioned into disjoint and collectively
exhaustive sets. Each set of retailers is served independently of the others and at its optimal
replenishment rate. Previous research has measured the effectiveness of an FPP solution relative
to a lower bound over all policies. We propose an additional measure that is relative to the
optimal FPP. In this paper we construct a polynomial-time partitioning scheme that is shown to
yield an FPP whose cost is asymptotically within 1.5% � � of the cost of an optimal FPP, for
arbitrary � � 0. In addition, in some cases, our polynomial-time scheme yields an FPP whose
cost is asymptotically within 1.5% � � of the minimal policy’s cost (over all feasible policies).
© 2004 Wiley Periodicals, Inc. Naval Research Logistics 51: 925–948, 2004.

1. INTRODUCTION

In many distribution systems significant cost reductions and service improvements may be
achieved by adopting efficient inventory replenishment strategies for all facilities concerned.
Efficient strategies usually exploit economies of scale, i.e., by shipping full (or close to full)
vehicles that combine deliveries to distinct locations into efficient routes. The derivation of such
strategies requires a careful coordination of various logistical planning functions, particularly
the areas of transportation planning and inventory control.

Recently, the popularity of approaches going under the heading of vendor managed inventory
(VMI) has increased. According to this approach the responsibility for replenishment decisions
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is shifted from the buyer to the suppliers. Among other benefits, this method allows the supplier
to reduce the transportation and inventory cost by a careful design of the routing system. A
successful implementation of the VMI approach requires access to accurate and updated
information about the stock levels at the retailers. In spite of its popularity, the VMI is usually
applied only to small-to-medium systems. Large-scale systems, such as the ones analyzed in this
paper, are too complex for a successful coordination of the various activities by VMI.

The ability to reduce costs as well as to improve service shows that an appropriately managed
logistics system can be the key to enhancing the company’s competitive edge. Stalk, Evans, and
Shulman [25] attribute Wal-Mart’s impressive success to its replenishment strategy. Wal-Mart
logistics is based on “cross-docking” points (e.g., warehouses or retailers) that are responsible
for taking in shipments from vendors and delivering them to a lower echelon (e.g., retailers or
customers). The sole function of cross-docking points is to coordinate among the various
activities in the supply process; they do not hold stock by themselves. In this paper we consider
such a two-echelon subsystem in which a single supplier is responsible for the replenishment of
a set of retailers. More specifically, we consider an infinite-horizon Inventory-Routing Problem
(IRP) where retailers face constant deterministic retailer-specific demand rates. The objective is
to determine long-term integrated replenishment strategies (i.e., inventory rules and routing
patterns) allowing all retailers to meet their demands while minimizing long-run average
system-wide transportation and inventory costs.

It is generally perceived that an optimal policy for this problem may be quite complex and
difficult to implement in practice. This has prompted research on this problem to concentrate on
a specific policy class called partitioning policies. These are characterized by a given set of
routes with the following properties: Each route is driven at equidistant time intervals (which are
route-dependent) visiting a subset of the retailers. In addition, each route is responsible for
replenishing a certain retailer-dependent fraction of the demand of each of its retailers. The
literature distinguishes between two versions of the partitioning problem: the split and the
unsplit demand case (see [2]). In the split demand case, a retailer may be served by a number
of routes, whereas in the unsplit demand case, each retailer must be served on a single route.
That is, in the unsplit demand case, a route either supplies all the demand of a given retailer or
it doesn’t visit it at all. A partitioning policy for the unsplit demand case is called a fixed
partitioning policy (FPP). Clearly, an FPP is also a feasible solution for the split demand case
but not vice versa. Even though both versions of the problem are NP-hard, the split demand case
is usually perceived as simpler since it allows more flexibility in combining deliveries on a route
so that the vehicles’ capacity is better exploited. The unsplit demand case has the additional
complexity of requiring the retailers to be partitioned into disjoint sets.

The partition of the retailers into sets can be performed in various ways. For example, for the
unsplit demand case, Bramel and Simchi-Levi [8] partition the retailers by solving a Capacitated
Concentrator Location Problem (CCLP) which is formulated as an integer linear program. In the
split demand case, it has been shown that simple polynomial partitioning methods, called Region
Partitioning Policies (RPP), that divide the plane into small regions may be extremely effective.
Anily and Federgruen in [1, 4, 5] construct RPPs that are asymptotically optimal within the class
of partitioning policies. In [7] the authors consider two-echelon systems and design an RPP
whose cost is asymptotically no more than 2% above the minimal policy cost. Unfortunately,
applying an RPP scheme in the unsplit demand case may result in an inefficient solution that
consists of an unnecessary large number of routes each serving a very small sales volume. In this
paper we show how to overcome this difficulty by first implementing a region-partitioning
scheme that partitions the retailers into disjoint regions, and then, repartitioning each such region
by using a bin-packing heuristic to efficiently combine retailers into feasible routes.
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The impetus for this line of research is the paper by Chan, Federgruen, and Simchi-Levi [9],
who considered exactly the same model as the one considered here. These authors were the first
to challenge the issue of analyzing the asymptotic effectiveness of the FPP class. The authors
proved that the effectiveness of the optimal FPP is closely related to the packing constant in the
associated bin packing problem which assumes values in the range [1, 2]: The value 1 is
associated with perfect packing, i.e., cases where asymptotically the bin (vehicle) capacities are
fully utilized by an optimal solution. On the other hand, bin-packing problems whose packing
constant is 2 are the “worst” since asymptotically only 50% of the bins’ capacity is utilized by
an optimal solution. Chan, Federgruen, and Simchi-Levi [9] proved that the asymptotic ratio of
the cost of an optimal FPP to a lower bound for the optimal cost value under any strategy is no
more than the square root of the packing constant of the associated bin-packing problem. Thus,
for problems that allow perfect packing, the cost of an optimal FPP converges asymptotically
to the optimal cost over all strategies. But if the packing constant is 2, then the cost of an optimal
FPP may be asymptotically as �2 (� 141%) times the optimal cost over all strategies. Yuyue
[26] used the same methodology to investigate the same problem as in Chan, Federgruen, and
Simchi-Levi [9] with a more general cost structure, and proved that the upper bound is
asymptotically at most 1.5 times the lower bound. However, in problems where the induced
bin-packing problem allows for perfect packing, the asymptotic effectiveness measure is
reduced to 1.06.

In order to better understand the effect of the various restrictions on the policy structure, we
developed an alternative effectiveness measure of an FPP which is relative to the optimal FPP
cost. More importantly, this measure enables us to design an FPP whose cost is asymptotically
very close to the optimal FPP cost. Both measures of effectiveness, i.e., with respect to a lower
bound over all policies, or relative to the cost of the optimal FPP, are informative in making
decisions regarding the desirable structure of the policy that will be applied. We note however
that focusing a priori on the FPP class may be costly. For example, if the cost of the FPP in use
exceeds the lower bound on the optimal cost under any strategy by 30% but it exceeds the cost
of the optimal FPP by 1%, then the user may want to reconsider the restriction to the FPP class
and see whether it can be relaxed in order to reduce the costs. However, if the two effectiveness
measures are close then the user may feel comfortable with the restriction to the FPP class in
view of its simplicity as is explained below.

Unfortunately, none of the above mentioned research on FPPs provide the user with a
polynomial-time algorithm to determine a policy in the FPP class with an ex ante bound on its
optimality gap (within the FPP class). The only exception is the result on direct shipping of [15].
The main reason for the relatively slow progress in this direction is due to the lack of a good
lower bound on the optimal cost in the FPP class. In [3], the authors develop a lower bound on
the optimal cost within the FPP class, which is shown to be asymptotically at least 98.5% of the
optimal cost.

The restriction to the FPP class arises in many real applications mainly in order to simplify
the routing pattern of the various trucks and to eliminate the need for coordination of the routes
with respect to the time they are driven. Policies that split the service to a retailer to different
routes suffer from a number of drawbacks. First, the extra setup time involved in stopping and
unloading the merchandise at the retailer may be expensive. In addition, a retailer that is served
on distinct routes may require a coordination of the timing of the visits by the different trucks
in order to smooth the replenishments of its stock. A coordination of the tours that yields a
replenishment pattern in which the retailers are served in equi-distant intervals of time may
lower significantly the total holding cost of the system, see discussion in [6, 17]. However, such
a coordination of the routes is computationally a very hard task. Another disadvantage of
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optimal policies for the split demand case lies in the fact that in such policies most of the
vehicles leave the depot filled up to their capacity; as a result, the schedule is very sensitive to
small variations in the retailers’ demand rates. An FPP, on the other hand, usually uses trucks
that are not fully loaded and therefore can more easily accommodate variations in the demand
rates. For all these reasons, in many applications of IRP practitioners focus a priori on fixed
partition policies.

