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Abstract 

The problem that we consider here deals with a single vehicle of a given capacity that needs to serve N customers: some 
of the customers require a delivery of stock from the warehouse, whereas others need to deliver stock from their location 
to the warehouse. The objective is to find a shortest feasible tour visiting all customers, emanating from and ending at the 
warehouse. We introduce an efficient (O(N2)) heuristic for this problem. The heuristic improves the worst-case bound 
known in the literature from 2.5 to 2. However, its average performance is shown in our numerical study to be slightly 
worse than that of a previously published (O(N3)) solution method. 
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1. Introduction 

The problem we study here deals with a single 
period, single warehouse distribution system with 
two sets of customers dispersed in the plane. The 
first set, denoted by D, contains "delivery cus- 
tomers" who require delivery of goods from the 
warehouse, whereas the second set, denoted by B, 
contains "backhaul  customers" who need to deliver 
goods from their location to the warehouse. (Note 
that the literature distinguishes between "back- 
haul" customers and "pickup" customers: a 
"pickup" customer may deliver goods to any of the 
other locations including the warehouse. In this 
research we restrict ourselves to delivery and back- 
haul customers only.) In order to avoid excess nota- 
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tion we will assume a single commodity  problem 
(however the results can be easily generalized to the 
multiple commodity  case). Each customer i is char- 
acterized by its geographic location and its require- 
ment size di (bl) units for delivery (backhaul). The 
stock is delivered and backhauled by a single ve- 
hicle of limited capacity. The distance function be- 
tween distinct locations is assumed to obey the 
triangle inequality. The objective is to design 
a route of minimum total length so that all cus- 
tomers are served: the desired route should ema- 
nate from the warehouse, stop at customers for 
delivery/backhaul purposes and finally terminate 
at the warehouse without violating the vehicle's 
capacity restriction along the route. Note that the 
vehicle is not allowed to visit the warehouse in 
between its initial and final stops there; also, back- 
haul stock cannot be used to satisfy delivery re- 
quirement. Thus, the resulting tour is a closed tour 
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on the set of customers and the warehouse that 
visits each location exactly once. We call this prob- 
lem the traveling salesman problem with delivery 
and backhaul (TSPDB). 

The multiple vehicle case which we call the ve- 
hicle routing problem with delivery and backhaul 
(VRPDB) and we address in a later paper, has 
many real life applications. Bodin et al. [ i ]  and 
Casco et al. [2] describe some applications and 
review some solution techniques. The problem is 
faced, for example, by mailing parcel services as 
UPS: trucks load parcels at the warehouse and on 
their way they unload parcels at addressees and 
collect parcels from senders. All parcels collected 
must be processed at the warehouse before being 
delivered to the addressees. Another application 
described by Casco et al. [2], deals with the grocery 
industry in the USA: this industry has recognized 
the cost-cutting potential of servicing backhaul 
points on predominantly delivery routes. As the 
authors report, the industry has saved more than 
$160 million a year since 1982 on its distribution 
costs by allowing vehicles on their delivery routes 
to collect large volumes of inbound products. 
Mosheiov [5] reports about a different application 
where inner-city under privileged children are 
transported to summer vacations at volunteer fami- 
lies living out of town. The transportation service is 
made by buses and is confined to a limited number 
of days when some children start their vacation and 
others end theirs. In all of these problems, if a 
heuristic based on cluster-first-route-second is ap- 
plied then the routing problem related to each of 
the clusters is a TSPDB type. 

There is a vast literature on the traveling sales- 
man problem (TSP) with or without additional 
constraints, however the problem discussed here 
has received very little attention in spite of its 
applicability. It is easy to see that if D = 0 or B = 0 
then the TSPDB reduces to the classical TSP, prov- 
ing that the problem is NP-hard [4]. As such, exact 
solution methods become impractical when the 
problem size increases, giving rise to the need for 
developing heuristic solution methods whose run- 
ning time is polynomial in the problem size. In this 
paper we propose a heuristic for the TSPDB and 
prove its worst-case performance: a heuristic is said 
to have a worst-case bound of 1 + ~ if for any data 

