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In this article we consider a version of the vehicle-routing problem (VRP): A fleet of iden- 
tical capacitated vehicles serves a system of one warehouse and N customers of two types 
dispersed in the plane. Customers may require deliveries from the warehouse, back hauls to 
the warehouse, or both. The objective is to design a set of routes of minimum total length 
to serve all customers, without violating the capacity restriction of the vehicles along the 
routes. The capacity restriction here, in contrast to the VRP without back hauls is compli- 
cated because amount of capacity used depends on the order the customers are visited along 
the routes. The problem is NP-hard. We develop a lower bound on the optimal total cost 
and a heuristic solution for the problem. The routes generated by the heuristic are such that 
the back-haul customers are served only after terminating service to the delivery customers. 
However, the heuristic is shown to converge to the optimal solution, under mildprobabilis- 
tic conditions, as fast as N-0.5. The complexity of the heuristic, as well as the computation 
of the lower bound, is U ( N ’ )  if all customers have unit demand size and O ( N 3  log N) 
otherwise, independently of the demand sizes. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Improvement of a physical distribution system may have crucial consequences for a 
business’s performance. In certain sectors of the economy, transportation costs amount to 
a fifth (lumber and wood products) or even a quarter (petroleum, stone, clay, and glass 
products) of the average sales dollar; see [ 201. A careful design of the distribution system 
may thus yield significant cost savings to the company, usually by exploiting joint pro- 
curement possibilities to satisfy the needs of multiple locations. This potential for savings 
arises in particular in systems where goods are distributed through a fleet of vehicles com- 
bining visits to distinct locations into efficient routes. 

The problem we study here deals with a single-period, single-warehouse distribution 
system with two sets of customers dispersed in the plane. The first set, denoted by D, con- 
sists of delivery customers that require a delivery of goods from the warehouse, whereas the 
second set, denoted by B ,  consists of back-haul customers that need to deliver goods from 
their location to the warehouse. It is possible for a customer to require both a delivery and a 
back haul. (Note that the literature distinguishes between back-haul customers and pickup 
customers: A pickup customer may deliver goods to any of the delivery customers and the 
warehouse. In this research we restrict ourselves to delivery and back-haul customers only.) 
In order to avoid excessive notation we will assume a single-commodity problem, and in 
Section 5 we explain the modifications needed for the multicommodity case. Each cus- 
tomer is characterized by its geographic location and its requirement size for either delivery 
or back haul. The company’s fleet of vehicles is used to deliver and back haul stock. All 
vehicles are assumed to have identical capacities. We use the Euclidean metric as the dis- 
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tance function between distinct locations. The objective is to design a set of routes of min- 
imum total length that serves all customers, each route emanating from the warehouse, 
stopping at customers for delivery/back-haul purposes, and finally terminating at the ware- 
house without violating the vehicle’s capacity restriction along the route. References [ 51 
and [ 161 present some heuristics that are shown to have bounded worst-case error ratios for 
the single-vehicle version of this problem, which is called the traveling-salesman problem with 
delivery and back haul (TSPDB ) . We call the multiple-vehicle version of the problem studied 
here the vehicle-routing problem with delivery and back-haul options ( VRPDB) . 

The VRPDB has many real-life applications. References [ 71 and [ 91 describe some a p  
plications and review some solution techniques. The problem is faced, for example, by 
parcel services such as UPS: trucks load parcels at the warehouse and on their way they 
unload parcels at addressees and collect others from senders. All parcels collected must 
go through the warehouse before being delivered to the addressees. Another application, 
described in [ 91, deals with the grocery industry in the US: This industry has recognized 
the cost-cutting potential of servicing back-haul points on predominantly delivery routes. 
As the authors report, the industry has saved upwards of $160 million a year since 1982 on 
its distribution costs by allowing vehicles to collect large volumes of inbound material on 
their delivery routes. The motivation to study the problem in [ 161 comes from a project 
that provides summer vacations of two weeks for inner-city underprivileged children at 
volunteer families living out of town. The transportation service is made by buses and is 
confined to a limited number of days when some children start their vacation and others 
end theirs. 

There is a vast literature on the vehicle-routing problem (VRP) with or without addi- 
tional constraints. It is easy to see that if D = 4 or B = 4 then the VRPDB reduces to the 
VRP, proving that the problem is NP-hard (see [ 131). As such, exact solution methods 
become impractical when the problem size increases, leading to the need for heuristic so- 
lution methods whose running time is polynomial in the problem size. In recent years, 
much interest has arisen in heuristics whose effectiveness can be analyzed analytically. 
Several criteria have been adopted to gauge the effectiveness or accuracy of a heuristic 
method. The types of analyses that we will be using in this study include (a) worst-case 
performance analysis, which examines the maximum possible deviation from optimality 
of a given heuristic; (b) probabilistic analysis, which examines the average performance of 
a given heuristic under certain assumptions on the probability distribution of the data set; 
and (c) asymptotic analysis, which is closely related to probabilistic analysis, and estab- 
lishes either the worst-case or the average performance of a given heuristic when the num- 
ber of elements in the data set is sufficiently large. When the data set is random we say that 
heuristic H is asymptotic optimal if under certain probability distribution conditions on 
the generation of the elements in the data set the cost of the solution produced by H con- 
vepes to the optimal cost when the size of the data set increases to infinity. A recent survey 
[ 121 describes the analytical analysis of several variants of integrated vehicle routing and 
inventory distribution problems. 

To date no polynomial-time heuristic for the VRP with a tight worst-case bound has 
been found. Most of the heuristics that have been proposed for the problem are tested by 
standard empirical measures based on numerical experiments. A class of extremely simple 
heuristics for the TSP and the VRP are the regional partitioning procedures that exploit 
the geometrical setting of the problem. These methods work as follows: The plane is parti- 
tioned into regions, traveling-salesman tours are determined in each of the regions, and the 
resulting graph is subsequently transformed into a single tour (TSP) or a set of routes 
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( VRP) . All of the proposed partitioning schemes have a complexity bound of O( N log N) 
( see, for example, [ 14, 1 5 ] ) , and are thus capable of solving extremely large instances. The 
analysis of a variety of regional partitioning schemes shows that the shape of the regions 
may have a substantial effect on the quality of the heuristic. For the VRP, it has been 
recognized that the radial cost, that is, the length of those segments in the routes that con- 
nect the depot to the customers, grows linearly with the number of customers, where the 
local cost (the length of the segments connecting between customers) is sublinear. A num- 
ber of asymptotically optimal regional partitioning schemes have been proposed by care- 
fully controlling the radial cost of the routes. In reality pure regional partitioning schemes 
are rarely used; when designing a set of routes the road network is considered and obviously 
not the Euclidean metric. However, the analysis of regional partitioning schemes helps in 
gaining insight about the relations among the various components in the cost function. 
This insight may be used in the solution of an overall distribution system, at the level of the 
regions’ design (for example, in [ 8 ] ). 