In this paper we present a procedure which is based on a region partitioning scheme (RP)
called the Circular Fixed Partitioning scheme (CFP) and we investigate its effectiveness relative
to the lower bound on the FPP class that was derived in [3]. The scheme works as follows. In
the first step, using region partitioning, we partition the plane into disjoint clusters of retailers
that are in close proximity. In the second step, the retailers within a cluster are partitioned into
a number of subsets by applying a bin-packing heuristic. Each of the resulting subsets is then
served by a single vehicle using a periodic schedule. In addition, we prove that for a given �,
if the asymptotically �-optimal bin-packing heuristic proposed in [14] is used, then the CFP
scheme proposed here is polynomial and, moreover, its cost comes asymptotically within 1.5%
� � of the cost of an optimal FPP independently of the packing features of the problem!

In the next section we describe the probabilistic model and give some notation. In Section 3,
we present CFP. In Section 4, we investigate the effectiveness of CFP and its relation to the
effectiveness of the bin-packing heuristic used. In Section 5 we show that using the Set-
Covering based bin-packing heuristic (see [19, 14]) in CFP results in an FPP whose cost is
asymptotically at most 1.5% � � above the cost of the best FPP.

2. PRELIMINARIES

Let N � {1, 2, . . . , n} denote the set of retailers. We denote by wi the demand rate of

retailer i � N. For any S � N, let w(S)
def
� ¥i�S wi. In general, W will denote the sum of a

set of retailer demand rates, while w will denote a particular retailer demand rate. An unlimited
number of vehicles of capacity Q deliver the product to the retailers. The delivery cost consists
of a fixed cost c � 0 plus a term that is proportional to the distance traveled. We assume the
cost per mile is 1. We also assume a frequency constraint, i.e., a retailer may not be replenished
at a rate greater than f. The holding cost is h per unit per unit of time, independent of the
location.

An FPP is specified by a partition of N into a collection of exhaustive, disjoint nonempty sets
{S1, S2, . . . , Sm}. Note that a set S � N can be feasibly served in an FPP if w(S) � Qf. If
w(S) � Qf, then the set S cannot be served on a single route since even if the vehicle were to
deliver a full load at the maximum frequency allowed, then it could only satisfy Qf/w(S) � 1
of the total demand of S. A partition {S1, S2, . . . , Sm} is said to be feasible if w(Sk) � Qf for
each k � 1, 2, . . . , m.

Let L*(S) denote the length of an optimal traveling salesman tour through the set of retailers
S � N. Let T(�), with � � 1, be a �-approximation algorithm for the Traveling Salesman
Problem (TSP). We will sometimes simply write T for the heuristic. Let LT(S) denote the length
of a traveling salesman tour through S � N generated by T. Thus, LT(S) � �L*(S) for any set
S � N.

We will use the following standard notation (see, e.g., [18]). For any sequence of random
variables Xn, n � 1, 2, . . . , we write limn3� Xn � X (a.s.) to mean P(limn3� Xn � X) �
1. Replacing lim with lim or lim in all places in this definition provides the other cases.
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The analysis of the proposed heuristic is based on the following probabilistic model which is
the same as in [3, 9] and similar to [1, 5, 7]. Each retailer is characterized by two random
variables: its location and its demand rate which are assumed independent. The retailers are
assumed to be located on the Euclidean plane, according to distribution � which has compact
support � � �2. The depot is placed at the origin and we let � x� represent the Euclidean
distance between x � �2 and the depot. Define � �

def max{� x� : x � �}. Let di denote retailer
i’s distance from the depot; i.e., if retailer i is located at xi � �2, then di �

def � xi� � �. We denote
by � the distribution of retailer demand rates, and without loss of generality assume the range
of feasible rates is (0, Qf].

Since for fixed n the number of partitions of N is finite and the number of different sequences
with which the retailers in each subset can be visited is finite, there are only a finite number of
FPPs (assuming that each subset is ordered at its optimal reorder interval). Therefore, we let Zn

FP

denote the cost of an optimal FPP. A heuristic HFP that constructs an FPP is said to be an
asymptotic �-approximation for Zn

FP (for � � 1) if limn3�(1/n) Zn
HFP � � � limn3�(1/n) Zn

FP

(a.s.).
Next we describe some features of the Bin-Packing Problem (BPP) which we use here. The

BPP is defined by a set of item sizes and bins of fixed capacity. In our context the item sizes
are retailer demand rates {wi} and the bin capacities are the maximum retailer demand rate that
can be served by one vehicle, i.e., Qf. The goal in the BPP is to assign the items to the minimum
number of bins without violating the capacity restriction. A set S � {1, 2, . . . , n} makes up
a feasible bin if and only if w(S) � Qf. We let b*(S) (bH(S)) denote the number of bins used
in an optimal solution (a solution that is generated by H) on the set S. Excellent surveys of this
problem appear in [11, 12].

An important result concerns the relationship between the number of items and the number
of bins required when n is large. Let b*n be the number of bins used in the optimal solution to
the problem defined by the item sizes {w1, w2, . . . , wn}, and assume these item sizes are
drawn from the distribution � on (0, Qf], with mean E[w] � 	Qf and 	 � (0, 1]. Clearly b*n �
¥i�1

n wi/Qf which, by the strong law of large numbers, leads to the inequality: limn3� b*n/n �
E[w]/Qf � 	, almost surely. Using the techniques of Kingman [21] (see also Rhee and
Talagrand [24]) it is possible to show that for each distribution � there exists a constant 
 � [	,
1], called the bin-packing constant associated with �, such that limn3� b*n/n � 
, almost
surely. The constant 
 is the long-run average number of bins used per item in an optimal
packing. Another measure which will be of interest here is the packing efficiency of � defined
as � �

def 
/	. In general 	 � 
 � 2	 and � � [1, 2). Distributions with 
 � 	 (or � � 1) are
said to allow perfect packing since asymptotically the amount of wasted space becomes a
smaller and smaller fraction of the total bin space used.

The following function plays a crucial role in our analysis. For any L � 0 and W � 0, let

z�L, W	 �
def

min�L � c

t
�

1

2
htW :

1

f
� t �

Q

W�.

The function z gives the minimal cost per unit time for serving a set S with fixed cost L � c
and total demand rate W. Let t* denote the value of t achieving the minimum in z(L, W). Note
that the vehicle leaves the depot carrying Wt* � Q units of product.

Anily and Bramel [3] provide deterministic and probabilistic lower bounds on the cost of any
FPP. The rest of this section presents some of those results which are needed for the current
analysis. For his sake, first partition the (L � c)-axis into three disjoint sets 
1, 
2, and 
3,
where
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1  �0,
Qh

4f � , 
2  �Qh

4f
,

Qh

f � , and 
3  �Qh

f
, ���.

These sets define three rings around the depot; i.e., let Aj �
def { x � � : 2� x� � c � 
j} for

j � {1, 2, 3}. For j � {1, 2, 3}, let d� j denote the retailer’s average distance from the depot
in the ring Aj. The next theorem is from [3].

THEOREM 1: Under the assumptions of our probabilistic model:

lim
n3�

1

n
Zn

FP � Z� �
def

��A1	�	hQ

2
� 
�2d�1 � c	f� � ��A2	��2	 � 
	��2d�2 � c	f �

hQ

2 �
� 2�hQf�
 � 		 � E��2d � c 	 2d � c � 
2�� � ��A3	��2d�3 � c		f � 
hQ/2� �a.s.	. (1)

The per-retailer charge defined next will be useful in the determination of the worst-case
bound.

LEMMA 2: Define

c� �d	  � hQ	/2 � �2d � c	f
, if 2d � c � 
1

�2	 � 
	��2d � c	f � hQ/2	 � 2�
 � 		��2d � c	hQf, if 2d � c � 
2

�2d � c	f	 � 
hQ/2, if 2d � c � 
3.

Then, Z� �
def limn3�

1
n

¥i�1
n c� (di) � limn3�

1
n

Zn
FP (a.s.).

The following theorem, proven in [2], characterizes the asymptotic effectiveness of Z� :

THEOREM 3: Z� is an asymptotic 98.5%-effective lower bound on the average cost per
retailer in the best FPP, i.e., limn3�

1
n

Zn
FP � Z� � (0.985) � limn3�

1
n

Zn
FP (a.s.).

This implies that as the number of retailers increases, the value of the lower bound approaches
at least 98.5% of the average cost per retailer in the best FPP. To prove this result, the authors
use the function z�(L, W), defined below, to bound the cost per bin ( z(L, W)) from above. This
function, which is parameterized by � � [1, 2), will be useful in this paper as well. Define


1 �
def �0,

Qh

2f��, 
2 �
def �Qh

2f�
,
Qh�

2f �, and 
3 �
def �Qh�

2f
, ���.

This partition induces three disjoint rings around the depot which are given by Aj � { x �
� : 2� x� � c � 
j} for j � {1, 2, 3}. For simplicity in the notation, we will omit the
dependence of the sets 
j and Aj on �. The following lemma is proven in [3].

LEMMA 4: Fix � � [1, 2). For any L � 0 and W � [0, Qf],
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z�L, W	 � z���L, W	 �
def 


hW

�2f	
� �L � c	f, if L � c � 
1,

W��L � c	h�

2Qf
� ��L � c	hQf

2�
, if L � c � 
2,

�L � c	W

Q
�

hQ

2
, if L � c � 
3.

