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We study a discrete problem of scheduling activities of three types under the constraint
that at most a single activity can be scheduled to any one period. Applications of such a
model are the scheduling of maintenance service to machines and multi-item replenishment
of stock. We assume that the cost associated with any given type of activity increases linearly
with the number of periods since the last execution of this type. The problem is to specify
at which periods to execute each of the activity types in order to minimize the long-run
average cost per period. We analyze various forms of optimal solution which may occur,
relating them to the combination of the three machine cost constants. Some cases remain
unsolved by this method and for these we develop a heuristic whose worst case performance
is no more than 3.33% from the optimal.
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1. Introduction

We consider a situation in which the performance of a machine deteriorates over
time until it receives a maintenance service, and just one machine may be serviced at
a time. There are three machines, M|, M, and M3, to be serviced and each with the
same service time of one time unit. We consider a linear structure for the cost of
operating each machine: Associated with each machine, M;, there is a cost constant,
a;. The cost of operating M; during a period in which it is serviced is 0, and the cost
of operating it in the jth period after its last service is ja,. There is no cost associated
with maintenance service itself. The problem is to find an optimal policy specifying
at which periods to service each of the machines in order to minimize the long-run
average operating cost.
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We stated the model in terms of “machines™ and “servicing” for convenience,
but it may be applied equally well in other contexts. One such context is that of multi-
item stock replenishment, in which at most one item may be replenished in any one
time period. Demand is assumed to be constant, g; say for the ith item, and the only
variable cost is a linear holding cost for each of the items. Let 4; denote the unit holding
cost per time period for the ith item. The above model then holds for the infinite
horizon, discrete time case by considering time to run in the opposite direction and
substituting a; by h;q;.

The general case of m machines was investigated in an earlier paper by the
authors [2]. There, it was shown that there is always a cyclic optimal solution, con-
sisting of repetitions of a subsequence, and a transformation of the problem into one
of computing a minimum mean length cycle in a graph is also given. However, the
size of the graph grows with the size of the data in a non-polynomial way. The earlier
paper also developed an approximation algorithm with a bounded performance guar-
antee and another heuristic based on a greedy rule that works well in practice. To date
it is not known whether the problem considered in [2] is NP-hard.

In [3], Bar Noy et al. obtain a better performance guarantee for the problem
considered in [2]. They also consider a more general problem in which several
machines can be serviced during any given period and there is a machine dependent
service cost.

A variation of our problem is that in which the cost of operating a M, during its
maintenance is @; and at the jth period after the last maintenance this cost is (j + 1)a;.
There is no difference between this variation and the one we consider in terms of
optimal solutions, since it merely means increasing the cost per period by >a;. How-
ever, this increase in cost decreases the ratio between the cost of any pair of solutions
and thus better performance guarantees can be obtained (see remark 6.4 in [2] and the
broadcast disk application in [3]).

Other generalizations of the model include a general convex cost function, dif-
ferent lengths of times to service different machines and service time being dependent
upon time since last service The properties of an optimal policy for the case of two
machines are described in [1]. Related problems are treated in [4-6,8,9,11,13]. In
[9], there are bounds on the length of intervals between consecutive services to each
machine. In [11,13], the service intervals are fixed and the problem is to determine
the number of servers needed to form a feasible schedule.

In this paper, our aim is to solve some cases of the three-machine problem to
optimality and to deal with the remainder by means of a heuristic for which we present
a worst-case performance bound. For convenience, we number the machines so that
a| 2 a, 2 as.

This paper is organized as follows. In section 2, we present some general prop-
erties of an optimal solution for any number of machines and the form of an optimal
solution to the two machine problem, which will be required later in the paper. The
structure of an optimal solution for the three-machine problem in which the two
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machines with smallest cost constants, M, and M;, are serviced consecutively, is
described in section 3. Such optimal solutions occur when a,/a, is small, in particular
less than 2. The other cases which arise when a,/a, < 6 are then identified in section 4
and an optimal solution prescribed for each case. This leaves the remaining case of
ay/a, = 6, for which a heuristic is presented in section 5. We show that the worst-case
performance of the heuristic is no more than 3.33% from the optimal.

2. Preliminaries and properties of optimal solutions

Our problem consists of three machines, M;, M, and M5. The cost of operating
M; in the jth period after the last maintenance of that machine is ja,, fori=1,2, 3 and
j=20.

A policy P to the m-machine problem is a sequence, iy, i,,..., where i, € {1,...,m}
for k=1, 2,... denotes the machine scheduled for service during the kth period. A
policy is said to be cyclic if it consists of repetitions of a finite sequence iy,...,ir.
Such a sequence is said to generate the policy. The minimum length of a generating
sequence is denoted by T(P), and any set of 7(P) consecutive elements of the sequence
is called a basic cycle of P. A basic cycle of an optimal cyclic solution is referred to as
an optimal basic cycle. For a given machine M;, we shall refer to the time between
consecutive services to M; as the length of this i-interval.