A11 of the solution techniques for the VRPDB (see [ 91) either restrict themselves to the 
case that back haul is performed after all deliveries are unloaded or to the case where the 
percentage of back-haul customers is relatively low. In this article we consider the general 
such problem. We develop a lower-bound expression for the optimal total cost over all 
feasible policies; according to this lower bound we learn that the main components of the 
cost for a general setting is the radial cost of the routes as well as the length of the segments 
that connect delivery customers to back-haul customers. In order to control these two 
components simultaneously we design a regional partitioning scheme of a specific struc- 
ture, as explained below, and we show that it converges to the lower bound as the size of 
the data set increases. According to the proposed heuristic, an asymptotic optimal regional 
partitioning scheme for the VRP should be applied twice, once on the set B and once on 
the set D. The requirement size of each of the regions generated (except possibly one region 
of each type) should equal the vehicle’s capacity. If B and D consist of the same number of 
regions, each route will serve one region of each type. The heuristic uses a matching algo- 
rithm to determine how to pair the regions in a minimum cost. If the number of regions of 
each type is not the same, then the matching algorithm pairs the maximum possible num- 
ber of regions, and the unpaired regions are served by themselves. A vehicle that serves a 
pair of regions will travel from the depot to the delivery region, serve all customers there, 
and then travel to the back-haul region to serve all of its customers there. Within each of 
the regions the vehicle follows a traveling-salesman tour. It should be noted that the rule of 
servicing first the delivery customers and then the back-haul customers on the route mini- 
mizes the length of segments that connect between customers of different types, which is 
required for proving the asymptotic optimality of the heuristic. However, as an alternative, 
the algoiithm proposed in [ 51 for the TSPDB with a bounded worst-case ratio of 2, may be 
used for finding the routes. The algorithm in [ 51 does not limit itself to serve first all deliv- 
ery customers on the route. According to [ 141, using a bounded worst-case algorithm for 
designing the routes in an asymptotic optimal regional partitioning scheme does maintain 
the asymptotic optimality property. In many applications, especially when the product is 
large or heavy, an additional constraint may exist that requires the delivery customers on 
the route to be served first, and then the back-haul customers. Reference [6] considers 
some variants of the TSP with a vehicle of infinite capacity, and where the set of customers 
is partitioned into a number of different types. The article compares the optimal solutions 
of( a)  the unconstrained problem and (b) when imposing a constraint that customers ofthe 
same type must be served consecutively. It is easy to see that for the TSPDB the additional 
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constraint to serve first all delivery customers, might increase the optimal solution by a 
factor of 2. To appreciate the strength of our heuristic, note that even though the solution 
generated satisfies the requirement that the delivery customers on the route are served prior 
to all back-haul customers, it converges to a lower bound for the unconstrained problem! 

The article is organized as follows: In Section 2 we introduce the notation and prelimi- 
naries; We start the analysis, with the special case of identical requirement sizes. In Section 
3 we present the proposed heuristic, which we call the circular regional partitioning with 
delivery and back haul (CRPDB ) heuristic, and which is based on a regional partitioning 
procedure (RPP). In Section 4 we present simple lower bounds on the optimal solution of 
VRPDB. In Section 5 we bound from above the cost generated by CRPDB heuristic and 
explain the modifications required for general requirement sizes as well as for the multi- 
commodity problem. Section 6 concludes the article with worst-case, probabilistic, and 
asymptotic analyses of CRPDB heuristic. 

2. NOTATION, PRELIMINARIES, AND RELATED LITERATURE 

D( B )  = the set of delivery (back haul) customers; 
d, = the demand size of delivery customer i, i E D; 
bi = the amount to be loaded at back-haul customer i, i E B; 
( d, and b, are assumed to be nonnegative integers). 

Note that if location i serves both as a delivery and a back-haul customer, we can repre- 
sent this customer as a pair of customers, one in B and the other in D. Observe that it is 
not possible to ignore customers whose delivery requirement is identical to the back-haul 
requirement, since such locations cannot use their own stock to cover their demand. 

No = CiED d; ( N B  = CiEB b; )  total amount to be unloaded (loaded) at delivery 
(back-haul) customers. 
N = D U B the total set of customers. We also use N to denote the total number 
of customers. 
We denote the warehouse by 0. 
N o  = N U  { 0 } , the set of customers and the warehouse. 
(x, , yi ) = the Euclidean coordinates of customer i E N assuming that the ware- 
house is located at the origin of the plane. 
d( i, j )  = the distance between customer i and customerj, i , j  E N o .  
r, = the radial distance of customer i;  that is, ri = d( 0, i) - 
Let r,,, = max { ri : i E N }  , the maximum radial distance over all customers. 

We assume that r,,, is bounded from above by a constant R . Later on we discuss possible 
relaxations of this assumption. 

We let r= ( CiED diri + C i E B  b j r j ) / ( N D  + N B ) ,  the weighted average radial distance of 
the customers where the weight of a customer equals its relative requirement size. 

Given any set of routes R = { R, ,  R2,  . . . , R L }  where R e ,  C = 1, . . . , L is a traveling- 
salesman tour (TST) via the warehouse and a subset of customers, we let l( R )  denote the 
total length of the routes in R.  Let also, q = the vehicle’s capacity. 

In order to ensure feasibility in the VRPDB we require that the company owns at least 
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rn = max( r C i E D  d i / q l ,  rC iEB bi/ql } vehicles if each of the routes is to be served by a 
separate vehicle. 

For any given data set applied on a set of customers N ,  let VopT(N)  represent its mini- 
mum cost. If heuristic H i s  applied to solve the problem, the cost generated is denoted by 
V H (  N). The relative error of heuristic H when applied to a set Nis given by 

H is said to be asymptotically optimal if for N randomly generated customers limN+a 
e H ( N )  = o almost surely. 

As noted in Section 1, we start the analysis with the case that all delivery and back-haul 
sizes are one unit. In Section 5 we discuss the general requirement size case. Thus, assume 
fornowthatd, =b,  = 1 , V i E D U B .  

The proposed heuristic uses the optimal solution to a minimum cost assignment prob- 
lem: Let A = (A,) be a square cost matrix of dimension n 2 ,  where A,, represents the cost of 
assigning person i to jobj. Let X,, = 1 if person i is assigned to jobj,  and X ,  = 0, otherwise. 
The respective assignment problem is defined as follows: 

Minimize C C AI ,JXI ,J ,  
n n  

I = l  J = I  

n 

s.t. C x;j = 1, 

C xi,j = 1, 

j E  (1,. . . , n > ,  

i €  (1,. . . , n > ,  

i= I 
n 

j =  I 

X , , j ~ { O ,  I } ,  V i , j .  

Let f( A ) be the optimal objective function value of the above assignment problem. The 
optimal assignment can be solved by the Hungarian method in O( n 3 )  operations; see [ 18, 
Chap. I ] .  