3. A FIXED PARTITIONING SCHEME

In this section, we present a polynomial-time fixed partitioning scheme. In later sections we
analyze the performance of the proposed heuristic and prove that it generates a solution that is
guaranteed to be asymptotically within 1.5% � � of the cost of the lower bound Z� , for arbitrary
� � 0.

The FPP we construct is called Circular Fixed Partition (CFP) and its cost on n retailers is
denoted Zn

CFP. This partitioning scheme is based on a circular region partitioning scheme similar
to those described by Haimovich and Rinnooy Kan [16] (in the context of the capacitated vehicle
routing problem), or Anily and Federgruen [5, 7] and Anily [1] for the IRP with split demands.
However, in contrast to those papers, here the number of retailers in each of the clusters is not
bounded by a constant, but rather is an increasing function of n. (We note that the number of
retailers in each cluster is the same, with the possibly exception of one cluster.) Each cluster is
then partitioned into subsets of retailers, possibly overlapping, by applying a bin-packing
heuristic H. Each subset of retailers created by H is served on a separate route. To emphasize
the dependence of CFP on the bin-packing heuristic H we use CFP(H) and Zn

CFP(H) for CFP and
Zn

CFP, respectively.
We now describe the proposed partitioning scheme. In what follows, let x denote the

greatest integer less than or equal to x, and let x denote the smallest integer greater than or
equal to x.

Circular Fixed Partitioning Scheme (CFP(H))

● Step 1: Partition the circle with radius � by means of radial cuts into n1/4
consecutive sectors each containing n5/8n1/8 retailers, and possibly one addi-
tional sector containing n �

def n � n1/4n5/8n1/8 retailers. Let K denote the
number of sectors generated, i.e., K � n1/4 or K � n1/4 � 1. If K � n1/4
� 1, then let sector K be the one that contains n retailers. Let Sk denote the set of
retailers in sector k, for k � 1, 2, . . . , K.

● Step 2: For each k � 1, 2, . . . , K, partition the sector k, starting from its outside
boundary, by circular cuts such that each of the clusters obtained contains exactly
p �def n1/8 retailers, except for the inner cluster in sector K that may contain less
than p retailers. (Note that, in each of the sectors k � 1, 2, . . . , K � 1, we use
exactly q � n5/8 � 1 circular cuts. In sector K we use q � 	SK	/p � 1
circular cuts.)

● Step 3: Let Cj,� denote the retailers in the �th cluster generated in Aj, for j � {1,
2, 3}, where a cluster is considered in Aj if its closest point is in Aj. For each cluster
Cj,� choose an arbitrary point vj,� on the circular cut enclosing the cluster from
below. Note vj,� � Aj for all �. In each cluster, apply the bin-packing heuristic H
to pack the demand rates of the retailers in the cluster into bins of capacity Qf. Let
�j,� be the resulting set of bins in cluster Cj,�. Note bH(Cj,�) � 	�j,�	. Each bin
is served on a separate route. To determine the exact sequence in which the retailers
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in a bin B � �j,� are visited on their route, we apply the heuristic T(�) to the set
of retailers in B and the point vj,�. Connect the tour to the depot by adding two
copies of the arc connecting the depot to vj,�. The bin B is served every t* units of
time, where t* is the minimizer in z(2�vj,�� � LT(B � {vj,�}), w(B)).

Note that Steps 1–2 of CFP produce a region partitioning such that all generated clusters are
contained within a single sector and their boundary consists of two circular cuts and two radial
cuts.

We now analyze the computational complexity of CFP(H) when applied to a set of n retailers.
Step 1 of the heuristic requires ordering the retailers according to their angular coordinate. Step
2 requires ordering the retailers within each sector according to their radial distance. Therefore,
the complexity of Steps 1–2 is O(n log n). The complexity of Step 3 depends on the complexity
of the bin-packing heuristic H and the traveling salesman heuristic T. Suppose n items can be
packed using H in time h(n), and n points can be routed using T in time t(n). Then, Step 3’s
complexity is O(n7/8 � max{h(n1/8), t(n1/8)}). Therefore, the complexity of the whole
algorithm is O(max{n log n; n7/8 � max{h(n1/8), t(n1/8)}}). In Section 5.1 we present a
bin-packing heuristic whose complexity is linear in the number of items. If we also use the
simple 2-approximation minimum spanning tree algorithm for the TSP (see [22]), then t(n) �
O(n2) and the CFP has overall complexity O(n9/8). If instead we use the 1.5-approximation
Christofides’ heuristic (see [10]), which has complexity t(n) � O(n3), then the CFP has overall
complexity O(n1.25).

4. A PERFORMANCE ANALYSIS OF CFP

In this section we analyze the quality of the policy produced by CFP. For that sake we first
need a few known results on the classical vehicle routing problem and RPs. In general, let X
denote a set of m points in the Euclidean plane within a circle of radius � from the origin. An
RP partitions the circle into disjoint subregions X̃1, X̃2, . . . , X̃R such that each retailer in X
belongs to exactly one of the regions. As defined above, let L*(X) be the length of the optimal
traveling salesman tour through the set X. Let also �L*(X) � X̃i� be the total length of those
parts of the optimal traveling salesman tour through X that are within the subregion X̃i. That is,
¥i�1

R �L*(X) � X̃i� � L*(X). The first lemma is immediate from Theorem 3 in Karp [20].

LEMMA 5: Let � � {X1, . . . , XR} be a partition of X generated by a RP. Let X̃i, i � 1,
2, . . . , R, denote the subregions and �*i its perimeter. Then, L*(Xi) � �L*(X) � X̃i� �
1.5�*i, and therefore ¥i�1

R L*(Xi) � L*(X) � 1.5�*, where �* �
def ¥i�1

R �*i.

The length of the optimal traveling salesman tour (L*(X)) is O(��m) as follows, e.g., from
the following lemma, due to [16].

LEMMA 6: If X is contained in a connected planar region with area A and finite perimeter
�̂, then L*(X) � �2mA � 1.5�̂.

In subsequent analysis we use both lemmas to bound the cost of the solution generated by
CFP. The CFP generates a set of bins �j,� �j,� that is a partition of N and also each bin B in
�j,� consists of retailers that are contained in the cluster Cj,�. The route through the retailers in
B � Cj,� starts at the depot, passes through vj,�, visits all retailers in B, and goes back to the
depot through vj,�. We say that the retailers in bin B and the point vj,� induce a district. We
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define the set N to consist of the set of retailers N as well as bH(Cj,�) copies of the point vj,�

for any cluster Cj,�. Clearly, 	N	 � 2n. We note that the set of districts is a partition of N. Let
�̃ be the total perimeter of the clusters generated by Steps 1–2 of CFP. The proof of the
following lemma is given in the Appendix.

LEMMA 7:

(a) The number of retailers in sector k, for k � K � 1, at the end of Step 1 of CFP is
n5/8n1/8. The number of retailers in sector K is bounded from above by n7/8 �
n3/4 � n5/8 � n3/8 � n1/4 � n1/8 � 1.

(b) For any n � 2, the total perimeter �̃ of the generated clusters at the end of Step 2 of the
CFP is at most �[4�(n3/4 � 2n5/8 � n3/8 � �n � n1/8) � (8� � 2)n1/4 � 50� �
2] � O(n3/4).

For j � {1, 2, 3}, let �j be the index set of the clusters created by CFP whose closest point
is in Aj; i.e., if � � �j, then vj,� � Aj. Also let Bj,�,i denote the ith bin of �j,�. The total cost
of the generated solution is given by

Zn
CFP�H	  �

j�1

3 �
���j

�
i��j,�

z�2�vj,�� � LT�Bj,�,i � �vj,��	, w�Bj,�,i		.

In the sequel we develop an upper bound on Zn
CFP(H).

It is easy to show (see, e.g., [3]) that, for any L � 0, r � 0, and W � 0, z(L, W) � z(L �
r, W) � z(L, W) � fr. Thus for any j, � and bin Bj,�,i � Cj,�,

z�2�vj,�� � LT�Bj,�,i � �vj,��	, w�Bj,�,i		 � z�2�vj,��, w�Bj,�,i		 � fLT�Bj,�,i � �vj,��	.

Hence,

Zn
CFP�H	 � �

j�1

3 �
���j

�
i��j,�

z�2�vj,��, w�Bj,�,i		 � f �
j�1

3 �
���j

�
i��j,�

LT�Bj,�,i � �vj,��	. (2)

As for other vehicle routing problems, the first term of the upper bound [in (2)] is dominant as
n increases. Let �n be the second term of (2), i.e., �n �

def f ¥j�1
3 ¥���j

¥i��j,�
LT(Bj,�,i �

{vj,�}). The following lemma characterizes the growth rate of �n.

LEMMA 8: �n � O(n3/4), i.e., limn3�(�n/n3/4) � �� (a.s.).

