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Abstract

We consider the ordered cluster traveling salesman problem (OCTSP). In this problem, a vehicle starting and ending
at a given depot must visit a set of n points. The points are partitioned into K; K6n, prespeci�ed clusters. The vehicle
must �rst visit the points in cluster 1, then the points in cluster 2; : : : , and �nally the points in cluster K so that
the distance traveled is minimized. We present a 5

3 -approximation algorithm for this problem which runs in O(n3) time.
We show that our algorithm can also be applied to the path version of the OCTSP: the ordered cluster traveling salesman
path problem (OCTSPP). Here the (di�erent) starting and ending points of the vehicle may or may not be prespeci�ed.
For this problem, our algorithm is also a 5

3 -approximation algorithm. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Analysis of algorithms; Suboptimal algorithms; Transportation; Vehicle routing

1. Introduction

We consider the ordered cluster traveling salesman problem (OCTSP). In this problem, a vehicle starting
and ending at a given depot must visit a set of n points partitioned into K disjoint clusters so that points of
cluster k are visited prior to points of cluster k + 1, for k = 1; 2; : : : ; K − 1, and the total distance traveled is
minimum.
We assume a complete undirected graph G = (V; E) where K + 1 clusters denoted Ci⊆V , for each i =

0; 1; 2; : : : ; K , are prespeci�ed. We assume Ci ∩ Cj = ∅ for all 16i; j6K; i 6= j, and C0 consists of a single
node denoted by 0 ∈ V which we refer to as the depot, i.e., C0 = {0}. The ordered cluster TSP (OCTSP)
is the problem of determining the minimum length tour that starts and ends at the depot and visits each node
of V in such a way that all nodes of Ci are visited before any of the nodes in Ci+1, for i = 1; 2; : : : ; K − 1.
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Since this is a generalization of the TSP (the TSP is the OCTSP with K =1) the problem is NP-hard. In
the OCTSP, the clusters as well as the order of the clusters are considered prespeci�ed. We also consider the
path version of this same problem, the ordered cluster traveling salesman path problem (OCTSPP), as well
as the version where no depot is speci�ed and we seek only a closed tour through the clusters in the required
order.
The OCTSP is a variant of the free cluster TSP (FCTSP), where the cluster order is not prespeci�ed. In the

FCTSP, the problem is to simultaneously determine the optimal cluster order as well as the routing within and
between clusters. These models have well-known applications in automated warehouse routing (see [2,9]) and
production planning ([9]). Other applications involve service systems where customers have di�erent service
priorities (see [6]). The special case of K = 2 is often called the traveling salesman problem with Backhauls
(TSPB) (see [5]).
We seek polynomial-time approximation algorithms. An algorithm is an �-approximation algorithm if it

constructs a solution whose length is guaranteed to be within � of the length of an optimal solution. For
the TSP, a well-known 3

2 -approximation algorithm is Christo�des’ Heuristic [3]. Approximation algorithms
for the OCTSP include the 2-approximation O(n2) algorithm of Gendreau et al. [6]. For the special case of
K = 2, Gendreau et al. [5] provide a 3

2 -approximation algorithm. For the FCTSP, Arkin et al. [1] provide a
3.5-approximation algorithm, and recently, Guttmann-Beck et al. [7] developed a 2.75-approximation algorithm.
In this paper, we present a 5

3 -approximation algorithm for the OCTSP which runs in O(n3) time. It is
an adaptation of Christo�des’ Heuristic for the TSP. We also show that the same performance guarantee is
achieved when these ideas are applied to the OCTSPP.

2. Preliminaries

Let V =
⋃K
i=0 Ci and |V |= n+ 1. The distance function is given by: dist: V × V → R+ which is assumed

to be symmetric and satis�es the triangle inequality: ∀a; b; c ∈ V; dist(a; c)6dist(a; b) + dist(b; c).
Let OPT denote the cost of the optimal solution to the OCTSP and for any S ⊆E, let cost(S)≡∑
(v;w)∈S dist(v; w). We de�ne d ≡ maxKi=1max{dist(a; b): a; b ∈ Ci} as the maximum distance between any

two points in the same cluster, and d̂ to be the maximum distance between consecutive clusters, i.e., d̂ ≡
maxKi=0max{dist(a; b): a ∈ Ci; b ∈ Ci+1}, where CK+1 ≡ C0. Let m¿d and M ¿ (K + 1)(m+ d̂) be �xed.
We de�ne a set CON⊆E consisting of K + 1 edges that represent the shortest connections between

consecutive clusters. That is,

CON ≡ {(0; a1); (b1; a2); (b2; a3); : : : ; (bK−1; aK); (bK ; 0)};
where ai; bi ∈ Ci (for i = 1; 2; : : : ; K) are chosen so that CON is of minimum length.
In [6] the authors present a 2-approximation algorithm for the OCTSP which runs in O(n2) time. The idea

is to �rst build minimum spanning trees in each cluster. Let F be the forest made up of the union of these
K trees. Then the edges of CON are added to this graph. It is obvious that:

Property 2.1.

cost(F) + cost(CON)6OPT:

By doubling some edges of the spanning trees, a solution can be constructed whose length is at most 2 ·OPT.

In [5] the authors present a 3
2 -approximation O(n

3) algorithm for the special case of K = 2 by combining
the minimum spanning trees in each cluster with a speci�c minimum weight perfect matching over a subset
of the nodes. A solution is constructed from this set of edges. The worst-case bound is obtained by using
Property 2.1 and by showing that the cost of the matching is at most 12OPT.
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3. The OCTSP heuristic

We now present our heuristic. We assume without loss of generality that ai 6= bi, for i=1; 2; : : : ; K . If this
is not the case we add to Ci (i= 1; 2; : : : ; K), without a�ecting OPT, a dummy node at the same location. In
C0 we duplicate node 0 so that C0 = {0; 0′}, and let a0 = 0 and b0 = 0′.
The ordered cluster TSP (OCTSP) heuristic
Step 1: Construct a minimum spanning tree within each cluster Ci (i=0; 1; : : : ; K), and let F be the union

of these K + 1 trees.
Step 2: For i = 1; 2; : : : ; K , augment the graph by duplicating each node v = ai and v = bi that is of even

degree in F. For each duplicate v′ of v, add v′ to Ci and to V and add the edge (v; v′) of zero length to F.
Let Ṽ be the nodes in the resulting graph, and let C̃i be the nodes in cluster i, for i=0; 1; : : : ; K . Let F0 be
the resulting forest. De�ne O as the set of odd degree nodes in F0.
Step 3: De�ne a symmetric function dist′: Ṽ × Ṽ → R+ as follows:

dist′(v; w)

=



dist(v; w) if v; w ∈ C̃i for i = 1; 2; : : : ; K; or v= 0 and w ∈ C̃1 or v= 0′ and w ∈ C̃K ;
dist(v; w) + m if v ∈ C̃i and w ∈ C̃i+1 for i = 1; 2; : : : ; K − 1;
dist(v; w) +M otherwise:

Note dist′(0; 0′) =M . Find a minimum weight perfect matching on O using the weight function dist′. Denote
by MATCH∗ the set of edges of this matching.
Step 4: Combine the edges of F0 and MATCH∗. Construct a feasible tour H from this set of edges.
Note that the graph augmentation performed in Step 2 clearly does not a�ect the optimal solution value

OPT.
By the de�nitions of m and M and the fact that |O∩ C̃i| is even and at least 2 for each i=0; 1; : : : ; K; MATCH∗

will never match 0 to 0′ or two nodes in (di�erent) non-consecutive clusters. Thus, MATCH∗ contains ex-
actly one edge connecting 0 to C̃1, one edge connecting C̃i to C̃i+1 for i = 1; 2; : : : ; K − 1, and one edge
connecting C̃K to 0′. Then it is clear that combining F0 and MATCH∗ in Step 4 results in an Eulerian and
connected graph. Therefore, H has exactly one edge connecting 0 to C̃1, one edge connecting C̃i to C̃i+1 for
i = 1; 2; : : : ; K − 1, and one edge connecting C̃K to 0′.
The complexity of the OCTSP Heuristic consists of the time required to construct the minimum spanning

trees (O(n2), see [10]) and the time required to �nd one perfect matching (O(n3), see [10]). Therefore, the
complexity is O(n3).

4. Analysis of the worst-case performance

In this section, we prove the 5
3 bound. We �rst require the following two lemmata.