In what follows when referring to the assignment problem between the sets D and B ,  we 
mean the following problem: if No 2 N B  ( ND < N B ) ,  then the customers in set D ( B )  are 
assigned to the customers in B ( D )  and to additional No - NB ( N B  - No) dummy back- 
haul (delivery) customers in set B’ (D’ ) ,  which are located at the origin of the plane, where 
the warehouse is located. If a delivery customerj is assigned to back-haul customer i the 
associated assignment cost is d( i ,  j ) ,  if delivery (back-haul) customer i is assigned to a 
dummy back-haul (delivery) customer the associated assignment cost is r,-the radial dis- 
tance of customer i. Note that at most one of the sets D’ and B‘ is nonempty and both are 
empty only if No = NB. Let the square matrix M = (M;, j )  be a / D  U D’/X /B  U B’I = 
(max { N,, NB 1 )2  matrix where each of the matrix’s rows (columns) represents a delivery 
(back-haul) customer, possibly a dummy one, and M,,j denotes the distance between de- 
livery customer i ,  i E D U D’ and back-haul customerj,j E B U B’. Thus, 

d( i ,  j ) ,  if i E D and j E B, 

if i E D and j E  B’, 

if i E D‘ and j E B. 

M .  1.1 . =  y .  

rj 
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By definition of the matrix M it is clear that all its components are nonnegative and 
bounded from above by the constant 2 R . In the sequel we will see thatf( M )  plays a central 
role in the analysis of the proposed heuristic. 

In the following sections we propose an asymptotic optimal heuristic under general con- 
ditions on the probability distribution of the customers’ locations. An asymptotic optimal 
regional partitioning procedure (RPP) for the capacitated VRP ( B  = 4 )  under general 
probability distribution on the customers’ locations is proposed in [ 141. In order to un- 
derstand our method we quickly review the main idea and results in [ 141 and explain the 
difficulties in modifying that heuristic for the VRPDB while maintaining the asymptotic 
optimality property. The main contribution of [ 141 is that under a careful design of the 
plane’s partitioning into regions, the cost due to the total radial distance traveled by the 
vehicles dominates the local cost; that is, the cost due to traveling from one customer to 
another. Suppose N customers are dispersed in the plane, each having a unit demand size. 
Because each vehicle can serve up to q customers, the minimum possible number of vehi- 
cles required is m = rN/ql. A simple argument shows that ( 2 N / q ) F =  2 C ri / q  is a lower 
bound on the optimal solution. In view of this lower bound the authors develop a circular 
RPP (CRPP) that partitions the plane first into equal sectors and then by radial cuts into 
m regions, each consisting of q customers (except possibly one that may contain less than 
q customers). Each region is assigned to a single vehicle. In each region an optimal TST 
via its customers and the warehouse should be found. For small values of q it may be 
possible to compute optimal tours. Alternatively, one can use any traveling-salesman heu- 
ristic with a bounded worst-case performance. In either case, the total cost of the routes 
obtained can be shown to converge to the lower bound when the number of customers 
tends to infinity under general conditions on the probability distribution of the customers’ 
locations. These articles’ results can be easily generalized to the nonidentical demand case. 

The main features of the CRPP that guarantee convergence to the lower bound are as 
follows: 

1. The minimum possible number of vehicles is used in order to save nonneces- 
sary expenses due to radial distances traveled by the vehicles. 

2. The CRPP partitions the plane such that the ratio between the total radial cost 
incurred by the vehicles and the lower bound converges to 1 when Nincreases. 

3. The area of most regions is small, because all N customers are dispersed in a 
bounded circle around the warehouse and the number of generated regions is 
linear in N .  As a result the total local cost of the routes is sublinear in N .  

Suppose that one imitates the above scheme for the VRPDB; then the following consider- 
ations are in place: In order for a vehicle to work at full capacity, it needs to deliver q units 
and to back-haul q units. Thus, the minimum number of vehicles required is rn = 
max { rND/ 41, INB/ q1 } . The analogue to the lower bound in [ 141, if all delivery and back- 
haul sizes were one unit, is 2(NB + ND)/(2q)r= CIEBUD r i / q .  As in [14], this value is a 
lower bound on the total radial distance traveled by the vehicles. In order to achieve this 
bound each vehicle should serve both delivery and back-haul customers. In the following, 
we present an instance for the VRPDB for which any solution with total radial cost of the 
same order as the above lower bound, has a significant local cost that is also of linear order 
in N :  Consider the case where No = NB and all delivery customers are located at a single 
location that is far away from all back-haul customers that are also located at a single 
location. Clearly, if a vehicle works at full capacity, that is, unloads q units and loads q 
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units, then it will have to cross a long local way, causing the total local cost to be linear in 
N .  On the other hand, if we wish to save on local costs by assigning vehicles either to 
delivery customers or to back-haul customers but not to both, then the number of vehicles 
required might be twice as large as if the vehicles work at full capacity. This, in turn, will 
cause the total radial cost to be at least as twice as large as the above lower bound. Thus, in 
either case the analogue to the lower bound in [ 141 cannot converge to the optimal solution 
under general probability distribution of the customers’ locations. Therefore, an alterna- 
tive lower bound that takes into account the local cost traveled by the vehicles on their way 
from delivery to back-haul customers is desired. In the next section we describe the pro- 
posed heuristic. 

3. THE HEURISTIC: CIRCULAR REGIONAL PARTITIONING WITH 
DELIVERY AND BACK HAUL (CRPDB) 

The proposed heuristic is based on the Modified CRPP ( MCRPP) as described in [ 31, 
which is similar to the CRPP proposed in [ 141. We prefer to use the MCRPP as we did in 
[ 1, 21 and [ 41 for technical reasons related to the analysis, The procedure is described 
below. The heuristic to the VRPDB applies the MCRPP twice: first on the delivery cus- 
tomers and second on the back-haul customers. As a result we obtain two types of regions: 
delivery and back-haul regions. Each region, except possibly one of each type, contains 
exactly q customers. By applying an assignment solution method on these two types of 
regions (see below), we determine which delivery region, if any, to assign to each back- 
haul region. If delivery region 1, is assigned to back-haul region 12, then a vehicle will first 
serve all delivery customers in region 1, and then will travel to region l2 to serve all back- 
haul customers there. A region that is not assigned to any other region will be served by a 
separate vehicle. We will show below that it is possible to design such a scheme so that the 
cost of the solution converges to the optimal cost when the number of customers increases. 
We first describe the MCRPP when applied on a set of points S contained in a bounded 
circle of radius R . 

The Modified Circular Regional Partitioning Procedure (MCRPP) on set S 

Step I :  Partition the circle into t = r((?r C i E S  r i ) / (  3qr,,,ax))”21 disjoint sectors, 
such that all sectors (except possibly one) contain r I SI /tl  points. 

Step 2: Partition each sector into regions by circular cuts, such that all of them, 
except possibly the one closest to the center, contain exactly q points. 