Consider for example a cyclic service sequence with a basic cycle 1123. During
a basic cycle, M, is associated with a single interval of length 1 and an interval of
length 3. M, and M; are associated with intervals of length 4. Therefore, the average
cost of the policy is

(a1 +2a1) + (ap + 24y +3a7) + (623 — 2as + 3a3) _ 3a; + 6a, + 6613
4 B 4 '

Without loss of generality, we assume that a; =2 a, = ... 2 a,,. Moreover, we scale
the a; values so that a,, = 1. For a policy P, let C(¢, P) denote the average cost over
periods 1,...,t. Clearly, we can restrict ourselves to policies with bounded costs and
therefore we can define for each such policy P the lim sup of its sequence of average
costs,

CP) = Tim C(, P).
t-> o0

A policy is optimal if it minimizes C(P). We let C”* denote the average cost of an
optimal policy.

We now quote some results from [2]. The first is a fundamental property of
optimal solutions to this problem, which will enable us to restrict our attention to
cyclic sequences, the second describes the solution for the two machine problem, and
the third gives a lower bound on the solution value.

Theorem 2.1. There exists an optimal cyclic solution.
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Lemma 2.2. For the two-machine problem, with a; > a,, there is an optimal cyclic
solution in which M; is serviced exactly once in a basic cycle and there exists an
optimal basic cycle of length 7,, which is the unique integer satisfying

(T2 - 1)T2 < 2(11/612 < Tz(Tz + 1).

The minimum average cost is given by

a(ty — 1 a
Gp= BB, &
2

Lemma 2.3. A lower bound on the cost of an optimal solution for the m-machine
problem is given by "

Y i - as.

i=2

In particular, for the 3-machine problem,

N
C 2a4+ 2.

Building upon theorem 2.1, we now develop some further properties of an opti-
mal sequence for the general m-machine problem. We shall use C(S) to denote the
average cost of a cyclic solution with a basic cycle § and | S| to denote the length of S.

Lemma 2.4. There exists an optimal basic cycle in which no subsequence which
contains at least one service to each machine occurs more than once.

Proof. By contradiction. Take an optimal basic cycle S of shortest length. Suppose
that S; is a subsequence containing at least one service to each machine, which occurs
twice in S. Then § is of the form S35, 5,5, for some, possibly empty, subsequences S;
and S,. Subsequences §y5; and $,95, each contain all the machine indices and are
therefore basic cycles to solutions to the problem. Moreover, the average cost of S,

[ SoSil C(So81) + | S0521 C(S05>)
| S| ’

is a weighted average of C(5,S,) and C(S5yS5,), and thus

C(S) =

min(C(SeS)), ((SpS2)) < C(S) = C".
Thus, one of $485; and S35, is a basic cycle shorter than S. ]

Lemma 2.5. An optimal basic cycle § has the following properties:
() Extending S by k periods by inserting extra services to any machine increases
the total cost of the basic cycle by at least kC.
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(i) Removing from Sk services cannot reduce the total cost of the basic cycle by
more than kC”.

Proof. For a solution generated by a basic cycle P, denote by K(P) the total cost during
a basic cycle of this solution. Let T denote the length of the given optimal basic cycle
S. Let §’ denote a basic cycle of length T + k derived from § as described in (i). Since
S is optimal, we know that K(S")/(T + k) 2 K(S)/T = C* and hence K(S')- K(S) >
kC”, as claimed. Similarly, if §* denotes a basic cycle derived from § in (ii), we have
C*=K(S)/T £ K(S")/(T - k) and hence K(S) - K(§") < kC*. [

From now on we focus on the three-machine problem.

Lemma 2.6. In an optimal basic cycle, a 2-interval contains at most two 3’s.

Proof. By contradiction. Suppose that there is an optimal basic cycle S in which M,
is serviced in periods t; and ¢, and M; is serviced in periods ty, 5, t5 in between, i.e.
to <t < ty< t3< t. Without loss of generality, we may take f, to be 0. Construct a new
sequence S’ by replacing the service to M5 in period #, by a service to M,. As a
result of this exchange, the total cost due to M, is not changed, while the total cost due
to M, during T(S) periods is reduced by a,t,(t - t,) and that of Mj; is increased by
azty(t; — t,). Comparing the average cost of S’ to that of S, we obtain

ah(t —h) —anh(Bz—n) _ Ght—n)—aht—1-1)

C(§)-CS) = >
(8) - C(S) T0S) T0S)
_ G t(ay—an(t—1-1) > ayty > 0,
T(S)
The first inequality follows from t; <t~ 1 and the last from a, > 0 and ¢, > 2. This
contradicts the optimality of S. O

Lemma 2.7. An optimal basic cycle does not contain either of the following sub-
sequences: (i) 22, (ii) 33.

Proof. (i) Suppose otherwise and let S denote an optimal basic cycle containing sub-
sequence 22. Let §” denote the basic cycle got from § by removing one of these 2’s.
The length of both the 1-interval and the 3-interval spanning 22 in § is at least 3 and
each is reduced by 1 in the transformation of the sequence to §’. The decrease in the
total cost is therefore at least 2a; + 2a3. But this is greater than a; + a, + a5, the average
cost of the cyclic solution with basic cycle 123 and hence greater than the optimal
average cost, C*, a contradiction to lemma part (ii).