PROOF: Since T � T(�) is a �-approximation algorithm for the TSP, we obtain

�n  f �
j�1

3 �
���j

�
i��j,�

LT��	�Bj,�,i � �vj,��	 � �f �
j�1

3 �
���j

�
i��j,�

L*�Bj,�,i � �vj,��	.
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Note that �i(�j,�,i � {vj,�
i }), where vj,�

i
�
def vj,� for any �j,�,i � �j,� is a region partition of

N. In order to use Lemma 5, we need to bound �n in terms of the optimal traveling salesman
tours in the clusters. For that sake, we note that the sum of the tours via the districts in a single
cluster is bounded from above by the optimal tour over the clusters times the number of districts
which is at most n1/8. That is, for any cluster Cj,�, the following inequality holds:

�
i��j,�

L*�Bj,�,i � �vj,��	 � n1/8L*��i�Bj,�,i � �vj,��		.

Therefore, using Lemma 5, we obtain

�n � �f �
j�1

3 �
���j

n1/8L*��i��j,� Bj,�,i � �vj,��	 � �fn1/8L*�N	 � 1.5�̃,

where �̃ is the total perimeter of the clusters generated by Steps 1–2 of CFP. Combining this
bound with Lemmas 6 and 7, we obtain

�n � �fn1/8��2�2n	��2 � 2��	 � 1.5�fn1/8�̃ � 2�f��� n5/8 � 2���fn1/8 � 1.5�fn1/8�̃.

Since �̃ is O(n3/4) from Lemma 7 part (b), we have �n � O(n7/8). �

We now apply Lemma 4 to (2):

Zn
CFP�H	 � �

j�1

3 �
���j

�
i��j,�

z���2�vj,��, w�Bj,�,i		 � �n. (3)

The analysis of the first term of this upper bound is more involved. Clearly, the bin-packing
heuristic H plays a central role in CFP(H). In order to quantify the effectiveness of H, we need
the following terms: let bn

H denote the number of bins used by H to pack a set of n demand rates
{w1, . . . , wn} drawn independently from � into bins of capacity Qf. Note that for a given n,
bn

H is a random variable that is bounded from above by n. We define 
̂H
�
def limn3� bn

H/n, almost
surely. Note 
̂H could be a random variable. Define 
H

�
def sup 
̂H, where sup X �def

sup{ x : P(X � x) � 0} for any random variable X. Then 
H is defined as the bin-packing
constant of H (associated with �). For any bin-packing heuristic H we have: 	 � 
 � 
H �
1. Define �H

�
def 
H/	. Note that any reasonable bin-packing heuristic will have �H � 2. The

bin-packing heuristic H is said to be asymptotically optimal for � if 
H � 
 or, equivalently,
if �H � �.

In CFP(H) the bin-packing heuristic H is applied on the demand rates of the retailers within
each cluster. The number of clusters grows with n, but at a slower rate [at a rate o(n)], and thus
the number of retailers within each cluster grows at a rate slower than n. It is important to
understand whether the packing of the n retailers that results from this “partitioning” method is
as asymptotically efficient as when H is applied directly to the n retailers. This property is
required for our results on the CFP(H) and essentially amounts to a requirement that the
convergence rate of H be “fast enough” relative to the partitioning rate a(n) (which in this case
is n7/8). Therefore, any bin-packing heuristic that is used as a subroutine in CFP must be, what
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we call, robust-under-partitioning, or more specifically, robust-under-sublinear-partitioning,
which we next state formally:

PROPERTY 9: Suppose n items are partitioned, independently of their sizes, into a(n) �
o(n) clusters denoted C1, C2, . . . , Ca(n). In each cluster the bin-packing heuristic H is applied.
The heuristic H is said to be robust-under-partitioning if for any sequence of finite nonnegative
and uniformly bounded constants1 {��}, � � 1, we have

lim
n3�

1

n �
��1

a�n	

��b
H�C�	 � 
Hlim

n3�

1

n �
��1

a�n	

��	C�	 �a.s.	. (4)

In particular, if �� � 1, for all � � 1, robustness-under-partitioning says that

lim
n3�

1

n �
��1

a�n	

bH�C�	 � 
H �a.s.	.

This implies that the packing (of the n retailers) that results is asymptotically as efficient as if
H were applied directly to the n retailers. Or put another way, the number of extra bins required,
because of the partitioning of the items, is negligible (asymptotically).

From here on, we assume that the bin-packing heuristic H (used in Step 3 of CFP) is
robust-under-partitioning. In the next section we will describe one such heuristic.

We now bound from above the asymptotic cost of the policy constructed by CFP(H). Let d� j
denote the expected distance to the depot in ring Aj, for j � {1, 2, 3}. The proof of the
following lemma is given in the Appendix.

LEMMA 10:

lim
n3�

1

n
Zn

CFP�H	 � Z� H �
def

��A1	��2d�1 � c	
Hf �
	hQ

2 � � ��A2	�2hQf	
H � E��2d � c	2d

� c � 
2� � ��A3	��2d�3 � c		f �

HhQ

2 � �a.s.	. (5)

The following per-retailer charge will be useful in proving the asymptotic worst-case bound.

THEOREM 11: Define:

c� H�d	  

hQ	

2
� �2d � c	f
H, if 2d � c � 
1,

�2hQf
H	�2d � c	, if 2d � c � 
2,

�2d � c		f �

HhQ

2
, if 2d � c � 
3.

1 The constants {��}, � � 1, are also assumed to be independent of the sizes of the items in the clusters.
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Then

lim
n3�

1

n �
i�N

c�H�di	  Z� H � lim
n3�

1

n
Zn

CFP�H	.

PROOF: The equality follows since limn3�(1/n) ¥i�1
n c�H(di) is, a.s., equal to Z� H [the

right-hand side of (5)] by the strong law of large numbers. The inequality is from Lemma
10. �

In order to prove the asymptotic worst-case bound, we compare the per-retailer cost alloca-
tions from the upper bound on CFP (Theorem 11) to the one from the lower bound (Lemma 2).
To make this comparison, we need the following lemma:

LEMMA 12: Define

�H �
def

max�c�H��x�	
c���x�	 : x � ��;

then

lim
n3�

1

n
Zn

FP � lim
n3�

1

n
Zn

CFP�H	 � Z� H � �H � lim
n3�

1

n
Zn

FP;

i.e., 1
n

Zn
CFP(H) and Z� H are asymptotic �H-approximations on the average cost per retailer in the

best FPP.

PROOF: First note that c�H(� x�) � �H � c� (� x�) for any x � �. The result then follows by
using the definitions of the c�H and c� . �

Define rH �def 
H/
, i.e., rH is the asymptotic worst-case ratio of the bin-packing heuristic
H. For example, if H is asymptotically optimal, then rH � 1. Note rH � [1, 2). The following
theorem is proven in the Appendix.

THEOREM 13:

(a) Suppose we apply CFP(H) with a bin-packing heuristic H that is robust-under-partition-
ing and whose asymptotic worst-case ratio is rH. Then, CFP(H) is an asymptotic
1.015�rH-approximation algorithm for the best FPP.

(b) If H is asymptotically optimal, then CFP(H) is an asymptotic 1.015-approximation
algorithm for the best FPP.

REMARK: We note here the impact of using a bin-packing heuristic H which is not robust
(as defined in Property 9). Say a heuristic is �-robust-under-partitioning if (4) holds only when
the right-hand side is multiplied by � � 1. Then the details of the analysis change, but the
general idea stays the same. One can show that the CFP(H) is then an asymptotic 1.015��rH-
approximation for the best FPP. (In particular, choose � � ��H.)
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In the next section we show that, for arbitrary � � 0, the Set-Covering based bin-packing
heuristic is an asymptotic (1 � �)-approximation for the BPP and is (1 � �)-robust-under-
partitioning. According to Theorem 13, using this heuristic in CFP results in an FPP whose
average cost is asymptotically within at most 1.5% � � of the best FPP, for some � � 0 (where
�3 0 as �3 0). It is not clear a priori whether the 1.5% gap is due to weakness of the lower
bound or of CFP. As shown in [3] the lower bound (1) is not always asymptotically tight with
the optimal solution. Indeed, Anily and Bramel [3] present an example where for � � �2 the
lower bound is indeed 1.5% below the best FPP’s cost. This holds for any number of retailers.
In our worst-case analysis of CFP (the proof of Theorem 13), we see that if 
H � 
 then the
worst situation occurs again when � � �2. So the performance of CFP might actually be better
than what we have proved here. It remains an open question whether the CFP using an
asymptotic optimal bin-packing heuristic as a subroutine produces an FPP that is asymptotic
optimal within the FPP class. However, our results here come very close (within 1.5%) to
answering this question in the affirmative.

5. A ROBUST-UNDER-PARTITIONING BIN-PACKING HEURISTIC

We now describe the bin-packing heuristic initially developed by Karmarkar and Karp [19]
and analyzed by Federgruen and van Ryzin [14]. In subsection 5.1 we describe the heuristic and
some of its properties as proven in [14]. The main property is that, for arbitrary � � 0, it is an
asymptotic (1 � �)-approximation for the bin-packing problem under general conditions on the
distribution of item sizes (�). In Subsection 4.2 we prove that the heuristic is (1 � �)-robust-
under-partitioning. Therefore, using this bin-packing heuristic as a subroutine in CFP results in
an FPP whose cost asymptotically is at most 1.5% � � more than the cost of an optimal FPP.

