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WORST-CASE ANALYSIS OF HEURISTICS FOR THE BIN 
PACKING PROBLEM WITH GENERAL COST STRUCTURES 
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We consider the famous bin packing problem where a set of items must be stored in bins of equal capacity. In the 
classical version, the objective is to minimize the number of bins used. Motivated by several optimization problems that 
occur in the context of the storage of items, we study a more general cost structure where the cost of a bin is a concave 
function of the number of items in the bin. The objective is to store the items in such a way that total cost is minimized. 
Such cost functions can greatly alter the way the items should be assigned to the bins. We show that some of the best 
heuristics developed for the classical bin packing problem can perform poorly under the general cost structure. On the 
other hand, the so-called next-fit increasing heuristic has an absolute worst-case bound of no more than 1.75 and an 
asymptotic worst-case bound of 1.691 for any concave and monotone cost function. Our analysis also provides a new 
worst-case bound for the well studied next-fit decreasing heuristic when the objective is to minimize the number of bins 
used. 

The bin packing problem can be stated as follows: 
Given a list of n items each with size (0, 1], and 

an infinite sequence of empty bins, the objective is to 
assign each item to a bin such that the sum of the 
item sizes in a bin does not exceed 1, while minimizing 
the number of bins used. 

The bin packing problem is one of the most exten- 
sively studied combinatorial problems. It belongs 
to the class of NP-hard problems and, therefore, 
the existence of a polynomial-time algorithm to 
solve the problem optimally is unlikely. As a result, 
since the early 1970s much research has been con- 
ducted to solve the problem to near optimality. The 
goal of this analysis is to prove that while a given 
heuristic may fail to find the optimal solution for 
every instance, it generates a solution which is 
always guaranteed to be within a certain percentage 
of the optimal solution. In this sense, it is a perfor- 
mance guarantee on the quality of the solution 
provided by the heuristic. 

Johnson et al. (1974) was one of the first papers to 
present heuristics with performance guarantees on the 
bin packing problem. Subsequently, much research 
has been conducted to try to find heuristics with the 
best guarantee. An excellent survey of the research 
on this problem is available in Coffman, Garey and 
Johnson (1984). 

In this paper, we analyze the bin packing problem 
with a more general cost structure. Unlike the classical 
bin packing problem, where the cost associated with 
a given bin is either zero or one, depending on whether 
it is empty or not, in our model the cost of a bin is a 
function of the number of items in the bin. This 
general cost structure may invoke the need for a 
careful coordination of the distribution of items in the 
bins. Specifically, we assume that the cost of a bin is 
a monotone and concave function of the number of 
items in a bin. The monotonicity and concavity prop- 
erties are defined as: 

Monotonicity. The cost of a bin does not decrease by 
the inclusion of additional items. 
Concavity. The incremental cost due to the addition 
of an item to a collection of items is no more than the 
incremental cost resulting from the addition of an 
item to a set of items of smaller size. 

We briefly describe an example to convince the 
reader that different cost functions can result in dif- 
ferent optimal solutions. Consider a list consisting of 
four items of size 3/4 and 16 items of size V1 6. The 
optimal solution with respect to the classical bin pack- 
ing problem is to have four identical bins with one 
item of size 3/4 and four items of size V1I6, with a 
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total cost equal to 4. On the other hand, if the cost of 
a bin is given by &x, where x is the number of items 
in the bin, the optimal solution consists of four bins 
with one item of size 3/4 and one bin with all the items 
of size VA6, with a total cost equal to 4 + /i,6 = 8. 
Note that for cost function N/x, the optimal solution 
to the classical bin packing problem has a total cost 
of 445_> 8. 

In this paper, we seek heuristics for the general 
problem that have a fixed worst-case bound. That is, 
the heuristic is guaranteed to provide a solution whose 
cost is within a fixed ratio of the optimal cost. 

In the next section, we provide a formal definition 
of our model as well as a number of examples from 
diverse areas, such as reliability, quality control and 
cryptography, that motivate our discussion. In 
Section 2, we present the notation and definitions 
used throughout the paper. 

Since the heuristics we analyze were originally 
designed for the classical bin packing problem, in 
Section 3 we provide a brief overview of some of these 
heuristics. These include the first-fit, best-fit, first-fit 
decreasing, and best-fit decreasing algorithms ana- 
lyzed in Johnson et al., as well as next-fit decreasing 
analyzed by Baker and Coffman (1981), and next-fit 
increasing. 

In Section 4 we derive a characterization theorem 
that reduces the number of different cost functions 
that need to be studied for the purpose of worst-case 
analysis. That is, we demonstrate that to study the 
worst-case behavior of a particular algorithm, we only 
need to concentrate on a restricted class of cost func- 
tions. In addition, we present a polynomial-time pro- 
cedure that yields a lower bound on the cost of the 
optimal solution for any concave cost function. These 
results are used in subsequent sections to prove some 
performance results for the bin packing problem with 
general costs as well as the classical bin packing 
problem. 

For instance, in Section 5 we demonstrate that the 
lower bound described in Section 4 is also useful in 
proving some new worst-case results for the classical 
bin packing problem. To our knowledge, this is the 
first time a heuristic has been shown to have the so- 
called absolute performance ratio better than 2 for the 
classical bin packing problem. 