(ii) Follows by similar argument to (i), but with the roles of machines M, and M,
interchanged. U
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3. Structure of optimal solutions containing subsequence 32

In this section, we explore instances of the 3-machine problem in which it is best
to leave the most costly machine, M;, unserviced for more than one period consecu-
tively. First we show that M, will not be without service for more than two consecutive
periods and that during such a two-period gap, each of the two other machines will be
serviced. We then explore the structure of an optimal solution which contains the
subsequence 1321 (or 1231). This leads to a description of the structure and cost of an
optimal solution to the 3-machine problem containing the subsequence 32 (or 23)
which is given in theorems 3.2 and 3.3.

The following lemma allows us to exclude certain subsequences from consider-
ation within an optimal cyclic solution containing a 32 (or a 23).

It will be convenient to adopt the following notation. For a given subsequence S,
let [; (r;) denote the length of the i-interval to the left (right) of the leftmost (right-
most) service to M; in S and let w, denote 251:11 i =d(d—1)/2 so that the total cost of
maintenance for machine M; attributed to an i-interval of length d is wya;.

Lemma 3.1. For any problem, there exist optimal cyclic policies that do not contain
the following subsequences: (i) 323, (ii) 232, (iii) 31321, (iv) 11321,

Proof. (i) Consider an optimal basic cycle S containing 323 and look for a contra-
diction. Compare its total cost with that of the one obtained by inserting 21, to give
32123. The cost of 323 excluding the first two periods is at least 3a; + ap, while
for 32123 it is exactly 3a; + 2a, + 5a;. The total cost has been increased by at most
a, + 5a;, which is no more than 2(a, + 2a;) and hence no greater than 2C” by lemma
2.3. Thus, basic cycle § does not satisfy condition (i) of lemma 2.5, producing a
contradiction.

(ii) Consider the case when an optimal basic cycle that does not contain 323 (see
part (i) of this lemma) does contain the subsequence 232. Then it cannot extend to a
3 and according to lemma 2.7, it cannot extend to a 2, thus it must extend to 12321
within an optimal basic cycle.

Observe that we can assume that /; < 3 for the following reasons: if /; > 4, then
the basic cycle extends to xyz12321 where x, y, and z each take the values 2 or 3.
Since repeats of either 2 or 3 may be excluded by lemma 2.7, this leaves either 323,
which must occur if {; > 4, or 232. Our assumption that the basic cycle does not contain
323 means that we are left with the case 123212321, which we may exclude since it
cannot be better than 2131.

For the subsequence 12321, [, > 2. We first claim that [, < 3. Suppose that [, > 3,
then swap this 2 and the adjacent 1 to get 21321. Note that this swap does not affect
the cycle length and the cost due to M;. Let [; be defined as above for the sequence
12321. Then the total costs of the affected M, and M, cycles are: (w;, + wy)a; +
(wy, + wy)a, for 12321 and (wy, 41 + wi)a; + (wy, + wy)a, for 21321, The swap there-
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fore costs (/| — 3)a; + (3 — I;)a,. Since [; <3 and [, > 3, this gives an improvement,
which is a contradiction.

If [, = 3, then we have either 12312321 or 2112321. The former subsequence
contains two occurrences of subsequence 123. By lemma 2.4, we can exclude the
subsequence since there exists a shorter optimal basic cycle. In the latter sequence,
2112321, swapping the second 1 by the second 2 will strictly improve the cost.

This leaves the case when [, =2 and [, =2 or 3, since /; #/, — 1 and /; £3. When
I,=2 and [; = 2, we have subsequence 1212321 for which the cost in each period,
excluding the first three, is a; + (/5 — 1)as, 2a, + a,, 3a, + as, a, + 2a;. The correspond-
ing costs for the sequence 121321 obtained by omitting a 2 are a; + 2a,, 2a; + as,
a, + 2as. Therefore, the transformation reduces the total cost by at least 3a; — a, + 4as;,
which is greater than a; + a, + a3, an upper bound on the optimal value obtained by
costing the basic cycle 123, contradicting lemma 2.5 part (ii).

If [, =2 and [, = 3, the sequence 12321 extends either to 12212321, contradicting
lemma 2.7, or to 13212321, giving a repetition of 321, contradicting lemma 2.4.

(iii) The subsequence 31321 may not be extended to the left by a 3 from lemma
2.7. We consider the two cases of the subsequence being extended to the left by a 1
and by a 2 separately.