In the description of this scheme bins are of capacity Qf and item sizes (demand rates) are in
the range (0, Qf] and are distributed according to �.

5.1. The Set-Covering Based Bin-Packing Heuristic

This heuristic is based on solving a linear programming relaxation of the set-covering
formulation of the BPP where the item sizes are discretized: Pick an integer I � 0 and divide
the range (0, Qf] into I subintervals of size � � Qf/I each (� is the discretization level). We
denote the heuristic by H(�). Let ui �def i � � for i � 0, 1, . . . , I. Round up the size of each
item to the next discrete point in {u1, u2, . . . , uI}. Then formulate the BPP as a set-covering
problem with I rows (one for each potential item size) and a column for each feasible bin
configuration. A bin configuration is a specification of the number of items of each type (each
discrete size) that makes up a feasible bin. The heuristic solution to the BPP is obtained by
solving this set-covering problem as a linear program and rounding up each nonzero element
of the solution vector to the nearest integer.

Federgruen and van Ryzin [14] prove that 
H(�), the bin-packing constant associated with
H(�), converges to 
, the bin-packing constant, as �3 0. That is, as the discretization becomes
finer, the algorithm gets closer to being asymptotically optimal. The drawback of this heuristic
is its complexity which is a function of Qf/�, the number of intervals into which [0, Qf] is
partitioned.

We define now a few terms that are needed for the description of the algorithm and for the
analysis thereafter. Let �i denote the interval (ui�1, ui], for i � 1, 2, . . . , I. In the heuristic,
each item size in �i is rounded up to ui. For each i � 1, 2, . . . , I, let �� i(�) � P(w � �i),
i.e., �� i(�) designates the probability that an item is rounded up to ui, and define �� (�) � (�� 1(�),
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�� 2(�), . . . , �� I(�)). We also define �i(�) � P(w � �i�1) for each i � 0, 1, 2, . . . , I � 1,
and let �I(�) � 0 and �(�) � (�1(�), ��2(�), . . . , �I(�)). For any nonempty set S of items
drawn from �, and for each i � 1, 2, . . . , I, define n� i(S) �

def 	{k : k � S and wk � �i}	, i.e.,
the number of items in S that get rounded up to ui. Also define n� (S) � (n� 1(S), n� 2(S), . . . ,
n� I(S)). Note n� (S) is a vector of random variables. In what follows, for any vector x � ( x1,
x2, . . . , xI), let 	x	 �

def ¥i�1
I 	xi	, i.e., the L1-norm.

Federgruen and van Ryzin [14] first show the following continuity result:

LEMMA 14: If � is bounded and continuous almost everywhere, then for every � � 0 there
exists a � � 0 such that for all � � (0, �]: 	�� (�) � ��(�)	 � �.

From here on we assume that � is bounded and continuous almost everywhere on (0, Qf].
To construct the set-covering formulation, we define the matrix A consisting of I rows, one

row for each of the possible discrete item sizes, and J columns, one for each feasible bin
configuration. The entry aij (for i � 1, 2, . . . , I and j � 1, . . . , J) denotes the number of
items of size ui in bin configuration j. Note that since we have excluded null items (items of size
0) the number of feasible bin configuration is finite (it depends on � � 0). Let bIP(n� (S)) denote
the value of the following integer programming (IP) set-covering formulation of the bin-packing
problem:

bIP�n� �S		  min�eTy : Ay � n��S	, y � 0 and integer�,

where e represents a vector of 1’s of appropriate dimension. In this formulation yj represents the
number of bins of type j that are used by the optimal solution; thus bIP(n� (S)) represents the
number of bins needed to pack the discretized set of items represented by n� (S). Clearly,
b*(S) � bIP(n� (S)).

In the heuristic, the following linear programming relaxation (LP) of this integer program is
solved: Let � � (�1, �2, . . . , �I) be a nonnegative vector, and let bLP(�) � min{eTy : Ay �
�, y � 0}. Federgruen and van Ryzin prove that bLP has the following properties:

LEMMA 15:

1. bLP(v�) � vbLP(�) for all � � 0 and v � 0.
2. bLP(�) � 	�0	 � bLP(� � �0) � bLP(�) � 	�0	 for all � � 0 and �0 � 0.

After solving the linear programming relaxation bLP(n� (S)), each nonzero element of the
solution vector (a bin configuration) is rounded up to the next integer value (the number of times
the bin configuration is used in the solution). This heuristic solution value, denoted by bH(�)(S),
is compared to a lower bound in [14]. For any � � 0 define: 
� �

def bLP(�(�)), which is a lower
bound on the asymptotic cost per item when items are rounded down to the nearest discrete item
size. Federgruen and van Ryzin prove the following theorem (see Theorem 4 in [14]):

THEOREM 16:

1. For any � � 0, 
� � 
.
2. lim�30 
� � 
.

The next lemma provides an upper bound on the number of bins used by H(�) when applied
to a set S � N. (A similar property was also needed in [14].)
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LEMMA 17: Given � � 0, @S � N,

bH��	�S	 � 	S	�
� � 	�� ��	 � ���			 � 	n��S	 � E�n��S	�	 �
Qf

�
. (6)

PROOF: Consider H(�) applied to S � N. The optimal solution y� to the linear programming
relaxation contains at most I nonzero entries, since the number of positive variables in any basic
feasible solution to LP cannot exceed the number of rows of the matrix A. Thus, by rounding
each nonzero component y� j up to the nearest integer, the integer (heuristic) solution generated
will cost at most 1 unit more for each of the I positive basic variables. Therefore, we have

bH��	�S	 � bLP�n� �S		 � I  	S	 � bLP��� �S		 � I,

where we have defined �� i(S) � n� i(S)/	S	 for i � 1, 2, . . . , I and �� (S) � (�� 1(S), �� 2(S) . . . ,
�� I(S)) and used Lemma 15, part 1. Now, using Lemma 15, part 2, we get

bLP��� �S		 � bLP��� ��		 � 	�� �S	 � �� ��		 (7)

and

bLP��� ��		 � bLP����		 � 	�� ��	 � ���		  
� � 	�� ��	 � ���		. (8)

Combining (7) and (8), and since �� (S) � 	S	 � n� (S) and 	S	 � �� (�) � E[n� (S)], we get

bH��	�S	 � 	S	�
� � 	�� ��	 � ���			 � 	n� �S	 � E�n��S	�	 � I.

Since I � Qf/�, we get the desired result. �

The asymptotic effectiveness of H(�) can now be demonstrated.

LEMMA 18: Given � � 0, there exists a � � 0 such that, for all � � (0, �],


 � 
H��	 � 
� � � � 
 � � �a.s.	,

where 
H(�)
�
def limn3� bn

H(�)/n, almost surely.

PROOF: The first inequality is obvious. The third inequality is a direct result of Lemma 16,
part 1. For the middle inequality, recall � � 0 is fixed. Now using (6), as 	S	 3 �, the quantity
(1/	S	)	n� (S) � E[n� (S)]	 goes to 0 by the strong law of large numbers. As 	S	 3 � the last term
of (6) becomes a negligible fraction of 	S	. Using Lemma 14, we get the desired result. �

Therefore, given � � 0, there exists a � � 0 such that H(�) is an asymptotic (1 �
�)-approximation for the BPP. Federgruen and van Ryzin show in [14] that the complexity of
H(�) is linear in the number of items. Moreover, under the uniform model of computation, it
takes constant time since the dimension of the matrix A is independent of the number of items.
We refer the reader to [14] for more details on the effectiveness of this particular solution
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approach to the bin-packing problem. Finally, since we apply the H(�) heuristic on sets of n1/8

items (retailers) and perform this n7/8 times, the CFP heuristic is also linear in the number of
retailers.

5.2. Proof of Robustness

Next we prove that given � � 0, there exists a � � 0 such that H(�) is (1 � �)-robust-under-
partitioning. Assume the n items are partitioned independently of their sizes into a(n) clusters
denoted {C�}��1

a(n) . For � � 1, 2, . . . , a(n), let n� � 	C�	. We assume that a(n) is an increasing
and unbounded function of n and that a(n) � o(n). Also assume we are given a sequence of
uniformly bounded non-negative real numbers �� � �� � ��, for � � 1.

THEOREM 19: Given � � 0, there exists a � � 0 such that, for all � � (0, �],

lim
n3�

1

n �
��1

a�n	

��b
H��	�C�	 � �
� � �	lim

n3�

1

n �
��1

a�n	

��	C�	 �a.s.	.