De�ne MATCH0 to be the set of edges of a minimum weight perfect matching on O\{0; 0′} using the edge
weights dist′. Add the edge (0; 0′) to MATCH0. Since m and M are large enough, this matching includes
only edges connecting nodes of the same cluster. Recall cost(S) ≡∑(v;w)∈S dist(v; w). Then:

Lemma 4.1.

cost(MATCH∗) + cost(MATCH0)6OPT:

Proof. Consider an optimal tour (on the augmented graph) and focus on the ordering this imposes on the
set of nodes O. Node 0 is the starting point and node 0′ is the ending point. Observe that the number of
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nodes in O within each cluster is even. Similarly to [3], decompose the optimal tour on this subset into two
di�erent matchings by taking every other arc. Let M1 and M2 be these two matchings. Since |O ∩ C̃i| is
even for i=0; 1; : : : ; K , one of the matchings, say M1, contains only edges connecting nodes within the same
cluster. The other matching M2 contains K+1 edges connecting the clusters, in addition to a number of edges
connecting nodes within the same cluster. More precisely, M2 contains one edge connecting each C̃i to C̃i+1
for i = 0; 1; : : : ; K − 1 and one edge connecting C̃K to C̃0.
Clearly cost(MATCH0)6cost(M1) and cost(MATCH∗)6cost(M2) giving the desired result.

Lemma 4.2.

cost(MATCH∗)6 1
2 (cost(MATCH

0) + cost(F0)) + cost(CON):

Proof. For each cluster C̃i, for i = 1; 2; : : : ; K , let Qi ≡ (O ∩ C̃i) \ {ai; bi}. If Qi is non-empty then each of
its nodes is of odd degree and |Qi| is even, for i = 1; 2; : : : ; K . Find a minimum weight perfect matching on
the nodes of

⋃K
i=1 Qi using the weight function dist

′. This matching clearly matches only nodes within the
same cluster. Let Mi be the edges of the matching that are contained in cluster i, for i = 1; 2; : : : ; K . Also
de�ne CON′ = CON ∪ {(bK ; 0′)} \ {(bK ; 0)}.
Now observe that the set of edges (

⋃K
i=1M

i) ∪ CON′ represents the edges of a feasible matching of the
type constructed in Step 3 of the OCTSP heuristic. Therefore, since MATCH∗ represents the edges of the
cheapest such matching:

cost(MATCH∗)6 cost

((
K⋃
i=1

Mi

)
∪ CON′

)

=
K∑
i=1

cost(Mi) + cost(CON′): (1)

For any U ⊆ Ṽ , let TSP(U )⊆ Ẽ be the edges of an optimal traveling salesman tour through U . The optimal
traveling salesman tour on Qi de�nes two matchings on Qi by taking every other arc. Hence we derive, for
each i = 1; 2; : : : ; K :

cost(Mi)6 1
2 cost(TSP(Qi)):

This implies
K∑
i=1

cost(Mi)6
1
2

K∑
i=1

cost(TSP(Qi))6
1
2

K∑
i=1

cost(TSP(C̃i)):

Consider the set of edges in (F0 ∪MATCH0)∩ (C̃i × C̃i), for i=1; 2; : : : ; K . This is exactly the set of edges
that would be used to construct a traveling salesman tour in C̃i using Christo�des’ Heuristic (see [3]). That is,
for each cluster, it consists of a minimal spanning tree plus the edges of a minimal weight perfect matching
between odd degree nodes. Therefore,

K∑
i=1

cost(TSP(C̃i))6cost(F0 ∪MATCH0);

which implies
K∑
i=1

cost(Mi)6
1
2
(cost(F0) + cost(MATCH0)):

This, combined with Eq. (1) and the fact that cost(CON) = cost(CON′), gives the desired result.
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We now prove the main result.

Theorem 4.3.

cost(H)6 5
3OPT:

Proof. By construction, the feasible tour H has the following property:

cost(H)6cost(MATCH∗) + cost(F0): (2)

We consider two cases.
Case 1: cost(MATCH∗)62 cost(MATCH0). In this case, Lemma 4.1 implies that cost(MATCH∗)6 2

3OPT.
The result then follows directly from Eq. (2) and Property 2.1.
Case 2: cost(MATCH∗)¿ 2 cost(MATCH0). In this case, Lemma 4.1 implies that cost(MATCH0)6 1

3OPT.
Combined with Lemma 4.2, Eq. (2) implies that

cost(H)6 1
2 cost(MATCH

0) + 3
2cost(F

0) + cost(CON)

6 1
6OPT +

3
2OPT (by Property 2:1)

giving the desired result.

For the special case of K=2, the Eulerian graph constructed by our algorithm (in Step 4) is no longer than
the Eulerian graph constructed by the algorithm of [5]. Therefore, it is possible to show that our algorithm is
also a 3

2 -approximation algorithm for this case. One can show the bound is tight by applying our algorithm
to the example of [4].
For the case K¿3, we show the tightness of the bound by adapting the example from Hoogeveen [8].