Suppose that an optimal sequence contains 131321, Then /, 2 5 and r; 2 3. We
may exclude the case ry =3 (i.e. subsequence 1313213) by comparison with 1321213,
since (wj, — wy,_p — wy)ay 2 (ws— w3 — wy)as is implied by [, 2 5. Thus, r, 2/, by
comparison with 131231, since (wj,+ w,)a; +(wy +w,)as < (W1 + wy,4)a; +
(w3 + w,,_1)as implies (I — 1 — ry)a; <(3 — r3)as, which combined with r; > 3 gives
(I — 1 — ry) < 0. Note that from our subsequence 131321 and our observations that
[, 25, r,z1,and ry > 3, we have that the subsequence must be extended to the right
by 1 and we obtain 1313211. But these properties imply that 1313121 is no more
expensive than 1313211 (since wya; + (wy, + w,)a; < 2wpa; + (W41 + W, )@, implies
a; < (ly—ry+ Da, £ a, <ay, which gives a contradiction). Thus, when the sub-
sequence 131321 appears in an optimal sequence, we may replace it by 131312,

This leaves the case 231321. Consider how this subsequence may extend to the
right. Sequence 2313212 cannot be optimal by comparison with 2312312, Consider
the sequence 2313211 and compare it to 231213 1. The total cost of the intervals which
are affected is wia, + (wy+ w, )a; + (W, + w,)a; for 2313211, while 2312131 has
total cost 2wpay + (W3 + w1 )a; + (Wy + w,. 5)as. Changing to 2312131 therefore gives
savings of a; + (3 —rya,+ (2r3—3 - 5)a; which is 2 a; + (3 = ry)a, as ry>3,1.e. a
saving of at least (a; — a,) + (4 — ry)a,. On the other hand, the sequence 2313121 gives
savings of at least (a) — a,) + (r, ~4)a, as it has a total cost of 2wa, + (Ws + w,,_1)a,
associated with M, and M,. We may therefore exclude all but the case of a; = a, and
r, = 4. But then we could renumber the machines by interchanging 1 and 2 and apply
lemma 2.7 to exclude this case. Now all cases have been excluded other than 2313213,
But the service immediately to the left of this sequence must be a 1 and therefore the
sequence must extend to 312313213 applying the above argument to the sequence in
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reverse. 312313213 cannot be extended to the left or right by 3 according to lemma
3.1. Also, it cannot be extended to the left (right) by 2 to 2312313213 (3123132132)
as the subsequence 231 (132) repeats itself, see lemma 2.4. Thus, the extension is
13123132131, This case may be excluded by comparison with 13212312131. To
see this, observe that C(13123132131) < C(13212312131) implies 2w; + 2wy)a; +
(wy, + wpa, + Qws + wypas < 2wy + 2wyla; + (wy, | + wy + wi)a, + 2wyas, which in
turn implies ([, — 1 + 6 — 1 — 3)a, < (12 — 7)a; so that (I, + 1)a, < Sas, and in view of
the fact that /, > 4, we get a contradiction.

(iv) Suppose that an optimal sequence contains the subsequence 11321. The 2-
and 3-intervals have the following properties: [, 2 4, I3 >3, and r; > I3 by comparison
with the subsequence 13121 (since C(11321) < C(13121) implies wyay + (wy, + w,, Jaz <
woa; + (wy,_| + w,,;1)as). Thus, the next machine to be serviced in the sequence cannot
be 3. Moreover, it cannot be machine 2 (i.e. 113212) as the decrease in cost obtained
by swapping the adjacent 3 and 2 to get 112312 is at least ([, —3)a, + (r;— I3 — 1)as,
which is positive (since [, >4, ry> I3, a, > 0 and a3 > 0), and hence the swap gives an
improvement. This leaves the case 113211.

For 113211 by comparison with costs for 112311, we obtain ([; - 1 — rya, £
(I3 = r3 + Das from (wy, + w, )a, + (W, + w,)as S (W, + W, )ar + (W4 + Wy, _y)as.
Now using the property ry > I3, we get [, <rp+ 1 (since (I, — 1 — rp)a, (3 —r3+ 1)
a3 <ay<a, =l —1-ry<1). But comparison with costs for 113121 reveals
that ry <y (as (wy+ws)a; +(wy, +w,)a; <2w,ay + (wyyy + wy,_)a, implies that
(lh —ry+ Day,—a; > 0). Thus, I, =r, + 1 and 2a, > a;. Now look at the extension of
the subsequence 113211 to the left. /; <3 by lemma 2.7 and parts (i) and (ii) of this
lemma. If /|, = 3, we have either 132113211 or 123113211. The former cannot be
optimal since it represents the sequence generated by 3211 (from part (i) of lemma
2.4) which is always more costly than the one generated by 1312. For the latter
sequence 123113211, I, = 5, thus r, = 4. Therefore, this sequence cannot be extended
to the right by 2 as there will be two consecutive 2’s. Also, it cannot be extended to
the right by 3 as there will be a repetition of 1132, see lemma 2.4. Thus, this sequence
must be extended as follows: 12311321112. In this sequence, r3 = 6. It is easy to check
that 12311231112 is less expensive.