PROOF: Fix � � 0, and let � be as specified by Lemma 14. Then by Lemma 17, for � � �,
bH(�)(S) � 	S	(
� � �) � 	n� (S) � E[n� (S)]	 � Qf/�, @S � N. Then

1

n �
��1

a�n	

��b
H��	�C�	 � �
� � �	

1

n �
��1

a�n	

��	C�	 �
1

n �
��1

a�n	

��	n� �C�	 � E�n��C�	�	 �

Qf

�

n �
��1

a�n	

��. (9)

The last term in (9) disappears since ¥��1
a(n) �� � a(n)�� � o(n) and � � 0 is fixed. The middle

term on the right-hand side of (9) represents the weighted sum of differences of multinomial
random variables with their expected values. To analyze this term, we invoke Lemma 21
(proven in the Appendix) which says that the weighted sum of these deviations is a negligible
fraction of n. Specifically, Lemma 21 states that, almost surely,

lim
n3�

1

n �
��1

a�n	

�� n��C�	 � E�n��C�	�	  0.

Thus this term disappears in the limit and we obtain the desired result. �

Now since 
� � 
, we see that given � � 0, the heuristic H(�) is (1 � �/
H)-robust-under-
partitioning. Thus it is (1 � �)-robust-under-partitioning where � 3 0 whenever � 3 0.

6. CONCLUSION

In many logistical problems, practitioners are aware of the added cost involved in restricting
themselves to simpler policies that are easy to implement. Usually this additional cost is hard
to assess relative to the benefit obtained by using simple rules so it is neglected in the overall
profit evaluation. This paper as well as [3, 5, 9] enhance the understanding of this issue in some
NP-hard IRPs, where the design of an algorithm that solves them to optimality is probably
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impossible. Moreover, no clue is yet known about the structure of optimal policies for these
problems. It is conceivable that optimal policies might be very complex and therefore expensive
and unattractive from an implementation point of view. As a result, in the last decade,
researchers have concentrated on policy classes that have an appropriate structure to be
effective, as for example, the partitioning policies.

Three lower bounds are proposed in the literature for IRPs. The lowest is provided by Chan,
Federgruen, and Simchi-Levi [9] that developed a lower bound on the optimal cost under any
strategy. Their lower bound is shown to be asymptotically tight with the optimal cost of a
partitioning policy for the unsplit demand case for problems that allow perfect packing. Anily
and Federgruen [4] restrict themselves to the class of partitioning policies: They provide an
asymptotically tight lower bound on the optimal cost of a policy in this class. Anily and Bramel
[3] further restrict themselves to FPPs. Thus, they provide the largest lower bound among the
three, i.e., a lower bound on the optimal cost over all FPPs. The three lower bounds coincide
when perfect packing prevails and when the number of retailers is large enough. In particular,
if the lower bounds of Chan, Federgruen, and Simchi-Levi [9] and of Anily and Federgruen [5],
that do not depend on any packing features, are close then one can conclude that the restriction
to partitioning policies for large scale systems is worthy, in view of their simplicity with respect
to logistical issues. On the other hand, as this paper together with [3, 9] demonstrate, the
restriction to FPPs may entail a significant loss of profits for problems that are far of allowing
perfect packing. In such problems it is worth investigating the potential decrease in cost if the
restriction to an FPP is replaced by the restriction to a partitioning policy (for the split demand
case).

In Section 3 we construct a heuristic solution in the FPP class, named CFP(H). The heuristic
first applies a circular regional partitioning and then a bin-packing heuristic to determine the
assignment of the retailers to trucks. As explained at the end of Section 3, if in the heuristic the
simple 2-approximation minimum spanning tree algorithm for the TSP and the bin-packing
heuristic described in Section 5.1 are used, then the overall complexity of CFP(H) is O(n1.25).
While this theoretical complexity bound is impressive, further research should investigate both
the actual running time and gap between the heuristic solution and the various lower bounds as
well as the sensitivity of these measures with respect to the other parameters of the problem and
its bin-packing constant.

The models considered in this paper and in [1, 3–5, 7, 9, 15, 26] are based on some restrictive
assumptions. First, it is assumed that the retailers can hold any quantity of stock where in
practice this is not always the case. Second, the fleet size is assumed unbounded. In addition,
travel times as well as loading and unloading times are not taken into account. Although these
issues are important, we believe that they should be considered at a second phase in which the
routes are assigned to vehicles/drivers and the specific time table is generated by using a
scheduling algorithm. The capacity limits at the retailers, if binding, should be analyzed from
an economical point of view: Are these capacities firm constraints or maybe it is worth investing
in a capacity expansion at some of the retailers. For the evaluation of the benefit induced by a
capacity expansion, one needs the information about the average cost while removing these
restrictions which can be obtained by one of the methods described in the papers mentioned
above. The issues of fleet size and the duration of the different tasks is related to the scheduling
of the different tours which we do not consider at this level of the solution. In general, we can
say that these methods produce solutions that have the potential to exploit the vehicles’ at their
maximum capacity depending on the effectiveness of the scheduling methods used in the second
phase in order to coordinate the different routes.
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These models further assume deterministic and constant demand rates. In our view this is the
most unrealistic assumption. In today’s world the technology allows for an easy accessibility to
an accurate and timely information about the retailers stock levels. Unfortunately, the literature
on IRP with stochastic demands confines itself to a single period models. One approach for
solving multiperiod such problems with low variations in the demands is by using solution
methods for the deterministic case where the mean of the demands plays the role of the demand
rates. One of the most important criterions for determining the quality of an algorithm for a
deterministic problem is its robustness to small variabilities in the demands. We expect that the
algorithm proposed here is robust in the retailers’ demand rates mainly when the problem does
not allow perfect packing, since in such cases the vehicles leave the warehouse only partially
loaded, enabling the flexibility of loading extra merchandise to fill unexpected increase in the
demands. However, this scheme does not provide an answer with respect to the safety stocks
needed at the retailers. We believe that one of the most challenging questions in IRP theory is
the analysis of the multi-period stochastic IRP.

APPENDIX

PROOF OF LEMMA 7:
(a) At the end of Step 1 of CFP, in sectors k � 1, . . . , K � 1 and possibly also in sector K, we have 	Sk	 �

n5/8n1/4 � n7/8 retailers. In sector K we may have n �def n � n1/4n5/8n1/8 retailers. A simple calculation
shows that

n � n7/8 � n3/4 � n5/8 � n3/8 � n1/4 � n1/8 � 1.

It is straightforward to show that n7/8 � n7/8 � n3/4 � n5/8 � n3/8 � n1/4 � n1/8 � 1 for all n � 1.
(b) We note that in Step 1 of CFP we add only radial cuts to the circle with radius � around the depot. Let �̃ denote

the perimeter of the clusters obtained at the end of Step 2 of CFP. We can bound �̃ by bounding separately three of
its components:

�1  the perimeter of the circle containing N, i.e., 2��,

�2  the total length of all radial cuts generated in Step 1 of CFP,

�3  the total length of all circular cuts generated in Step 2 of CFP,

After Step 2 of CFP, the total perimeter �̃ is thus bounded by �̃ � �1 � 2(�2 � �3) since each circular or radial
cut is adjacent to two clusters. Clearly �1 � 2�� and �2 � K�. The number of circular cuts within sector k is bounded
by:

	Sk	
n1/8 � 1 �

n7/8 � n3/4 � n5/8 � n3/8 � n1/4 � n1/8 � 1

n1/8 � 1 �
n7/8 � n3/4 � n5/8 � n3/8 � n1/4 � n1/8 � 1

n1/8 � 1

 n1/8�n3/8 � 1	�n1/8 � 1	2 �
1

n1/8 � 1
.

Observe now that 1/(n1/8 � 1) � 12 for any n � 2. Thus the total length of all circular cuts in Step 2 is bounded from
above by n1/8(n3/8 � 1)(n1/8 � 1)2 � 12 times the perimeter of the circle containing N, i.e., �3 � 2��(n1/8(n3/8 �
1)(n1/8 � 1)2 � 12). Thus,

�̃  �1 � 2��2 � �3	 � 2�� � 2�K� � 2���n1/8�n3/8 � 1	�n1/8 � 1	2 � 12		 � 2�� � 2��n1/4 � 1	�

� 2���n1/8�n3/8 � 1	�n1/8 � 1	2 � 12		.

Now (b) follows by simple algebra. �

PROOF OF LEMMA 10: From (3), we let
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Zj �
def �

���j

�
i��j,�

z���2�vj,��, w�Bj,�,i		, for j � �1, 2, 3�.

Thus, (3) can be rewritten:

Zn
CFP�H	 � �

j�1

3

Zj � �n. (10)

Let Nj (respectively, Ñj) denote the set of retailers in Aj (respectively, �� Cj,�), for j � {1, 2, 3}. Note that N1 �
Ñ1, Ñ3 � N3, and N2 � (Ñ2�N3) � (Ñ1�N1). Define nj � 	Nj	 and ñj � 	Ñj	, for j � {1, 2, 3}. We have ñ1 � n1 �

K � p � O(n3/8). Similar reasoning gives n3 � ñ3 � O(n3/8) and 	n2 � ñ2	 � O(n3/8). Then, for j � {1, 2, 3},
limn3� ñj/n � limn3� nj/n � �( Aj).