Consider the graph in Figure 1:
In Fig. 1, nodes of the same cluster share the same subscript, i.e., cluster i is made up of the six nodes:

{ri; si; ti; ui; vi; wi}. The depot is replicated on both sides of the graph (but they are at the same physical
location). Assume 0¡�.1, and the distance between any two nodes can be found by �nding the shortest
path in the graph. An optimal solution visits each cluster in the order ri → si → ti → ui → vi → wi. The
length of this solution is 3K + (6K + 1)�.
Our algorithm �rst computes minimum spanning trees in each cluster. Say for each cluster these are the

edges: {(ri; si); (si; ti); (si; vi); (vi; ui); (vi; wi)}. Then cost(F0) = (3 + 2�)K . Note O = V ∪ {0; 0′}. An optimal
matching of the nodes of O uses the edges (0; s1); (r1; t1); (u1; w1); (v1; s2), etc. This has total cost 2K+(3K+
1)�. The solution constructed by the algorithm has each cluster visited in the order: si → ri → ti → vi →

Fig. 1. Example proving the tightness of the 5
3 bound.
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ui → wi. The length of this solution is 5K + (5K +1)�. The worst-case ratio can be made arbitrarily close to
5
3 by choosing � small enough.

Remark 1. In the case where a closed tour (with no depot) is saught, our heuristic can be adapted to �nd a
solution whose length is guaranteed to be within 5

3 of the length of the optimal solution. Select an arbitrary
cluster and run the OCTSP heuristic by choosing, one at a time, each node of the cluster as a dummy depot.
By choosing the cluster with the least number of nodes, we ensure a running time of O(n3minKi=1|Ci|)=O(n4).

Remark 2. In the case where the number of clusters K is �xed (independent of n), our algorithm can be
used in a polynomial-time 5

3 -approximation algorithm for the FCTSP. Simply apply our algorithm to each of
the K!=2 = O(1) di�erent permutations of the clusters. The complexity is O(n3).

5. The OCTSPP

We now show how these same ideas can be applied to the OCTSPP yielding an identical performance
guarantee of 5

3 . In the OCTSPP, the objective is to �nd a minimum length path visiting all nodes, with
the restriction that cluster 1 be visited before cluster 2, cluster 2 before cluster 3, etc. We consider the
case where neither the starting nor ending point is prespeci�ed, the other cases can be transformed into this
case by adding additional clusters.
First de�ne a dummy depot 0∈V and de�ne dist(0; 0′) = 0; dist(0; v) = 0 for v∈ Ṽ and dist(0′; v) = 0

for v ∈ Ṽ . (Note that this violates the triangle inequality, but a careful reading of the proof shows that
5
3 -approximation is still guaranteed.) The algorithm then proceeds exactly as in Section 3. If 0 (0

′) is matched
to a ∈ C̃1 (b ∈ C̃K), then a (b) is the starting (ending) point. It is possible, as above, to show that this path
is at most 53 times the length of an optimal path. The example of Fig. 1, with the depot rede�ned as the �rst
as well as the last cluster, proves the tightness of the bound.
Finally, we remark that this algorithm can also be applied to the traveling salesman path problem (TSPP).

In this problem, we seek a path visiting all nodes of a set V . When starting and ending points are not both
prespeci�ed, an approach similar to Christo�des’ heuristic can be applied guaranteeing a 3

2 -approximation
(this was also noted in [8]). For the case when both starting and ending points are prespeci�ed, we can
apply the path-version of the OCTSP heuristic on K = 3; C1 = {a}; C2 = V\{a; b}, and C3 = {b} yielding
a 5
3 -approximation algorithm. The example of [8] shows that these bounds are tight. We note that for the

TSPP our heuristic is slightly di�erent from the 5
3 -approximation algorithm of [8]. The main di�erence in the

methods is that [8] constructs a spanning tree on all the nodes while our algorithm excludes the endpoints.
Also, the endpoints do not play any special role in the matching of [8], while we force them to be matched
to dummy nodes (in C0). The proofs are quite di�erent, in particular, [8] shows that the minimum spanning
tree on all nodes augmented with the optimal traveling salesman path can be decomposed into three perfect
matchings on the odd degree nodes of the tree. This is in contrast to our Lemma 4.2 which forms the basis
of our proof and is a di�erent result.
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