This leaves the case when /; < 2. To get a contradiction as required, it is therefore
sufficient to show that the improvement obtained by changing to the subsequence
213121 is at least (1 -1))a; +2a, (since a;<2a,). Recall that r, + 1 =1,. The
immediately relevant costs of M| and M, in the original sequence are a,;(w; + w;)
and ay(wj, + w,,), while in the other sequence, they are a(w;, +w;+ w,) and
ay(wy,_3 + wy+ w,, ). The decrease in cost due to the change is therefore (1 —1,)a; +
(41, — 14)a, since the difference fora,isl, - 1+ L -2+ 5L, -3-6+r,—1=4l,-14
and the difference for a; is /| — 1 — 1 + 3 =—/; + 1. The fact that [, > 4 now completes
the proof of our claim. O

Theorem 3.2. Machines M, and M; need be serviced consecutively in an optimal
basic cycle only when there are as many services to machine M; as to M,.
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Moreover, in this case machine M5 is serviced at regular intervals, T5 say, and an
optimal basic cycle has one of two forms depending on whether 13 is even or odd,

namely:
321...21

or its inverse or

3212...123121...21
or its inverse.

Proof. Take an optimal basic cycle with 32 init, ... yc 32fe... say. Then both o and
B are 1, since all other possibilities are excluded by lemma 2.7 and parts (i) and (ii) of
lemma 3.1. Moreover, y cannot be 3 or 1 from part (iii) and (iv) of lemma 3.1. Thus,
v is 2 and hence & is either 3 or 1 by lemma 2.7. If § is 3, then the sequence is 321321e
and 321 is a basic cycle, by lemma 2.4, satisfying the theorem. By a similar argument,
the theorem holds with basic cycle 213 if € = 3 and we therefore need only examine
those solutions which contain a subsequence of the form 1213215,3 for some sub-
sequence S, of length at least 1 containing no 3.

Note also that S, cannot contain a 22. Subsequence 1S, does not contain a 11,
since otherwise the whole sequence could be rearranged by moving one of the 1’s to
between the 3 and the 2 to produce a cheaper (or same cost) schedule. Thus, 15, must
consist of alternating 1’s and 2’s.

If §, ends with a 1, then there are two occurrences of 213 in the sequence and
hence the sequence 3218, is itself the basic cycle of the sequence by lemma 2.4. It is
also of the first form described in the theorem. If this is not the case, then S, ends in
a 2 and we may depict the sequence as 35,13212...123, where 5, is a subsequence
containing no 3 and ending with 12. Consider the lengths of the 3-intervals, /5 and r3,
between consecutive 3’s. If they are not equal, then it would incur no extra cost to
swap the middle 3 with either the 1 to its left if /3 > r; > 4, or the 2 to its right if
I3 < r3, implying two occurrences of 123 in the sequence, contradicting lemma 2.4.
Thus, we may assume that /5 = rs.

If S, starts with a 2, then there are two occurrences of 321 in the sequence, contra-
dicting lemma 2.4. Thus, S, must start with a 1. We show that S; does not contain two
consecutive 1’s. If there are any 1 triples, 111, then we may swapa 1112 with a 1212
in the right-hand part of the cycle without altering the cost of the schedule. But we
have just shown that no such subsequence may occur on the right-hand side, giving
the required contradiction. Similarly, if there are two 2112’s, then we may put them
together and exchange them with 2121212 on the right at no extra cost, again giving
a contradiction. This leaves the case of just one occurrence of a 11. But in this case, /5
must be odd, which gives the required contradiction since /5 and r;3 are equal. It follows
that S, must contain as many 2’s as 1’s and must begin with a 12. Consider the sequence
35,132...(12)3: lemma 2.7 and lemma 3.1 part (ii) imply that this sequence continues
on the right with 1. Lemma 3.1 parts (iii) and (iv) applied on the reverse subsequence
of 1231 at the end of 35,132...(12)31 imply that this sequence continues on the right
with 2. Therefore, we know that the sequence 35,132...(12)3 continues on the right
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with 12. The subsequence 312 at the beginning and at the end of our sequence indicate
that we have a complete basic cycle. Moreover, this sequence is of the second form,
completing the proof. O

The description of an optimal solution for the case when M, and M5 are scheduled
consecutively is completed by theorem 3.3. We first need to establish an observation
that will be used in the proof of the theorem. Consider the function g =(8/n)+n
defined for positive integers n. Let g be the extension of g to non-negative real
numbers. Thus, g =(6/x) + x for x € R*. Note that g is convex with a minimum at
x* = 0. From [12], the unique integer n* satisfying the following inequalities is an
integer optimizer of g: ,’n*(n* -DH<x < ,’n*(n* +1).

Recall that 13, the optimal regular interval length for M;, exists from theorem
3.2.

Theorem 3.3. The optimal solution which contains 32 has basic cycle of length 7= 14
or T=217 as 15 is odd or even, respectively, where the value of 15 is given by the
unique integer ¢ which satisfies

tt =1 < 3(a + ax)/ a3 < 1t + 1).

The optimal average cost is (a; + ay — a3)/2 + 3(a; + a,)/2t + tas/2.