Step3: Repartition the group of at most t subregions closest to the center and 
containing less than q points each by radial cuts into at most t - 1 subre- 
gions with q points each, and at most one subregion containing less than q 
points. Let SI , S2 , . . . , SL be the generated subregions, with L = r I SI /ql . 

It is easy to verify that MCRPP is of complexity O( I SI log1 SI ). 
Applying the MCRPP separately on the sets B and D results in LB = rNB/ql back-haul 

regions and LD = rND/ql delivery regions. We denote the back-haul regions by B,  B2,  . . . , 
BLB and the delivery regions by D,  , D2, . . . , DLD each consisting of exactly q customers, 
except possibly two regions DLD and BLB that may contain less than q customers. According 
to the partitioning procedure it is clear that if a region consists of less than q customers then 
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it is close to the warehouse. We will assume that even in the case that No ( N E )  is an integer 
multiple of q ,  then the region numbering will be such that region DLD ( BLB) is close to the 
warehouse. We also assume, without loss of generality, that No 2 N E ,  as the other case is 
symmetric. Next we will present an assignment problem between delivery regions and 
back-haul regions that will be used in our heuristic and enable us to prove its asymptotic 
optimality property. For technical reasons, it is easier to assume throughout the proof that 
all regions consist of exactly q customers; therefore if this does not hold we take special care 
of regions B L B  and DLD: If No is not an integer multiple of q but NB is, then there are more 
delivery regions, thus serve region DL, by a separate vehicle; if NE is not an integer multiple 
of q then serve regions BLB and DLD by a single vehicle that will travel from the warehouse 
to DL,, serve all its customers, and continue to region BLB to serve the customers there, 
and finally return to the warehouse. In the rest of the heuristic we will design routes that 
will serve all remaining customers; for that purpose we define sets D* and B* as follows: 

D ,  

D - DL,, otherwise, 

if No and NE are integer multiples of q ,  
D* = 

and 

B ,  

B - B L ~ ,  otherwise. 

if Ns is an integer multiple of q ,  
B* = 

Each of the sets B* and D* consists of an integer multiple of q customers and is partitioned 
according to MCRPP to regions of q customers each. It is easy to check that I D* I 2 I B* I 
in view of the assumption that No 2 NE.  Similar to the definition of the matrix M (see 
Section 2), we add 1 D*I - 1 B* 1 dummy back-haul customers, located at the origin. We 
define a respective distance square matrix, named M* with I D* I rows, which will be used 
in the analysis in Section 4. In the continuation we describe the heuristic when applied on 
B* and D*. 

In order to design the routes for the regions in B* and D*, we have to determine which 
delivery and back-haul regions will be served by the same vehicle. Note that because all 
regions in B* and D* consist of exactly q customers, the number of dummy back-haul 
customers is an integer multiple of q and thus can be partitioned into an integer multiple 
of dummy regions each consisting of exactly q dummy customers. The distance between 
two regions Dp and Bk is defined as the minimum distance between a delivery customer in 
Dp and a back-haul customer in &. We define two square matrices of I D* 1 / q  rows, one 
named C ,  such that for any delivery region De and back-haul region Bk, C 8 , k  is a pair of 
customers, one from D, and the other from Bk, that achieve the minimum distance between 
regionsDpandBk;i.e.,Cp,k=(s,t)ifd(.s,t)= min{d( i , j ) : iEDe , jEBk} . I fBk i sa  
dummy region then C[,k is a delivery customer s with the minimum radial distance in its 
region. The other matrix is M R :  For each pair of delivery and back-haul regions Dp and Bk,  
including the dummy ones, let M$,k be the distance between the regions as defined above. 
The proposed heuristic assigns delivery regions to back-haul regions according to the opti- 
mal assignment solution to M R .  
We describe now the proposed heuristic: 
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The Circular Regional Partitioning with Delivery and Back Haul (CRPDB) Heuristic 

Step 1: Apply MCRPP on each of the sets D and B separately, resulting in regions 
D ,  , D2,  . . . , DLD and B,  , B2,  . . . , BL,, where all regions, except possibly 
regions DLD and BLE, consist of exactly q customers. If the two regions 
BL, and DLD consist of exactly q customers, then define B* = B and D* 
= D ,  and go to Step 2. If ND =r NB ( N o  c N B )  and if region DLD ( BL,) 
consists of less than q customers but region BL, ( DLD) consists of exactly 
q customers, then serve region DLD (BLE) by a separate vehicle, assign it 
to a dummy back-haul (delivery) region at the warehouse, and define B* 
= B (B* = B - BL,) , D* = D - DLD ( D *  = D )  and go to Step 2. Other- 
wise, serve regions DLD and BLB by a separate vehicle by first serving all 
customers in DLD and then the ones in BL,; assign the two regions one to 
the other, and define B* = B - BL, and D* = D - DLD. 

Slep 2: For each region, compute a TST via its Customers. (See Remark I below.) 

Step 3: Define two square matrices C and M R  of dimension I D* I / q  ( I B* I / q )  
as follows: For any two regions Dp and Bk contained in D* and B*, re- 
spectively, let Mf,k = min { d( s, t ) : s E De , t E Bk } and c : , k  be a pair of 
customers (s, t ) ,  s E Dt and t E Bk, achieving the minimum in the defi- 
nition of h 4 f . k .  If k > I B* I / q  (k‘ > ID* I / q )  then Mf,k is the minimum 
radial distance of customers in region Dp ( B k )  and C 8 . k  is a customer in 
De (Bk) with the minimum radial distance. Apply the Hungarian method 
to comput: the optimal assignment with respect to the distance matrix 
M R .  Let A denote the optimal assignment obtained by solving M R  in- 
cluding the assignment of regions DLD and/or BLB as defined in Step 1, if 
at least one of these two regions consists of less than q customers. In this 
last case we also add a row and a column to the matrix C representing the 
delivery and back-haul regions that were assigned one to the other in Step 
1. The elements in the additional row and column are filled according to 
the definition of C. 

Step 4: Route construction. According to assignment k for each delivery region 
De that is assigned to back-haul region Bk C I rND/ql and k I rNB/ql, 
with Ce,k = (s, t) use the following route: A vehicle leaves the warehouse 
loaded with I De I units, travels along the arc (0, i) to customer i E De 
such that ri = min { r,: j E De } , unloads a unit there, and continues along 
the TST over De to serve all other delivery customers in De . From the last 
customer on that tour the vehicle travels empty to back-haul customer t 
E Bk and loads there a unit. The vehicle then continues to serve all cus- 
tomers along the TST over Bk and finally returns to the warehouse. If a 
dummy back-haul (delivery) region &, k > “ B / q I  (De, t > r N D / q l )  is 
assigned to a delivery (back-haul) region De (Bk) , then a single vehicle is 
dispatched to serve the customers in Dc ( B k ) .  The vehicle starts the tour 
at the customer with the minimal radial distance and follows the TST 
over this region. 