set the heuristic produces a solution whose cost 
does not exceed 100(1 + o0% the optimal cost. (For 
example, the best known heuristic in terms of 
the worst-case bound for the classical TSP, is 
Christofides' algorithm [3], whose worst-case 
bound is 1.5). Mosheiov [5] in his paper, considers 
the TSPDB: he shows that any closed tour on 
D w B contains a certain (initial) point and a cer- 
tain direction so that starting at that point with 
a vehicle loaded with the total amount to be de- 
livered and following the tour at that direction, 
while delivering (loading) stock at delivery (back- 
haul) customers as required, will not violate the 
capacity restriction at any point on the tour. There- 
fore, there exists an arc and a direction on any 
closed tour on D w B so that disconnecting the arc 
and connecting its two end points to the warehouse 
will result in a feasible tour. As a consequence any 
heuristic for the TSP whose worst-case bound is 
1 + 0~ may be used for constructing the initial tour 
over D • B and by searching the arc that can be 
disconnected and connecting its two end points to 
the warehouse will generate a feasible tour for the 
TSPDB whose worst-case bound is 2 + ~. Since 
Christofides's heuristic provides the best known 
worst-case bound (of 1.5) for the TSP, applying it as 
suggested above will result in a heuristic for the 
TSPDB whose worst-case bound is 2.5 and com- 
plexity of O(N4). In this paper we propose the 
2MST heuristic for the TSPDB which is based on 
doubling a minimum spanning tree. We prove that 
the worst-case bound for the 2MST is 2 which is an 
improvement of Mosheiov's [5] bound. In terms of 
complexity, 2MST requires O(N 2) operations, 
which is the size order of the data set. Similar to the 
TSP, the average performance of various heuristics 
may be far away from their worst-case bound: e.g., 
Christofides algorithm, which became a milestone 
in the theory of the TSP, is rarely used in practice. 
In our computer study, one version of a heuristic 
proposed by Mosheiov [5], the cheapest insertion 
with delivery and backhaul (CIDB), which has 
a worst-case bound of 3, usually outperforms 
2MST. 

The paper is organized as follows: in Section 2 we 
introduce the notation and preliminaries. In Sec- 
tion 3 we propose the heuristic for the TSPDB. We 
conclude with Section 4 that presents an example 
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and a short  computer  study in which we compare  
our  heuristic with the heuristic proposed  by 
Mosheiov  [5]. 

2. Notation and preliminaries 

D (B) = the set of  delivery (backhaul) customers. 
di = the demand  size of delivery customer  i, i e D. 
bl = the amoun t  to be loaded at backhaul  cus tomer  

i, i ~ B (di and b~ are assumed to be non-nega-  
tive integers). 

No te  that  if a location i serves both  as a delivery 
and a backhaul  customer,  the overall effect on the 
vehicle's load of  serving customer  i is the difference 
between its backhaul  size and its delivery size. 
When  such a customer  is visited then first the 
vehicle should be unloaded by its delivery size and 
then should be loaded by its backhaul  size. Thus, 
we can assume without  loss of  generality that  i is 
a delivery cus tomer  if its demand  size is greater 
than or equal to its backhaul  size and i is a back- 
haul cus tomer  otherwise. The delivery (backhaul) 
size should be set to the absolute value of  the 
difference between its delivery and backhaul  sizes. 
Observe that  it is not  possible to ignore customers 
for w h o m  the above difference is zero since the 
location cannot  use its own stock to cover its de- 
mand  and thus must  be visited by the vehicle, even 
though the visit does not  affect the vehicle's load. 
No = ~,i~o di (Na = ~i~B bl) is the total amoun t  to 

be unloaded (loaded) at delivery (backhaul) 
customers. 

N = D ~ B is the total set of  customers.  We also 
use N to denote the total number  of  cus- 
tomers. Note  that  for each i e N either d~ = 0 
or bi = O. 

We denote the warehouse by 0. 
N o = N u {0}, the set of  customers and the ware- 

house. 
T h r o u g h o u t  the paper  we assume that  the tri- 
angle inequality holds, i.e. for any i,j, k E N ° :  
d(i ,k) <~ d(i , j)  + d(j ,k) .  
q = is the vehicle's capacity. 