Proof. If 15 is odd, then a basic cycle is of the form 321...21, the basic cycle is of
length k = 1§ and has average cost (a; + ay)(wy(k —3)/2 + w3)/k + azwi/k. If 15 is
even, then a basic cycle is of form 321...2312...13 and is of length T =215 and has
average cost (a; + ap)(wp(T — 6 )/2 + 2w3)/T + 2azwy»/7. This expression is the same
as the one above with T =2k, and is equal to (a; + a; — a3)/2 + 3(a, + ay)/ 2k + kas/2.
The continuous minimizer of the above function is ,/3(0_1 + @) ay. ]

4. Optimal solutions for a,/a, <6

In the previous section, we analyzed the special case in which the subsequence
32 (or 23) appears in a basic cycle. We now extend the range of basic cycles for which
we solve the problem to optimality. In particular, we enumerate all the cases which
may arise for relatively small values of a,/a,, namely a,/a, <6.

Let d; denote the length of the interval in between two specific occurrences of i
in a sequence.

Theorem 4.1. If a;/a, < 6, then an optimal basic cycle is of one of the following
forms:

(i) it contains subsequence 32 (or 23) and is of a form described in theorem 3.2; or
else



S. Anily et al. / Scheduling maintenance services 385

(ii) it has precisely one occurrence of 3, which occurs in subsequence 21312, and
intervals 21...12 in one of the following combinations:

(a) all 212;

(b) one 2112 and the rest 212;

(c) two 212 and the rest 2112;

(d) one 212 and the rest 2112;

(e) all2112;

(f) one 21112 and the rest 2112; or
(g) two 21112 and the rest 2112.

Proof. Suppose that there is no 32 (or 23) in a basic cycle, then we should consider
basic cycles with a 131...121 (or equivalently 121...131) with at least one 1 in between
the 2 and 3.

If the cycle contains a subsequence 131...121 with at least two 1’s in between
the 2 and the 3, then compare it, on the one hand, with the subsequence obtained by
omitting one of the 1’s in between the 2 and the 3, and on the other hand, with the
subsequence obtained by inserting a 2 before the 1 preceding 2. Using lemma 2.5, we

et %
g a(n—-D+ayl— 1)< C < ay - ay(ly —2) + agrs,

implying
az2ah-3)-az a2l - 4) 2 6a,.

The last inequality follows from the fact that [, 2 5 and is in contradiction to our
assumption that a;/a, < 6. Thus, there is no need for more than one 1 in between the
3 and the 2. Applying the same argument to the reverse subsequence 121...131 implies
that for a;/a, < 6, 2 and 3 are separated by at most a single 1. Thus, any 2-interval
that contains a single 3 must be of the form 21312 and any 2-interval containing more
than one 3 must be of the form 12131...3121.

Suppose that an optimal solution contains a 2-interval 1213...13121. By lemma
2.6, the interval does not contain a third 3. Let d5 (d,) denote the length of the 3-
interval (2-interval) in the sequence. The total savings due to omitting the subsequence
starting at the 1 following the first 3 and ending at the second 3, i.e. a subsequence of
length d5 of the form 1...3 is

al + %(Wdz - wdl“dﬁ ) + a3wd3
=ar+ (W0 — Wa) + ;wy,
=qa + a2d3(d3 + 7)/2 + a3d3(d3 - 1)/2

By lemma 2.5, this is no greater than d;C” and hence no greater than d;C(2131) =
ds(2a; + 6a,+ 6as)/4. Thus,

a(ds —2) 2 axds(ds + 4) + asds (d5 — 4) > apds.

But this inequality has no solutions for a;/a, < 6, giving a contradiction.
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Therefore, when a;/a, < 6, all occurrences of 3 occur either next to a 2 or within
a subsequence 21312. The former case, corresponding to part (i) of the theorem, is
covered by theorem 3.2. We therefore concentrate on the latter case. That there is only
one occurrence of 3 in a basic cycle as claimed in part (ii) now follows from lemma
2.4. 1t is left to consider the form of such a basic cycle. Observe that 2-intervals within
a basic cycle may occur in any order without affecting the cost of the schedule.

Suppose that an optimal solution contains the subsequence 21...12 with at least
two 1's and no 3’s in between the two occurrences of 2. Then by comparison with the
sequences 21...212 and 21...2 obtained by inserting a 2 and deleting a 1, respectively,
we get (dy — 1)a, + (dy—1)as < C'< ay —(dy - 2)a, + dyas, which implies a;/a, 2
2d, — 4.

Thus, when a;/a,< 2, we have d, <2 and hence d, = 2 for intervals which do
not contain a 3. This is the combination described in part (ii) (a).

When a;/a; <3, we have d, <3 for 2-intervals which do not contain a 3. But we
have no more than one such interval with d, = 3 since comparing 2112112 and 2121212
gives a saving, as 2wsa, + waa; > 3waa, + 2wha; when a; < 3a,, corresponding to cases
(a) or (b).

For 3 £ a;/a, < 4, 2-intervals with no 3 have d, < 3. Moreover, since two 2-
intervals of length 3 are not more costly than three of length 2, there are at most two
2-intervals with dy =2, i.e. 212, and the rest are 2112 (which demonstrates items (c),
(d), (e) of part (ii) of the theorem).