REMARK 1: The TSTs over the regions, computed in Step 2, induce the order ac- 
cording to which the vehicles visit the customers within each region. These TSTs can be 
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determined either optimally or heuristically by using a traveling-salesman solution proce- 
dure with a guaranteed worst-case bound. 

REMARK 2: It is recommended to try to improve the routes obtained by Step 4 of the 
CRPDB heuristic by applying the algorithm in [ 51 for the TSPDB on the paired regions 
obtained by Step 3. The algorithm in [ 51 (with worst-case ratio bound 2)  does not restrict 
itself to generate routes that serve the back-haul customers after terminating the service to 
delivery customers. 

Step 3 of the heuristic is dominating in terms of the complexity order. The solution of 
the optimal assignment for matrix M R  by the Hungarian method is of complexity O( N 3 ) .  
Step 1, which involves the application of the MCRPP on sets B and D,  is of complexity 
order O( N log N )  . In Step 2, TSTs over all regions should be computed. Because the num- 
ber of points in each of the regions does not exceed the constant q ,  then even if optimal 
TSTs are computed, the overall complexity of this step is of the same order as the number 
of regions, that is, linear in N .  However, in practice, for q 2 10 this step becomes prohibitive 
if optimal TSTs are to be calculated. Thus we recommend use of a heuristic with a guar- 
anteed worst-case gap as, for example, the cheapest insertion procedure that generates so- 
lutions that do not exceed twice the optimal TST and of complexity that is quadratic in the 
number of points (see [ 19]),  or Christofides algorithm that generates solutions that do not 
exceed I .5 times the optimal solution and of complexity that is cubic in the number of 
points (see [lo]). The route construction in Step 4 is again linear in N .  In the next sections 
we provide worst-case, probabilistic, and asymptotic analyses of heuristic CRPDB. 

4. LOWER BOUND 

In this section we propose lower bounds that will be shown to consist of two parts: ( a )  
radial distances, that is, the radial cost due to the segments from the warehouse to the 
customers and back to the warehouse; (b) the local cost of traveling from delivery cus- 
tomers to back-haul customers. The next theorem provides a lower bound for VRPDB that 
consists of the lower bound on the total radial distance as given in [ 141 and a lower bound 
on the total local cost given in terms of the cost of the optimal assignment between D and 
B denoted by f ( M ) ,  as defined in Section 2. 

THEOREM 1: The following inequality holds for any given VRPDB with a set of de- 
livery customers D and a set of back-haul customers B :  

V""'(N) L { ( N ,  + NB)Y+f(  M ) } / q .  

PROOF Any given feasible solution R to the problem can be decomposed into a set of 
routes of minimum length { R ,  , R2, . . . , RL} , each starting and ending at the warehouse. 
The theorem will be proved by showing that (a)  any feasible solution R induces a feasible 
assignment Xi,, between Dand B ;  (b) Z(R) 2 { 2zl ri + CijMi , jXi j } /q .  

Given solution R = { RI  , R2, . . . , RL} to the problem, let De ( B e )  be the set of delivery 
(back-haul) customers on Rl and ql = max { 1 Be 1, I Dt 1 I q .  Let also Me be the square 
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matrix associated with the assignment problem between the sets De and Be as defined in 
Section 2. We will show that inequality (2)  below holds for C = 1, . . . , L: 

We first prove (2)  for routes that consist of delivery (back-haul) customers only, and thus 
contain at most q customers: In that case note that because the assignment problem be- 
tween De and Be assigns all customers to dummy customers at the origin, the right-hand 
side (RHS) of ( 2 )  equals 2 C R ~  r j / q t ,  which is twice the average radial distance of the 
customers on the route. This expression is clearly a lower bound on the length of the route. 
We prove now ( 2 )  for a feasible route Re consisting of k delivery customers and m back- 
haul customers, 1 I k s m I q and thus q p  = m (the case m < k is an analogue): Number 
the delivery (back-haul ) customers clockwise from the warehouse according to the order 
of their occurrence on the route by 1 D, 2 O ,  . . . , k D  ( 1 B ,  2’, . . . , mB). Proving ( 2 )  is 
equivalent to proving that there exists a solution to the assignment problem between the 
sets Dp and Be such that the length of qe = m copies of route Re is not smaller than the cost 
of that assignment plus the sum of the radial distances of all customers on the route. The 
proof is by construction of such an assignment. Start with q p  = m copies of route Re. Scan 
the route clockwise starting at the warehouse: Find the first arc on the route that connects 
two customers one from De and the other from Be. Assign these two customers one to the 
other. By using the triangle inequality it is easily observed that the length of one copy of Re 
is at least as large as the sum of the radial distances of these two customers plus the length 
of the arc connecting them. Mark these two specific customers and delete one copy of the 
route Re. We can repeat this step for k - 1 additional times, each time scanning the route 
as explained, searching for the first two unmarked customers of different types that are 
either connected by an arc or separated by marked customers only. Let these two customers 
be iD andjB 1 I i I k and 1 ~j I m and assign them one to the other. Delete one copy of 
route Re:  The length of Re is at least as large as the sum of the radial distances to the 
customers iD and j B  plus the length of the arc connecting them, which is the respective 
assignment cost. Terminate this iteration by marking these two customers. At the end of 
this procedure we are left with m - k 2 0 copies of Re and m - k unmarked back-haul 
customers. If rn - k > 0 then assign the unmarked back-haul customers to the dummy 
delivery customers at the origin at a cost of their radial distances. Note that each copy of 
Re is at least as large as twice the radial distance to any of the customers. Thus the length of 
the rn - k left copies of Re is at least as large as twice the sum of the radial distances of the 
unmarked back-haul customers, resulting in ( 2 ) .  Substituting q p  by q in ( 2 )  preserves the 
inequality, because q p  I q .  Therefore we conclude, in view of the proposed procedure, and 
by summing ( 2 )  over all the routes C = 1, . . . , L ,  that according to solution R there exist 
two sets of marked customers of the same cardinality, one a subset of B and the other a 
subset of D, and two sets of unmarked customers, one a subset of B and the other a subset 
of D. The length of q copies of the solution is shown above to be at least as large as the 
optimal assignment between the two sets of marked customers plus the sum of the radial 
distances of all marked customers plus twice the radial distance of all unmarked customers. 
In order to terminate the proof it is sufficient to show that there exists an assignment be- 
tween the unmarked delivery customers and the unmarked back-haul customers whose 
cost is bounded from above by the sum of the radial distances to all unmarked customers. 
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Indeed, we show that any assignment between the two sets of unmarked customers satisfies 
the above inequality, because the sum of the radial distance to two unmarked customers is 
at least as large as the length of the arc connecting them. Therefore, the sum of the radial 
distances to all unmarked customers is bounded from below by the cost of any feasible 
assignment to problem ( 1 ) when applied on the two sets of unmarked customers. 0 

In the remainder of this section we use the lower bound of Theorem 1 to develop an 
alternative lower bound that does not require the computation of f( M )  and instead is 
given in terms of the optimal assignment costf( M R ) ,  which we compute in the heuristic 
process. We first evaluate the gap between the optimal cost of the assignment between the 
sets D and B on one hand, and D* and B* on the other hand. According to Section 3 the 
optimal cost of assignment problem ( 1 ) between the sets D* and B* is denotedf( M*).  