Since we are not  allowing the vehicle to return to 
the depot  in between the beginning and the end of  
the tour, we require, in order  to ensure feasibility, 

that  both  Nn and No do not  exceed the vehicle 
capaci ty q. 

Let G(N, A) be a graph on the set of  nodes N, and 
the set of  arcs A _~ N x N. Let l(G) denote the total 
length of the arcs of  G, The graph G may be dir- 
ected or  undirected. ' I n  an undirected graph 
(i,j) E N × N represents an arc connecting i andj .  In 
a directed graph we indicate the arc direction by 
using the symbol  i ~ j to denote an arc connect ing 
i to j. An undirected tree is a connected graph that  
does not  contain any cycles. Each rooted tree is 
a tree with a distinguished node which is called the 
root. The depth of a node in a given rooted tree is 
the number  of arcs on the path connect ing the root  
to the node. In a rooted directed tree with all arcs 
directed away from the root, each node i except the 
root, is associated with a single node k so that  the 
arc k --* i is an arc of  the tree; node k is said to be 
the parent of i. All nodes j  that  are connected to i via 
an arc i ~ j are called the children of i. The leaves of 
a tree are all the nodes which do not have any 
children. 

For  any given problem, we let V OPT represent its 
min imum cost. If  heuristic H is applied to solve the 
problem, the cost generated is denoted by V H. 

3. The 2MST heuristic 

In this section we propose a simple polynomial  
heuristic for the T S P D B  whose worst-case bound  is 
2. We follow a. c o m m o n  procedure where at the first 
step we solve a relaxation of  the problem and in the 
second step we extend the solution obtained at step 
1, into a feasible solution while increasing its cost 
by a constant  factor. 

The proposed  heuristic, called hereafter 2MST, 
first constructs a minimal spanning tree (MST) on 
the set of  nodes N °, which is obviously a relaxation 
of the TSPDB.  In the second step we take two 
copies of the MST. We will show below that  it is 
possible to t ransform the two copies of the MST 
into a feasible tour  wi thout  addit ional cost. A sim- 
ilar heuristic for the TSP  is well known,  however  in 
the T S P D B  the feasibility issue in terms of the 
vehicle's capacity constraint  needs to be considered 
as well. We first present the algorithm, and then 
explain its various steps. 
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Algorithm 3.1 (Heuristic 2MST) 
Step O. Let T O U R  be an array of length N where 
TOUR(l )  denotes the /th location served by the 
vehicle after the vehicle leaves the warehouse. Set 
l: = 1. Also let I(v) be an indicator variable for v E B 
assuming the value 1 if location v was already 
served and 0 otherwise Set I(v) : = 0 for all v E B. 
Step 1. Construct a minimum spanning tree on N o 
by using the Greedy algorithm. Let MST denote 
the directed tree obtained, rooted at 0, where all 
arcs are directed towards the leaves. For  each i e N 
let C(i) represent the set of children of node i, i.e. 
C(i) = {k: i ~ k e MST}. Let also p(i) represent the 
parent of node i for i e N, i.e. p(/) = {k: k ~ i ~ MST}. 
Step 2. scan the nodes of the MST from the leaves 
to the root as follows: if node i is a leaf then let 
e(i) = - d l  in case i is a delivery customer, and 
otherwise let e(i) = bi. For  any n o d e j  which is not 
a leaf let e(j) = b j -  dj + ~k:j~ k e(k). (e(0)= 
NB -- No.) Start at 0 with a vehicle loaded with No 
units and set i = 0. 
Step 3. Set C'(i)= C(i); 

While C'(i) = 0 do begin 
if i = 0 stop. 
if {i ~ B and I(i) = 0} do begin 

load b~ units at i; set TOUR( l ) :=  i; 
l ~ l + 1; I(i):= 1; end; 
set i ~ p(i); endwhile; 

Select node veC'( i )  so that e(v)= 
mink,c,,~e(k). Set C'(i) ~ C ' ( i ) -  {v). 
If v e D do begin 

unload dv units at v; set TOUR(/ ) :=  v; 
l ~  l +  1;end; 

If {v e B and C'(v) = O} do begin 
load by units at v; set TOUR(/ ) :=  v; 
l ~ l + 1; I(v):= 1; end; 

i ~ v; repeat Step 3. 
end of algorithm. 