Now in (10), we divide by n and take the limit. For this purpose, we define � � {1, 2, 3} such that j � � if and
only if �( Aj) � 0. Clearly, for j � �, limn3�(Zj/n) � 0 and for j � �, n 3 � implies nj 3 � and also ñj 3 �
almost surely. Using Lemma 8 results in (almost surely):

lim
n3�

1

n
Zn

CFP�H	 � �
j�1

3

lim
n3�

1

n
Zj  �

j��

lim
n3�

ñj

n

Zj

ñj
� �

j��

�lim
n3�

ñj

n��lim
n3�

Zj

ñj
� �

j��

��Aj	 lim
ñj3�

Zj

ñj
. (11)

We consider the three rings A1, A2 and A3 in turn. For each, we assume �( Aj) � 0; otherwise there is no need to
bound the term for that ring since the respective expression vanishes. Recall that, for j � {1, 2, 3}, �j is the index
set of the clusters created by CFP whose closest point is in Aj; i.e., if � � �j, then vj,� � Aj. For any cluster Cj,�, let
dj,� �def �vj,��. Recall the definition of the function z�� as given in Lemma 4. From here on, we set � � �H.

Consider ring A1. We have

Z1  �
���1

�
i��1,�

z���2d1,�, w�B1,�,i		  �
���1

�
i��1,�

�hw�B1,�,i	

�2f	
� �2d1,� � c	f�  �

i�Ñ1

hwi

�2f	
� f �

���1

bH�C1,�	�2d1,� � c	.

Thus

lim
ñ13�

Z1

ñ1
�

h

�2f	
lim
ñ13�

1

ñ1
�
i�Ñ1

wi � f lim
ñ13�

1

ñ1
�

���1

bH�C1,�	�2d1,� � c	 �
hE�w�

�2f	

� f
H lim
ñ13�

1

ñ1
�

���1

�2d1,� � c		C1,�	 �
	hQ

2
� f
H�2d�1 � c	. (12)

The first inequality follows from the fact that H is robust-under-partitioning (see Property 9 with �� � 2d1,� � c for
� � �1). The last inequality follows from the law of large numbers and the fact that ñ1 � n1 � o(n).

Now consider ring A2:

Z2  �
���2

�
i��2,�

z���2d2,�, w�B2,�,i		  �
���2

�
i��2,�

�w�B2,�,i	��2d2,� � c	h�H

2Qf
� ��2d2,� � c	hQf

2�H �
� �

i�Ñ2

wi��2di � c	h�H

2Qf
� �

���2

bH�C2,�	��2d2,� � c	hQf

2�H . (13)

After dividing by ñ2, taking the limit and noting that 	n2 � ñ2	 � o(n), the first term of (13) becomes

lim
ñ23�

1

ñ2
�
i�Ñ2

wi��2di � c	h�H

2Qf
 �h�H

2Qf
� E�w� � E��2d � c 	 2d � c � 
2�  	�h�HQf

2
� E��2d � c 	 2d � c � 
2�.

(14)

For the second term of (13), we use again the fact that H is robust-under-partitioning (see Property 9 with �� �
�2d2,� � c for � � �2) and get
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lim
ñ23�

1

ñ2
�

���2

bH�C2,�	��2d2,� � c	hQf

2�H  �hQf

2�H lim
ñ23�

1

ñ2
�

���2

bH�C2,�	�2d2,� � c � 
H�hQf

2�H lim
ñ23�

1

ñ2
�

���2

	C2,�	�2d2,� � c

� 
H�hQf

2�H � E��2d � c 	 2d � c � 
2�. (15)

This last inequality follows from the fact that 	n2 � ñ2	 � o(n).
Now consider ring A3. We have

Z3  �
���3

�
i��3,�

z���2d3,�, w�B3,�,i		  �
���3

�
i��3,�

� �2d3,� � c	w�B3,�,i	

Q
�

hQ

2 � � �
i�Ñ3

�2di � c	wi

Q
� �hQ

2 � �
���3

bH�C3,�	.

Thus, using again the fact that H is robust-under-partitioning (see Property 9 with �� � 1 for � � �3), we get

lim
ñ33�

Z3

ñ3
� lim

ñ33�

1

ñ3
�
i�Ñ3

�2di � c	wi

Q
� �hQ

2 � lim
ñ33�

1

ñ3
�

���3

bH�C3,�	 � �2d�3 � c		f �
hQ
H

2
. (16)

The first term arises since n3 � ñ3 � o(n).
The result then follows by combining (12), (13), (14), (15), and (16) with (11). �

PROOF OF THEOREM 13: In what follows we have used the partitioning scheme with � � �H.

(a) According to Lemma 12, we need only determine the value of �H. To simplify the presentation, we let � �
def

2(2d � c) f/hQ. In addition, recall that � � 
/	 and �H � 
H/	. Let d � 0.

Case 1: 2d � c � 
1 � 
1 � 
1 � [0, Qh/4f ). This implies 0 � � � 1

2
and thus

c� H�d	

c� �d	


hQ	

2
� �2d � c	f
H

hQ	

2
� �2d � c	f




hQ	

2
�


H�hQ

2

hQ	

2
�


�hQ

2

�

1 �
�H

2

1 �
�

2

� �rH.

This last inequality follows by using rH � 2.

Case 2: 2d � c � 
3 � 
3 � 
3 � [Qh/f, �). This implies � � 2 and thus

c� H�d	

c� �d	


�2d � c		f �

HhQ

2

�2d � c		f �

hQ

2



�hQ	

2
�


HhQ

2

�hQ	

2
�


hQ

2

�

1 �
�H

2

1 �
�

2

� �rH.

This last inequality follows by using rH � 2.

We now consider the range 2d � c � 
2. This is separated into three cases:

Case 3: 2d � c � 
2 � 
1 � [Qh/4f, Qh/(2f�H)) implies 1

2
� � � 1/�H and

c� H�d	

c� �d	


hQ	

2
� �2d � c	f
H

�2	 � 
	� �2d � c	f �
hQ

2 � � 2�
 � 		��2d � c	hQf


1 � �
H/	

�2 � �	�� � 1	 � 2�2�� � 1	��
.

Taking the derivative of this ratio with respect to �, we see that the sign of the derivative is the same as the sign of

�2 � �	�
H

	
� 1� � �2�� � 1	�
H

	
�� �

1

��
� . (17)
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Note (17) is increasing in 
H/	. Then, by using the facts that � � 2 and 
H/	 � � � 1 and assuming that 
H/	 is
as low as �, we obtain that the sign of the derivative is the same as the sign of [(� � 1)/�2�][2�� � (2 � �)�2� �
2]. This means that the derivative is nonnegative if 2�� � (2 � �)�2� � 2 � 0. Investigation of this quadratic
inequality in �� reveals that the inequality holds for any � �

1

2
. Therefore the ratio is increasing in � as long as � �

1

2
. To make the ratio as large as possible, we let � � 1/�H. The ratio can then be written as

2�H

�2 � �	��H � 1	 � 2�2�� � 1	��H
. (18)

This expression will be analyzed below when we compare bounds.

Case 4: 2d � c � 
2 � 
2. Hence 2d � c � [Qh/(2f�H), Qh�H/(2f )] which implies 1/�H � � � �H. Simple
algebra results in

c� H�d	

c� �d	


2�
H	

�2	 � 
	��� � 1/��	 � 2�2�
 � 		
.

This ratio is clearly maximized at � � 1. By using � � 
/	, we get that the maximum value for this ratio in this range
is equal to

��

��2 � 1	�� � �2	
�rH. (19)

Investigation of this expression as a function of � shows that it is maximized at � � �2 and, therefore,

c� H�d	

c� �d	
�

��2

2�2��2 � 1	
�rH � 1.015�rH.

Case 5: 2d � c � 
2 � 
3. Hence 2d � c � [Qh�H/(2f ), Qh/f ) which implies �H � � � 2. Simple algebra
shows that

c� H�d	

c� �d	


�	 � 
H

�2	 � 
	�� � 1	 � 2�
 � 		�2�
.

Taking the derivative of this ratio with respect to � shows that the sign of the derivative is the same as the sign of the
expression (2	 � 
)(	 � 
H)�� � �2(
 � 	)(	� � 
H). Thus, the derivative is nonpositive if and only if
�2(
 � 	)(�	 � 
H) � (2	 � 
)(
H � 	)��. We will show that, for any � and �H � � � 2, this condition
is satisfied. Indeed, we will show that, for any � in this range, a stronger condition holds, namely, that �2(�	 � 
) �

(2	 � 
)��. Note that this last condition is stronger in view of the fact that 	 � 
 � 
H. We show this by
demonstrating that the quadratic function (in ��) given by �2	� � (2	 � 
)�� � �2
 is nonpositive. The
function’s only positive root is �2, proving that the quadratic function is nonpositive for any � in the range 0 � � �

2 and, in particular, for any �H � � � 2. As a result, we obtain that the ratio is decreasing in � in the relevant range
and therefore its maximum is obtained at � � �H. A simple calculation shows that at � � �H

c� H�d	

c� �d	
�

2�H

�2 � �	��H � 1	 � 2�2�� � 1	��H
.