CLAIM 1: The following inequality holds when solving assignment problem ( 1 ) on 
the distance matrices M and M*: 

PROOF Note that both matrices M a n d  M* are square matrices. According to the 
assumption that No 2 NB,  matrix M is of size N i  and contains A( M )  = No - NB columns 
of dummy back-haul customers. Matrix M* is of size N ;  *, where 

ND - q, 

qLND/qJ, otherwise. 

if No is an integer multiple of q but NB is not, 
ND* = 

Matrix M* is obtained from matrix Mby omitting No - ND* I q rows ofdelivery customers 
and NB - qLNB/qJ I q - 1 columns of back-haul customers and either adding or deleting 
dummy back-haul customers in order to have exactly N D *  columns. Matrix M* contains 
A(M*) = ND= - qLNB/qJ dummy back-haul customers at the origin. 

We will construct a feasible solution to the assignment problem between D* and B* by 
modifying an optimal assignment solution between the sets D and B. Let { X l , J }  i E 0,; E 
B U B‘ be an optimal solution to problem ( 1 ) between D and B with costf( M ) .  Let { Yl,,} 
1 I i , j  I ND* be a solution to assignment problem ( 1 )  between D* and B*. Let also B*’ 
denotes the set of dummy back-haul customers in the second problem. We call B* (D*) 
the undeleted columns (rows) of B (D), respectively. We distinguish between two cases: 
(a)  A( M * )  I A( M ) ;  ( b )  A( M * )  > A( M ) .  In the first case the set B*’is a subset of undeleted 
columns of the set of dummy back-haul customers B‘, and in the second case the set B*‘ 
includes the set B’ that is a set of undeleted columns of Mand  contains in addition I B*‘l 
- I B’I new dummy back-haul customers. We explain below how to construct an assign- 
ment { Y,,,) from D* to B* U B*’ given { X l , , } .  

Suppose Xl,J = I .  If i is an undeleted row and j is an undeleted column then let Y,,, = 1 ; 
that is, keep the arc between i andj;  if i is a deleted row a n d j  is a deleted column omit the 
arc between i and j  as well as the two nodes i andj ;  if i is a deleted ( undeleted) row a n d j  is 
an undeleted (deleted) column then mark nodej ( i )  and omit the arc connecting i to; as 
well as node i (j). In case (b) add I B*’l - I B* I new dummy back-haul nodes and mark 
them. At the end of the process we are left with a subassignment { Yl,,} of { X,,,} and with 
equal cardinality sets of marked delivery customers and marked back-haul customers. We 
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note that in case (a)  the set of marked back-haul customers is included in B U B', and 
therefore the number of marked back-haul customers is at most as the number of deleted 
delivery customers, that is, at most q .  In case (b) no columns are deleted from B', thus the 
number of marked delivery customers is at most as the number of deleted columns from 
B ,  i.e., at most q - 1. Thus in either case the number of marked customers of each type is 
bounded by q .  In order to complete assignment { Y i j } ,  i E D*, j E B* U B*', we define 
a subassignment problem from the marked delivery customers to the marked back-haul 
customers. Because the cost of each arc in this assignment problem is bounded from above 
by 2R and there are at most q arcs in any such subassignment, the cost of the obtained 
subassignment is bounded from above by 2qR. We conclude that 

In order to derive a lower bound in terms off( M") we define matrix M* * to be of the 
same dimension as matrix M* such that for delivery customer i that belongs to region De 
and back-haul customerj that belongs to region &, M t y  = min ( d ( t ,  s): t E Dl and s E 
Bk 1. I f j  is a dummy customer then is the minimum radial distance over all customers 
in Dp. The rows (columns) of M** can be partitioned into sets of q identical rows 
(columns), because any two rows (columns) of the same region are identical and all re- 
gions are assumed to consist of exactly q customers. The matrix M** is componentwise 
bounded from above by the matrix M*. Therefore, 

f( M**) If( M*).  ( 3 )  

Matrix M" as defined in Section 3 is indeed obtained by taking one representative row and 
one representative column from any group of q rows/columns of M** that is associated 
with a delivery/ back-haul region. The next claim establishes the relationship between 
f( M**) andf( M"). 

CLAIM 2: There exists an optimal assignment solution for M** that consists of q cop- 
ies of any given optimal assignment solution to M": One of the optimal assignments to 
M* * assigns all q customers in any delivery region D, to the q customers in back-haul region 
Bk, where D, is assigned to Bk in the given optimal assignment to M". In particular,f( M") 
= f( M* * )/ 4 .  

PROOF The assignment problem formulation corresponding to the matrix M" is as 
follows: 

s.t. C Xp,k = 1, 

&,k = 1 ,  

Xe,k E { 0,  1 }, 

for all back-haul regions Bk, 

for all delivery regions Dp, 

for all C and k. 

e 

k 

(4) 



428 Naval Research Logistics, Vol. 43 ( 1996) 

Because of the special structure of the matrix M* *, where each of the rows and columns 
has exactly q copies identical to a row (column ) of matrix M R  and the cost of assigning any 
copy of row i E Dp to any copy of column j ,  j E Bk, is M&, the assignment problem 
corresponding to M* * can be written in terms of (4) by multiplying the RHS vector of the 
constraints by q and allowing the variables to assume values in { 0, 1,2, . . . , q } . Thus Xp,k 
= q’, where q’ I q means that q’ copies of the rows corresponding to region Dp are assigned 
to q’ copies of the columns corresponding to region Bk. Because this formulation is ob- 
tained from (4)  by multiplying the RHS vector by the constant q ,  then according to linear 
programming theory multiplying the optimal assignment to (4)  by q is an optimal solution 
tof( M**). Thus,f( M**)  = qf( M R ) .  0 

Based on Theorem 1, Claims 1 and 2, and inequality ( 3 ) we obtain the following lower 
bound for the optimal cost. 

THEOREM 2: Given is a VRPDB with sets of delivery customers D and back-haul 
customers B. If the MCRPP is applied separately on D and B and the matrix M R  is con- 
structed accordingly, then 

VoP*( N )  2 ( ND + NB)F/q + max { 0, f( M R )  - 2 R 1. 

REMARK: The lower bound given in Theorem 2 is not as tight as the one given in Theo- 
rem 1. However, as will be shown, it is also asymptotic optimal. Its advantages are (a) it 
requires solving an assignment problem on matrix M R  whose dimension is 1 / q  of the dimen- 
sion of M ;  (b) the solution off( M R )  is required anyway when applying heuristic CRPDB. 

In the next section we bound from above the cost generated by applying the CRPDB 
heuristic and we discuss the modifications required for general delivery/ back-haul sizes. 