As explained below, at the end of the algorithm 
array T O U R  consists of exactly N different loca- 
tions. The scanning procedure of the tree as pro- 
posed by the algorithm traverses twice through 
each of its arcs: firstly, from its tail to its head and 
secondly, from its head to its tail. We note that each 
node i is visited exactly 1 + IC(i)l times by the 
algorithm where C(i) is the set of children of node 
i in the MST. Initially, we set C'(i) = C(i). At each 

visit at i one element of the set C'(i) is deleted. The 
last visit at i occurs when C'(i) = 0. If i is a delivery 
customer then it is served at the first visit of the 
algorithm at i and if it is a backhaul customer it is 
served only at the last visit of the algorithm at i. 
Thus each node except 0 is traversed by the algo- 
rithm I C(i)l times without performing any work. In 
the array T O U R  we keep by the order of their 
occurrence only those visits where a loading or 
unloading is taking place. 

In view of the above considerations it is easy to 
see that the algorithm's complexity is determined 
by the complexity of generating a minimal span- 
ning tree which is O(N2). 

In the next theorem we prove that starting at the 
warehouse with a vehicle loaded with No units and 
following the tour 0 - ~  T O U R ( l ) ~  TOUR(2) 
-~ -.. ~ T O U R ( / -  1) ~ T O U R ( I ) - ~  ... 
T O U R ( N )  ~ 0 where at each location the vehicle 
is unloaded or loaded according to the customer's 
requirement produces a feasible tour, i.e. the total 
load of the vehicle never exceeds the vehicle's capa- 
city nor it falls below 0. 

Theorem 1. The tour produced by Al#orithm 3.1 
(heuristic 2MST) is feasible. 

Proof. We will show that the vehicle's load is feas- 
ible in each of the [C(i)J + 1 epochs the algorithm 
traverses through node i, i e N °. Since the vehicle 
was initially loaded by ND <~ q units which is the 
total amount  unloaded at the customers, its load 
can never drop below 0. We will first demonstrate 
that each time the algorithm traverses through 
0 the vehicle's load must be feasible. Observe that 
e(i) represents the net effect on the vehicle's load if 
node i and all its successors are served. Thus 

~i~c(o)e(i) = N s -  No. Suppose that the children 
of 0 are indexed in non-decreasing order of their 
e( ) values, i.e. e(1) ~< e(2) ~< .-. ~< e(IC(0)l). As- 
sume, for the sake of contradiction, that the first 
time infeasibility occurs at 0 is when the service of 
the subtree rooted at k, 1 ~< k ~< IC(0)l is termin- 
ated. Infeasibility means that the load at that visit 
exceeds q, i.e., No + ~k=l e(i) > q. This implies 
that zk=le(i)  > q--  No >>- O. Therefore, e(k), 
e (k+ 1) . . . . .  e(IC(0)l) must be strictly positive 
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implying that NA -- No  = EI~ °) e(i) >1 Ei=,k e(i) 
> q - - N o  resulting in NB > q  which contra- 
dicts our assumption that the problem is feasible. 

Suppose now that infeasibility occurs at a certain 
node of the MST. It is easy to see that according to 
the algorithm, for any node i there exists an integer 
k(i), 1 <~ k(i) <~ IC(i)l + 1, such that the vehicle's 
load during the sequence of visits at node i is 
non-increasing up to the k(i)th visit, and non-de- 
creasing from the (k(i) + 1)st visit up to the last visit 
at i. (Note that k ( i )=  1 (k( i )= [C(i)l + 1) means 
that all the e( ) values of the children of i are 
non-negative (non-positive).) Therefore the ve- 
hicle's load reaches its maximum value in the 
[C(i)[ + 1 times the algorithm traverses through 
node i either at the first entrance to i, i.e. on the arc 
p(i) --* i, or at the last exit from i, i.e. on the arc 
i ~ p(i). Suppose node i* is a node satisfying the 
following two conditions: (1)infeasibility occurs on 
one of the arcs of the MST connecting node i* to an 
adjacent node; (2) i* is a node with the minimum 
depth on the MST among all nodes satisfying con- 
dition (1). In view of the above discussion infeasibil- 
ity occurs either on the arc i* --* p(i*) or on the arc 
p(i*) ~ i* implying that p(i*), whose depth is 
smaller by one than the depth of i*, satisfies condi- 
tion (1) above. In view of condition (2), i* must be 
the root node. However according to our earlier 
argument at the beginning of the proof, infeasibility 
cannot occur at the root node, completing the 
proof. [] 