Moreover, when a;/a, > 4, a basic cycle cannot contain two 2-intervals of length
2 as a single 2-interval of length 4 is as cheap, since in this case wsa, £ 2wya, + q
and hence C(21112) < C(21212).

A basic cycle will not contain one 2-interval of length 2 and another with no 3,
of length 4, since two 2-intervals of length 3 are always cheaper. Moreover, since
a,/ay < 6, 4wsa; + 3a; < 3wya, + 2a; and hence C(2112112112112) <C(2111211121112).
It follows that four 2-intervals of length 3 are cheaper than three 2-intervals with no
3, each of length 4. This demonstrates when the cases in items (f) and (g) of part (ii)
of the theorem arise. O

Remark 4.2. The categories in theorem 4.1 are not mutually exclusive.

Remark 4.3. The above proof gives more information about the relationship between
the value of a;/a, and each type of basic cycle that appears in the statement of the
theorem.

Recall the function g = (8/n) + n defined for positive integers n. As before, we

let g be the extension of g to non-negative real numbers. Thus, g =(8/x) + x for
x €R" is minimized by x* = f6. Also, for any y 20,

gy X)) =g(xX Yy = g(x")/e(y),
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where e(y) =2/(y+y™") is quasi-concave with a maximum at y = 1. Now, suppose
that one wants to minimize g(») under the constraint that » € L, where L is a subset of
the positive integer numbers. By using the above propoerties of the function e, the
above problem can be solved by finding the member of / which is the closer to x* to
the left of x* (if any) and to the right of x* (if any). If [ is non-empty, then we get one
or two values which are candidates as minimizers of the given problem. If there is
only one candidate, it means that either x* is larger (smaller) than all the numbers in
L or x* € L. In either of these cases, the candidate is the minimizer. Otherwise, we
have two values, one to each side of x*. Denote these values by »n, and n,. The best of
the two candidates is the one that maximizes e(x*/n). From [12], the unique integer n*
satisfying the following inequalities is an integer optimizer of g: Jn*(n" — 1) < x* <
,In*(n* + 1). We are now ready to prove the following theorem.

Theorem 4.4. The optimal basic cycles of the types described in part (ii) of theorem
4.1 are of length 1, where ¢ is the closest integer to T* in the set L, where ©* and L are
defined below:

(@ 1"=J8az/az and L ={4+2k : k =0,1,2,..);
() "= (la;, —ay)/a; and L ={7+2k :k=0,1,2,.};
() "= 8a;/3az and L =8 +3k :k=0,1,2,.);
(d) "= J2(a + @ )/a; and L ={6+3k: k=0,1,2,..};
() t"= J&(a ¥ 3a;)/3a, and L={4+3k: k=0,1,2,..};

() 1= [2a +12a,)/Gay) and L= 8 + 3k : k = 0,1,2,..}; or
(@ 1" =JT2a/a; and L = (12 +3k: k= 0,1,2..).

Proof. The average cost functions, C(1), for the cases are, respectively:
@ (+a-a)/2+4a:/1 +Taa/2,

® (a+a,—a3)/2 +(11a, —a))/21 +1a4/2;

© (/34 ay— a3/2) + day/3T +1a3/2;

(d) (a/3+ ay — a3/2) + (a1 + @2)/T + Tas/2;

() (a/3+ ap — a3/2) + (a1 +3a2)2/37 +Tas/2;

) (a/3+ ap — a3/2) + (a1 +12a3) /31T + Ta3/2; and

(@) (a/3+ a — a3/2)+ 6a/T +Taz/2.

These costs are minimized by the values T* given in the theorem. The feasible lengths
in each case are computed by considering the structure of the respective sequence.
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Since each of the cost functions is convex the minimum feasible cost will be given by
one of the integers in L on either side of 1* and the proof is completed by the obser-
vation preceding this theorem. O

Corollary 4.5. For a,/a, < 6, we may determine the optimal solution in constant time.

5. A heuristic and its performance

We now describe a heuristic for finding a solution whose value is within 3.33%
of the optimal. In many cases, we may use the results proved above to find the optimal
solution itself. For the other cases, we develop a heuristic based on the following
relaxation of the problem into independent 2-machine problems.

Let R2 denote the relaxation of the problem in which we allow machines M, and
M, to be serviced simultaneously. However, we do not relax the condition on the total
number of services and therefore every time machines M, and M; are serviced simul-
taneously, there must be a corresponding gap with no service somewhere in the
schedule. We cost maintenance for machines M, and M; in the usual way but for
machine M,, a cost of a, is incurred with each service to machines M, and M;. In this
way, the positioning of the gaps in the maintenance schedule becomes immaterial and
consecutive services of machines M, and M, incur no more cost for maintenance of
machine M than separate services.

Let C(R2) denote the average reduced cost of an optimal solution to the relaxed
problem R2. This cost provides a lower bound to the average cost of the original
problem, i.e. C(R2) < C". Let T, and Cy; denote the basic cycle length and the average
cost of an optimal solution to the 2-machine problem involving M; and M,.