5. UPPER BOUND ON VcRPDB 

Let TSP(X) be the length of the optimal TST via the customers in a set X ,  and TSP“( X )  
be the length of a TST via X obtained by a heuristic with a worst-case bound of 1 + a. 
According to the procedure used to solve the TSTs we denote the proposed heuristic by 
CRPDB (aCRPDB) if optimal (( 1 + a )  - optimal) TSTs are calculated in each region 

denote the respective cost of heuristic CRPDB (aCRPDB). The following theorem pro- 
vides an upper bound on the cost of the proposed heuristic. 

( note that heuristic OCRPDB coincides with CRPDB). Also let, VCRPDB( A’) ( VaCRPDB ( N ) )  

THEOREM 3: The following inequality holds when applying heuristic aCRPDB for 
any a 2 0: 

PROOF In order to prove the inequality we distinguish between vehicles that serve 
both delivery and back-haul customers and vehicles that serve a single type of customer. 
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(a) Suppose that according to assignment 2 (see Step 3 of CRPDB heuristic), 
Dp is assigned to B k ,  C I rND/q1 and k I rNB/ql at the cost d(s ,  t) with C p , k  

= (s, t). Also suppose that a E Dp ( b  E Bk)  is a customer with minimum 
radial distance in Dp (Bk).  According to the proposed heuristic the total 
length of the route of this vehicle is bounded from above by r, + TSPa( De) 
+ d(a,  s) + d(s,  t )  + TSPa(Bkj + d ( t ,  b )  + rb.  In view ofthe triangle ine- 
quality d(a, s) I TSP(Dp)/2 and d ( t ,  b)  I TSP(Bk)/2. IfDp c D* and B k  

E B* then De and Bk are assigned one to the other at the cost of d(s,  2) 
according tof( M R ) .  Otherwise, that is, C = L O  and k = L B ,  d( s, t )  I 2 R. 

(b)  If D, (&) is served by a separate vehicle, then according tof( M R )  the as- 
signment cost due to Dp (&) is r,, where a is a customer with the minimal 
radial distance in the region. According to the heuristic the length ofthe route 
ofthat vehicle is bounded from above by 2r, + TSPa( 4) ( 2ra + TSPn( Bk)) ,  

where region Dp (&) is assigned to a dummy region at the cost of r, according 
to f (  M R ) .  Therefore, VaCRPDB(N) I CI [ min { ri : i E DI } + TSPa( D,) + 
O.STSP( D p ) ]  + c k  [ min { ri : i E Bk} + TSP"( Bk) + O.STSP( Bk)] +f( M R )  
+ 2R 5 C$erl ED, r i / q  + C ~ E ; '  CB, r i / q  + 2R + (1.5 + a)  ( C p  TSP(Dp) 

2R I (No 4- N B ) q q  + (1.5 + a )  ( c p  TSP(Dp) 
+ C k  TSP(Bk)) +f( hifR) + 4R. 

C k  TSP(Bk)) +f( M R )  

The second inequality follows from the following facts: 

1. Delivery (back-haul) regions 1, . . . , L D  - 1 ( 1, . . . , L B  - 1 ) consist of exactly 
q customers; thus the minimal radial distance in that region is bounded from 
above by the average of the radial distances in the region. 

2. For regions DLD and BLs we bound the minimal radial distance by R . The last 
inequality is straightforward. 0 

Let n CRP (X) be the total perimeter length over all subregions generated by applying a 
CRPP on a set of customers X. In the following we review some results that will be used in 
a further analysis of the heuristic aCRPDB. The following lemma is immediate from The- 
orem 3 in [15] .  

LEMMA 1 : Let x = {XI, X 2 ,  . . . , X L  } be a partition generated by some partitioning 
procedure. Let n denote the total perimeter of the subregions. Then, 

L 

2 TSP(Xp) I TSP(X) + 3 I'I. 
e= I 

In view of the next lemma (see [ 141) TSP(X) is shown to be of order O(N1l2R) assum- 
ing that the Npoints ofXare located within a radius R from the origin. 

LEMMA 2: Ifa set ofpointsXconsisting ofNpoints is contained in a connected planar 
region with area A and finite perimeter n, then, 

TSP(X) I (2NA)'12+ 1.5 n. 
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The next lemma, also given in [ 141, demonstrates that the second term on the RHS of 
(5 ) is of order O( N 1 / 2 R )  as well, if a CRPP is applied. 

LEMMA 3: If the CRPP is applied [with q points in all regions (except possibly one)] 
on a set of points Xconsisting of n points and ri the radial distance of point i, then 

The next theorem combines the results of Theorem 3 and the three lemmas and provides 
an upper bound on the cost of heuristic aCRPDB in terms of the average radial distance of 
all customers, the number of customers N ,  q ,  R ,  and the optimal assignment costf( M R )  : 

THEOREM 4: Given are ( a )  a set of N back-haul and delivery customers dispersed 
within a radius R of the warehouse, each having a requirement size of one unit and (b) a 
fleet of identical vehicles with capacity q.  Then, the cost generated by applying heuristic 
aCRPDB is bounded by 

v aCRPDB ( N )  I ( N o  + Ns)F//q + f ( M R )  + ( 2 ~ ) ’ / * (  1.5 + a)R(ND + NB)’/’ 

X [ l  + 1.5(3/q)”*] + ( 1 3 . 5 ~  + 17.5 + 947r + 1))R. 

PROOF Note that according to Lemmas 1-3, 

LD LB 

2 TSP(D1) + 2 TSP(Bk) I TSP(N) + 1.5 n c R p ( D )  + n CRP(B) 5 (2Nn)’”R + 3nR 
I= I k= 1 

+ ( 6  + 47r)R I (2Nn)I l2R + 3nR 1 
+ 1.5(6nR/q)I/’( i e N  r i ) 1 / 2 + ( 9 + 6 n ) R .  

The last inequality follows from the fact that the square root is a concave function and as 
such it obtains its maximum when CiEo  ri = C i E B  ri . The desired inequality directly follows 
from Theorem 3 and the above inequality. 0 

The lower and upper bounds presented above continue to hold also if not all delivery 
and back-haul sizes are one unit. In the general case, delivery (back-haul) customer i can 
be viewed as di ( bi ) delivery (back-haul) points each with requirement size of one unit and 
all located at the customer’s location; see also [ 141. The generalization to general require- 
ment sizes enables us to solve also the multicommodity case: Let the vehicle’s capacity as 
well as the requirement sizes of the customers to be specified in terms of weight. The unit 
weight may be scaled so that the vehicle’s capacity and all requirement sizes are approxi- 
mately integers. Assuming that the vehicle may carry any mixture of commodities, the 
CRPDB heuristic for general requirement sizes may be applied. 