In the next theorem we prove that the worst-case 
bound of the proposed heuristic is 2 and that this 
bound is tight, i.e. there exists an instance for which 
the ratio V 2roT/V OPT is arbitrarily close to 2. 

traversed by the algorithm. According to the tri- 
angle inequality V 2MST ~< 2I(MST). Furthermore, 
V °PT >~ I(MST); this is because any traveling sales- 
man tour on N O can be transformed into a tree by 
erasing one of its edges and the length of the 
shortest spanning tree is at least as short as the re- 
sulting tree, yielding the desired bound. 

(b) In order to show that the worst-case ratio of 
2 is tight it is sufficient to present a specific instance 
on which this ratio is achieved. We use a simple 
modification of the example used by Papadimitriou 
and Steiglitz [6, pp. 415-416] to show that the 
corresponding heuristic for the TSP has a worst- 
case ratio of 2. Suppose we are given n delivery 
customers and n backhaul customers so that 
d~ = b~ = 1 for i = l, . . . ,n .  For  simplicity we de- 
note the delivery customers by d~, d E . . . . .  dn and 
the backhaul customers by b~, b2 . . . . .  bn. Suppose 
the customers are located as depicted in Fig. l(a) 
with all inner points being backhaul customers and 
all outer points being delivery customers. Number 
the customers clockwise such that delivery point 
i and backhaul point i fall on the same polar 
through the center of the graph. Suppose also that 
the location of the warehouse coincides with cus- 
tomer d l .  Let the vehicle's capacity q = n + 1. The 
MST is depicted in Fig. l(a). Without loss of gener- 
ality, assume that in the MST the warehouse has 
a single child and moreover e ( d l ) =  0, e ( b l ) =  l, 
e(di )= - 1  for i # l ;  and e (b i )=O for i # l .  
Heuristic 2MST produces the graph depicted in 
Fig. l(b) where the optimal solution is depicted in 
Fig. l(c). As is shown in Papadimitriou and Steig- 
litz [6], choosing R = l, c = 1/n 2 and n arbitrarily 
large, the ratio between the lengths of these two 
graphs can be made arbitrarily close to two. [] 

Theorem 2. (a) The following inequality holds for 
any given instance of  the problem TSPDB 

v ZMST / v °PT <~ 2. 

(b) The worst-case ratio in (a) is tight. 

Proof. (a) As mentioned above the heuristic 2MST 
traverses twice through each of the arcs of MST. 
Array TOUR  with 0 the initial and the final node, 
which is the solution produced by the heuristic, 
is a subsequence of the sequence of nodes 

It is interesting to observe that the algorithm of 
Christofides [3, 6] for the TSP does not have 
a simple analog for the TSPDB. Applying the algo- 
rithm of Christofides on the set of nodes N O may 
result in a graph which cannot be transformed into 
a feasible solution. Consider the following example 
with q = 2, two delivery customers dl,  dE and two 
backhaul customers bl, b 2 with all demand and 
backhaul sizes equal one. Suppose the MST is such 
that the warehouse is connected to the two back- 
haul customers and each of the backhaul customers 



16 S. Anily. G. Mosheiov / Operations Research Letters 16 (1994) 11 18 

(a) 03 

d~° y (b~ d,~ 1, i= 1 ..... n) 

d..1 

(c) 

Fig. 1. (a) Minimum spanning tree; (b) tour obtained by heuris- 
tic 2MST; (c) optimal tour. 

is connected to one delivery customer. According 
to Christofides algorithm the MST should be com- 
pleted to an Eulerian graph connecting the two 
delivery customers one to the other resulting in the 
cycle 0 ~ bl ~ dx --* dz --* b2 ~ O. As can be 
seen neither of the cycle's directions is feasible. 