This is exactly (18), i.e., the same as in Case 3.
It is possible to show (using simple algebra) that the bound in Cases 3 and 5 is dominated by the one in Case 4 [i.e.,

the expression in (18) is no more than (19)]. The bound in Cases 1 and 2 is also dominated by (19). Therefore, we obtain
that CFP(H) is an asymptotic 1.015�rH-approximation algorithm for the best FPP. (b) follows directly from (a) by
substituting rH � 1. �

The following technical Lemma is needed in the proof of Lemma B.

LEMMA 20:
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(a) Let Yk, for k � 1, 2, . . . , K, be independent and discrete random variables. Then, for any v � �, t � 0, and
any two vectors of constants � � (�1, �2, . . . , �K) and � � (�1, �2, . . . , �K):

P��
k�1

K

�k � 	Yk � �k	 � v�� e�vt � 
k�1

K

E�et�k�	Yk��k		.

(b) If, in addition, Yk is a Poisson(�k) random variable, for k � 1, . . . , K and 0 � �k � �� for k � 1, . . . , K,
then

P��
k�1

K

�k � 	Yk � �k	 � v�� 2K � e��e�� t�1��� t	�vt,

where � �
def

¥k�1
K �k.

PROOF: We first show that if Y is a discrete random variable, then for any v � �, � � �, and t � 0,

P�� � 	Y � �	 � v� � E�et���	Y��	�v		.

To see this, let 1( A) denote the indicator of A (1 if A is true, 0 otherwise) and let p(k) � P(Y � k):

P�� � 	Y � �	 � v	  �
�k : ��	k��	�v�

p�k	  �
k���

�

1���	k��	�v	p�k	 � �
k���

�

et���	k��	�v	p�k	  E�et���	k��	�v	�. (20)

The inequality follows since for all t � 0, et(�	k��	�v) � 0 and if � � 	k � �	 � v then et(� � 	k��	�v) � 1.
Now suppose that, for k � 1, . . . , K, Yk are independent discrete random variables with pi(m) � P[Yi � m]. Given

two vectors of constants � � (�1, �2, . . . , �K) and � � (�1, �2, . . . , �K), let v � � and let Mv denote all vectors
z � ( z1, z2, . . . , zK) of the infinite K-dimensional integer grid that satisfy ¥k�1

K �k � 	zk � �k	 � v. For t � 0,

P��
k�1

K

�k � 	Yk � �k	 � v� �
�1���

� �
�2���

�

· · · �
�K���

�

1���1,�2 . . . ,�K	�Mv�p1��1	p2��2	· · ·pK��K	

� �
�1���

� �
�2���

�

· · · �
�K���

�

et�¥k�1
K �k�	�k��k	�v	 

k�1

K

pk��k	  e�vt � �
�1���

� �
�2���

�

· · · �
�K���

� 
k�1

K

et�k	�k��k	pk��k	

 e�vt � 
k�1

K �
�k���

�

et�k	�k��k	pk��k	  e�vt � 
k�1

K

E�et�k	Yk��k	�. �see �20		

This proves part (a).
It remains to prove (b). Assume Yk is Poisson(�k) for k � 1, . . . , K and 0 � �k � �� . Note that if Y is a Poisson(�)

random variable, then, for any � � 0,

E�et�	Y��	� � E�et��Y��	 � et����Y	�  E�e�tY��t� � e�t���tY�  e��e�t�1	 � e�t�� � e��e�t��1	 � et��

� 2e��e�t�1��t	 �since e�u � u � eu � u, � u � 0.	 (21)

The second equality follows from the moment generating function of a Poisson random variable, that is E[euY] �
e�(eu�1).

Let � �
def

¥k�1
K �k. Now combining (21) and part (a), we get

P��
k�1

K

�k � 	Yk � �k	 � v�� e�vt � 
k�1

K

E�et�k�	Yk��k		 � e�vt � 
k�1

K

�2e�k�e�kt�1��kt		 � 2K � e��e�� t�1��� t	�vt. �

LEMMA 21: If a(n) � o(n), then
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lim
n3�

1

n �
��1

a�n	

��	n��C�	 � E�n��C�	�	  0 �a.s.	.

PROOF: For each � � 1, 2, . . . , a(n) let n� � 	C�	. For the proof, we use a Poissonization (as in [13]). Consider
a cluster � � {1, 2, . . . , a(n)}. Let �� � {�1

�, �2
�, . . . } be a sequence of independent {1, 2, . . . , I}-valued random

variables distributed according to P[�j
� � i] � pi �def P(w � �i) for 1 � i � I and j � 1. Let X(�,i)

n be the number
of occurrences of the value i among �1

�, �2
�, . . . , �n�

� , and thus X(�,i)
n is distributed as n� i(C�), for all i, �. Let N� be a

Poisson(n�) random variable independent of ��, and let Y(�,i)
n be the number of occurrences of the value i among �1

�,
�2

�, . . . , �N�

� . Clearly, Y(�,1)
n , Y(�,2)

n , . . . , Y(�,I)
n are independent Poisson random variables with means n�p1, n�p2, . . . ,

n�pI, and that X(�,1)
n , X(�,2)

n , . . . , X(�,I)
n is a multinomial (n�, p1, p2, . . . , pI) random vector.

Define, for all n � 1,

Un �
def 1

n �
��1

a�n	

�� �
i�1

I

	X��,i	
n � E�X��,i	

n �	 � 0.

Our goal is to show that limn3� Un � 0, almost surely. First note that E[X(�,i)
n ] � n�pi, for all i, �. We have (for all

i, �) 	X(�,i)
n � n�pi	 � 	X(�,i)

n � Y(�,i)
n 	 � 	Y(�,i)

n � n�pi	. Hence

Un �
1

n �
��1

a�n	

�� �
i�1

I

	X��,i	
n � Y��,i	

n 	 �
1

n �
��1

a�n	

�� �
i�1

I

	Y��,i	
n � n�pi	. (22)

Now pick �0 � (0, 1) such that �0 � 2(2� � c). Then, from (22),

P�Un � �0� � P�1

n �
��1

a�n	

�� �
i�1

I

	X��,i	
n � Y��,i	

n 	 �
�0

2�� P�1

n �
��1

a�n	

�� �
i�1

I

	Y��,i	
n � n�pi	 �

�0

2�. (23)

We start by considering the first term on the right-hand side of (23). For each � � 1, 2, . . . , a(n), note that ¥i�1
I

	X(�,i)
n � Y(�,i)

n 	 � 	N� � n�	. So

P�1

n �
��1

a�n	

�� �
i�1

I

	X��,i	
n � Y��,i	

n 	 �
�0

2� P�1

n �
��1

a�n	

��	N� � n�	 �
�0

2�
 P��

��1

a�n	

��	N� � n�	 �
n�0

2 �� 2a�n	 � en�e�� t�1��� t	�nt�0/2, (24)

for fixed t � 0. The last inequality holds as follows from Lemma 20, part (b), and ¥��1
a(n) n� � n.

Now consider the second term of the right-hand side of (23). Here

P�1

n �
��1

a�n	

�� �
i�1

I

	Y��,i	
n � n�pi	 �

�0

2� P��
��1

a�n	

�� �
i�1

I

	Y��,i	
n � n�pi	 �

n�0

2 �� 2a�n	I � en�e�� t�1��� t	�nt�0/2 (25)

for fixed t � 0. This last inequality follows from Lemma 20, part (b), and ¥��1
a(n) ¥i�1

I n�pi � n.
Finally combining (23) with (24) and (25):

P�Un � �0� � 2a�n	 � en�e�� t�1��� t	�nt�0/2 � 2a�n	I � en�e�� t�1��� t	�nt�0/2 � 2a�n	I�1 � en�e�� t�1��� t	�nt�0/2.

Now let t � �� �1ln(1 � �0/(2�� )) we get

P�Un � �0� � 2a�n	I�1 � en��0/�2�� 	�ln�1��0/�2�� 		��n�0ln�1��0/�2�� 		/�2�� 	  2a�n	I�1 � en��0/�2�� 	��1��0/�2�� 		ln�1��0/�2�� 		�.

Now using the fact that, @x � [0, 1], x � (1 � x)ln(1 � x) � �x2/[2(1 � x)], we get

P�Un � �0� � 2a�n	I�1 � e�n��0/�2�� 		2/�2�1��0/�2�� 		� � 2a�n	I�1 � e�n�0
2/�4�� �2�� �1	� �since �0 � 1	

� ea�n	I�1�n�0
2/�4�� �2�� �1	� �since e � 2	.
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Now let n0 be the smallest integer that satisfies n0 � [8�(2� � 1)] � [a(n0)I � 1]/�0
2. Then, @n � n0, we have P[Un � �0]

� e�n�0
2/�8�� �2�� �1	�. Thus, ¥n P(Un � �0) � ¥n e�n�0

2/�8�� �2�� �1	� � ��. Now invoking the Borel-Cantelli Lemma (see, e.g., [23]),
this implies that limn3� Un � 0 almost surely. Since Un � 0, this means limn3� Un � 0 almost surely. �
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