For the single-commodity and general requirement sizes or for the multicommodity 
case, we let Fbe defined as the weighted average radial distance with weights proportional 
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to the customers' requirements; see Section 2. The assignment problems used in the lower 
and upper bounds should be defined on the sets of delivery and back-haulpoints. However, 
if we do not assume that the requirement sizes are bounded, then the matrices corre- 
sponding to the assignment problems on the set of points might be of unbounded size in 
N ,  resulting in a nonpolynomial algorithm. We present below an alternative scheme for 
these cases, which instead of solving assignment problems, solves a transportation 
(Hitchcock) problem on the set of customers. The modifications required in the applica- 
tion of CRPDB heuristic are as follows: In Step I of the heuristic MCRPP is applied on the 
set of delivery and back-haul points separately such that the plane is partitioned into a 
number of regions, all consisting of q points, except one region of each type, which may 
contain less than q points. Observe that if the delivery (back-haul) size of customer i is 
greater than q ,  that is, it equals kl ,q  + k2i ,  k , ,  2 1, and 0 I k,, I q - 1, then it is sufficient 
to apply MCRPP in Step 1 of CRPDB on k2i delivery (back-haul) points located at cus- 
tomer i's location and add to the list of regions generated by MCRPP k l i  delivery (back- 
haul) regions consisting of q points all located at customer i's location. Thus, independently 
of the order of the delivery and back-haul sizes, Step 1 is of complexity O( N log N). Obvi- 
ously, Step 2, which requires computing the TSTs in the regions, is linear in I NI , because 
no additional work is required for the above k l i  regions. Step 3 requires the solution of an 
assignment problem defined on all generated regions. The dimension of the corresponding 
matrix M R  depends on the customers' delivery/back-haul sizes. As mentioned above, 
f( M R )  may be computed as a transportation (Hitchcock) problem (see [ 18, Chap. 71): the 
kli  delivery (back-haul) regions associated with customer i ,  each consisting of q points of 
customer i ,  may be presented as a single delivery (back-haul) zone with delivery (back- 
haul) requirement of k l i  units. A region that consists of points from more than one cus- 
tomer is a zone by itself with requirement size of one unit. It is easy to see that the number 
of delivery (back-haul) zones is bounded from above by 2 ID I (2  I B I ). If the total require- 
ment of the delivery zones is greater (smaller) than the total requirement of the back- 
haul zones, then a single dummy back-haul (delivery) zone is added such that its total 
requirement size is the difference between the total requirement size of the zones from the 
two types. The matrix of distances between the delivery and back-haul zones is computed. 
The obtained matrix is not necessarily a square one. The transportation problem is defined 
similarly to problem ( l ) ,  where the right-hand side of the constraint associated with a 
certain zone equals its requirement size. Because the constraint matrix is total unimodal 
we can relax the last set of constraints to X,,, 2 0. X l j  = k means that k regions in delivery 
zone i are assigned to k regions in back-haul zonej. This problem can be solved efficiently 
by linear programming software. However, in terms of complexity, the problem can be 
viewed as a minimum cost flow problem with O ( N )  nodes and O ( N 2 )  uncapacitated arcs. 
The best known strong polynomial for the transportation problem as defined above is of 
complexity O( N 3  log N) , and is presented in [ 17 1. We note that for this complexity bound 
we do not need to assume that the requirement sizes are bounded. However, if all require- 
ment sizes are uniformly bounded by a constant independent of N ,  then solving as an 
assignment problem on the set of points requires O( N 3 )  operations. 

In the next section we provide a guaranteed worst-case gap and probabilistic and as- 
ymptotic analyses of heuristic aCRPDB. 

6. ANALYSIS OF KRPDB HEURISTIC 
The next theorem provides a relative error bound for aCRPDB heuristic: 
THEOREM 5: Given is a fleet of identical vehicles of capacity q ,  a set of N delivery 
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and back-haul customers dispersed within a radius R from the warehouse, with a total 
delivery size of No and a total back-haul size of NB. Then, the following worst-case gap 
holds for aCRPDB heuristic: 

PROOF The proof is immediate in view of Theorems 2 and 4 and the above discussion 
0 regarding general delivery and back-haul sizes. 

The relative error bound given in Theorem 5 holds also for the special case that all customers 
are of a single type and is of a similar order to the one given in [ 141. Note that in this special 
c a f (  M) = M, so the lower bound in Theorem 1 coincides with that in [ 141. 

THEOREM 6: Let Y ( n )  = {yl ,  y2 ,  . . . , y,,} be a random set of n customers each 
characterized by its radial distance r; , an indicator Z; that assumes the value + 1 ( - 1 ) if the 
customer is a delivery (back-haul) customer, its requirement size pi and its polar coordi- 
nate. The pairs ( ri , p; ) are assumed to be i.i.d. and pi is a discrete random variable assuming 
positive integer values, which is independent of r, . Let [ = E( r; ) and p = E( 1; ) be finite. 

(a)  limn+m inf( l /n )VoP' (Y(n) )2p[ /q .  
(b)  If, in addition, [ > 0 and p > 0 and the random variables rj are uniformly 

bounded from above by the constant R < co , then 

lim ( vaCRPDB ( Y ( n ) )  - vop'(Y(n)))/Vopt(Y(n)) = 0, a s  
n-m 

PROOF 
This part follows from Theorem 1 ,  the fact that p j  is independent of ri , and 
the law of large numbers. 
In view of part ( a ) ,  the assumption that p > 0 and 4 > 0, it suffices to show 
that 

lim ( vaCRPDB ( Y (  n ) )  - Vopt( Y( n ) ) ) / n  = 0, a.s. 
n-m 

According to Theorems 2 and 4: 

0 I vaCRPDB ( Y ( n ) ) -  Vop'(Y(n)) 5 ( 2 r ) ' l 2 (  1.5 + &)R [ l  + 1 .5 (3 /q )1 /2 ]  

+ ( 1 3 . 5 ~  + 19.5 + 9 a ( ~  + 1) )R .  

According to the rule of large numbers limn-m( C p j ) ' 1 2 / n  = limn+m \111/ fi = 0; thus 

lim ( vaCRPDB ( Y  ( n ) )  - Vopt( Y ( n ) ) ) / n  = 0, a s .  
n- m 

The proof of Theorem 6 gives us also the convergence rate of (VaCRPDB ( Y ( n ) )  - 
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Vop’( Y ( n ) ) ) / n  to zero, which is of order 1 / fi. According to the theorem we see that we 
assume extremely mild conditions on the distribution of p, that may be unbounded, but 
we need to ensure that its expectation is finite. As mentioned in [ 31, the assumption that 
the pairs ( r, , pi ) are i.i.d. and that w, is independent of r, is needed only to assure that the 
lower bound grows linearly in n almost surely. The assumption is needed to preclude heavy 
concentration of points with small p l r j  values. Similarly, the condition that the radial dis- 
tances are uniformly bounded from above is unnecessarily strong. One merely needs that 
max { r, : 1 I i I n } does not grow too fast as IZ + 00 (as.). Much simpler conditions with 
respect to the distribution of r, may be invoked; see [ 1 1 1. 
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