4. Numerical test 

In this section we compare the 2MST heuristic 
with the heuristic proposed in Mosheiov [5]. As 
mentioned in the Introduction, any closed tour on 
the set N contains a certain arc and a specific 
direction such that the tour can be made a feasible 
solution by disconnecting that arc and connecting 
its two endpoints to the warehouse. Thus, if the 
original tour is constructed by a TSP heuristic 
having a worst-case bound of 1 q- ~t then the gener- 
ated solution will be within 100(2 + a)% of the 
optimal solution. In this numerical test we use the 
"cheapest insertion" algorithm for the TSP to con- 
struct the initial tour. We call this procedure 
"cheapest insertion with delivery and backhaul" or 
shortly CIDB. The worst-case bound of the 
"cheapest insertion" heuristic for the TSP is known 
[7] to be 2, therefore, the worst-case bound of 
CIDB for the TSPDB is 3. Mosheiov [5] shows 
that the average relative error of CIDB is bounded 
by 10% on randomly generated problems with up 
to 25 customers. He compares the cost of CIDB 
with the optimal traveling salesman tour on the set 
of customers and the warehouse. 

Four  sets of 10 problems were generated and 
solved by both heuristics. All programs were coded 
in PASCAL on an AT-386. In all problem sets the 
total delivery size equals the total backhaul size 
and both are equal to the vehicle's capacity. Al- 
though, this is not required by any of the heuristics 
tested, it represents the case where the capacity 
constraint is the tightest possible. The sets differ in 
the number of customers N and the range [1, U] 
from which the delivery/backhaul sizes were gener- 
ated. After fixing the number of customers N, their 
locations were generated according to a uniform 

Table 1 
Average performance of heuristics 2MST vs. 
CIDB 

Set number N U V2Msx/v °DB 

1 10 10 1.038 
2 30 20 1.080 
3 50 20 1.072 
4 100 50 1.046 
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distribution on a square of size 500 x 500. The 
warehouse location was set to be the center of the 
square. All customers, except the last one, were 
scanned one by one to determine their type (delivery 
or backhaul) and their requirement size: if the 
up to date absolute difference between the total 

delivery and backhaul sizes exceeds U then the next 
customer type was selected to minimize this differ- 
ence. Otherwise the current c41stomer was set to 
a delivery (backhaul) one with probability 0.5. The 
requirement size of  each customer except the last 
one was uniformly generated on [1, U] .  The type 

(a) 250 

200- 

150- 

100- 

50- 

0- 

-50- 

-100- 

-150- 

-200- 

-250 
-250 -2bo -1~o -lbO -,~o sb 16o 1~o 2~  25o 

(b) 250 

200- 

150. 

100. 

50. 

O 

-50 

-100. 

-150. 

-200 

-250 
-250 -~o -1~o -lb0 -~0 0 sb 16o 1~o 26o 250 

Fig.  2. (a) Tour obtained by C I D B :  N = 100, U = 50, total length = 5108.2; (b) tour obtained by 2 M S T :  N = 100, U = 50, total 
length = 5276.8. 
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and requirement size of  the last customer  were 
determined to ensure that  NB = N o .  

In all four sets C I D B  performed somewhat  better 
than 2MST on average, see Table 1. Note  that 
2MST is of complexity O(N2), where C I D B  has 
complexity of  O(N3). Indeed, our  computer  study 
indicates that the running time of 2MST is substan- 
tially lower in all sets (in set 4, e.g., 2MST requires on 
average about  20% of the running time of  CIDB). 

In Figs. 2(a) and (b) we demonstrate  the actual 
tours obtained by each of  these two heuristics on 
a problem from set 4. The tour  produced by C I D B  is 
shorter by 1.95% than the one produced by 2MST. 
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