Lemma 5.1. An optimal solution to R2 involves regular services to machine M, at
interval T,, for i =2, 3, and C(R2) = Cy, + C5.

Proof. Under R2, M, and M; are independent of each other. For a given M;, it must be
decided at what periods to schedule it, taking into account a fixed cost of a; per
scheduled period plus the maintenance costs associated with it. However, we have
seen that the 2-machine problem involving M, and M, has a solution in which M; is
never served in two consecutive periods. Hence, the actual cost structure is as in the
relaxed problem and the minimum average cost is again C;. R2 is therefore equivalent
to the amalgamation of 2 independent 2-machine problems for M; and M, with average
minimum cost C, + Cy3. O

Algorithm 5.2 (3-machine heuristic, H3)

A. If al/a2 <6.
Find the optimal solution as described in theorems 4.1 and 4.4.



S. Anily et al. / Scheduling maintenance services 389

B. Ifa/a,26.
Step 1. Construct a basic cycle (possibly not feasible), S,, which is optimal for the
relaxation R2:

* Schedule services to M5 at regular intervals of length T starting at period 1.
s Schedule services to Mj at regular intervals of length T, starting at period 3.

» Schedule services to machine M, in all the gaps except the ones before a
period in which M, and Mj are serviced simultaneously.

Step 2. Modify S, to make a feasible schedule S5:

e In periods where M, and M; are both serviced simultaneously, move the
service to M, one period to the left and exchange the service to M5 with
the service to M, on its right.

e Where 231 occurs, swap the 3 with the 1 to its right.
* Where 132 occurs, swap the 3 with the 1 to its left.

Let C(H3) denote the cost of the solution produced by heuristic H3.

Lemma 5.3. When a,/a, 2 6,
C(H3) < C(R2) + 2 + a3)/T,75.

Proof. By construction, the average cost of the basic cycle, $,, developed in step 1 is
C(R2). Moreover, §, contains at most one occurrence of 2 and 3 overlapping, one of
12311 and one of 11321, and it is of length T = lcm(T,,T5). Substituting 6 <a,/a, in
lemma 2.2, we conclude that T, > 4. We distinguish between two cases:

(@) lem(T2,T3) =T,T3. In this case, T = T,T3. The schedule may be made feasible
by moving the 2 and the 3 which overlap each one place at a cost of a, + a;. Moreover,
modifying 1132 and 2311 to 1312 and 2131 adds a cost of at most 2a;5 < a, + a3. We
have therefore produced a schedule with average cost of 2(a, + a3)/T,T; above that
of the relaxed problem.

(b) lem(T2,T3) < T3,T5. In this case, there exist integers p > 1 and 15, T3 such that
T, = pt/ fori=2,3 and gcd(t}, 14) = 1. Thus, T = T,T3/p = pti15.

We first show that the basic cycle generated in step B1 cannot contain more than
one of the three possible occurrences that require a modification by step B2. If 2 and
3 overlap in the schedule, then there exist integers k; = 1 and [, > 1 such that 1 + kT3
=3+ ;T,, i.e., k;T3 — [T, = 2, which implies p = 2. If the schedule contains 11321,
then there exist integers k, > 1 and [, > 1 such that 1 + (1 + k,T3) =3 + LT, i.e., kT3
— 1,7, = 1, which contradicts the assumption that p > 1. If the schedule contains 12311,
then there exist integers k3 > 1 and /3 > 1 such that =1 + (1 + k3T3) =3 + 515, i.e.
kyT3 — I5T, = 3, implying that p = 3.

Thus, the modification to the schedule in step B2 incurs an additional cost only
if p =2 or 3. In the former case, 7= T,T3/2 and the additional cost is a, + a3, result-
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ing in an increase in the average cost of the schedule relative to the relaxed problem
of (ay + a3)/T = 2(a, + a3)/T,75. In the latter case, T = T,T3/3 and the cost associated
with the modification of the schedule is a;. Thus, the increase in the average cost of
S5 relative to Sy is a3/ T =3a3/T2T3 < 2(ay + a3)/ 115 O

Theorem 5.4.

CH3) _ L

C 30

Proof. When a,/a, < 6, heuristic H3 determines an optimal solution.
When a,/a, 2 6, from the observation that C(R2) < C" and from lemma 5.3,

C(H3) < C(H3) <1+ 2Aar + a3)
T Ry T QR
Using the value of C(R2) from lemma 5.1, the inequality (t; - )/2 < ay/a; for
i=2,3from lemma 2.2, and f3 > fz, we obtain the following inequalities:

T,T3C(R2) = Ts(a + T2(T2 — Dan/2) +To(ay + T3(T3 — Day/2)
2 ToT3ay(Ty — 1) + ToT33 (T3 — 1)
2 (m + a3)T3(T, — D Ts

Therefore, C(H3)/C < 1 +2/(T, — 1)0T,T3. Now T, 24, since 6 <a;/a, < T5(T5 +1)/2,
and we may exclude the case T, =T3 = 4, since then H3 gives the optimal solution.
Thus, the largest possible value of the above expression which may occur is

2 I
l+55==17;. O
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