In Section 6, we analyze the performance of the 
next-fit increasing and the next-fit decreasing heuris- 
tics and find that both have fixed worst-case bounds. 
We also point out that some of the best heuristics 
developed for the classical bin packing problem may 
be arbitrarily bad for the model with general cost 
structures. 

Finally, in Section 7, we look at possible extensions 
of our results and give some concluding remarks. 

1. THE MODEL AND MOTIVATION 

Let L = (w1, w2, ... , wn) be a list of n real numbers, 
where we call wi E (0, 1] the size of item i. For 
simplicity, we also use L as a set, but this should cause 
no confusion. In this case, we say item i is in list L 
(i E L) to mean wi E L. The items are assigned to 
bins of unit capacity so that the total cost of all bins 
is as small as possible. The cost of a bin is a function 
of the number of items assigned to it and is represented 
by a concave and monotone functionfe#-* >, which 
specifies a cost f(j) for a bin containing j items. The 
concavity and monotonicity properties can be 
expressed as: 

Monotonicity. if j k ftj) f(k), 

Concavity: for all j > 1, fj+ )-f(j) - fj) - f( tj - 1). 

We also assume, without loss of generality, that no 
cost is incurred if a bin is empty, i.e., f(o) = 0. In 
addition, we normalize costs so that one unit is 
incurred for a bin with only one item in it, i.e.,f(l) = 
1. We denote by Yall possible functions f that satisfy 
the above four conditions. 

To motivate the model consider the following par- 
titioning problem: n components of size wi and prob- 
ability of working pi, i = 1, 2, ..., n, need to be 
partitioned into a number, say m, of disjoint sets 
X, j= 1, 2, ...,m, with Zlxj wi <1 for each= 
1,2, ... m in such a way that ET I (1 - ili) is 
minimized. 

Three optimization problems fall into this frame- 
work. One is in the area of systems reliability. Com- 
ponents are arranged into units where each unit is a 
serial system. The problem is to assign components 
to units of a total size no more than the capacity to 
minimize the expected number of nonworking units. 
One observes that, for the special case pi = p for all i, 
minimizing this objective is exactly the problem ana- 
lyzed in this paper. This is true because Xj is the set of 
components assigned to unit j and therefore, in this 
special case, the probability that a unit with k com- 
ponents does not work is f(k) = 1 - pk, a concave 
and monotone function of the number of items put 
in the bin. 

The previous example has an interesting interpre- 
tation in the area of quality control. Assume that 
items of size wi are packed into bins (or batches) of 
unit size and shipped to a client. The client opens 
each box and decides whether or not to accept the 
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batch if every unit in the batch passes a certain test. 
The objective of the producer is to assign the items to 
the bins to minimize the expected number of rejected 
(or returned) bins. When the probability of passing 
the test is identical for all items, i.e., it is equal to p, 
this model is identical to our model. In this case, 
the probability that a bin with k items is rejected is 
1 - pk and, therefore, minimizing the expected num- 
ber of rejected bins is again the problem analyzed in 
this paper. 

The other application is in the area of cryptography. 
Consider each component to be a coded message of 
length wi and with a probability pi of being decoded. 
A set of coding keys can each code a total message 
length of one unit. If message i is decoded, then the 
coding key is revealed and the entire unit is deci- 
phered. The objective is to find an assignment of 
messages to keys so that the expected number of 
revealed keys is minimized. Again, the problem ana- 
lyzed in this paper is the special case pi = p for all i. 
Here Xj is the set of messages that are coded with key 
j and, consequently, when pi = p for all i, the proba- 
bility of deciphering a key that coded k messages is 
f(k) = 1 - pk. 

Also consider the familiar capacitated vehicle rout- 
ing where customers have to be served by a fleet of 
identical vehicles initially located at a given depot. 
Each customer has a given demand, i.e., the amount 
of load that must be delivered to that customer. The 
objective is to find a set of routes that satisfies some 
constraints to minimize a given objective function. 
One important constraint is a capacity constraint on 
the amount of load delivered by a vehicle. Without 
loss of generality, we may assume that the vehicles' 
capacity equals 1 and the demand of a customer is no 
more than 1. Assume now that the cost of a route 
depends on the length v of the tour and the number 
of customers u visited in that tour, according to some 
functionf(v, u). It is easy to verify that whenf( * , * ) is 
concave, in both its arguments, the bin packing prob- 
lem and the vehicle routing problem are special cases 
of this problem. The model in this paper analyzes the 
case where f(v, u) = f(u), while Bramel (1992) ana- 
lyzes the case where f(v, u) = f(v). For the latter 
model, Bramel shows that this model can be solved 
asymptotically by solving the bin packing problem in 
specially designed subregions, in the same way as it is 
done in Simchi-Levi and Bramel (1990) and Bramel 
et al. (1992). Furthermore, an important inventory 
routing problem is also a special case, as shown in 
Anily and Federgruen (1990). 

Our model is also related to the class of so-called 
partitioning problems. In this class of problems, we 

are given a set of elements X = {xl, x2, ..., xAJ and 
an attribute wi for every xi E X. The cost of a subset 
X, C X depends on its cardinality as well as the sub- 
set sum (hoax, w1), that is,f(XI) = f( X,1 x we). The 
problem is to partition X into m disjoint subsets X1, 
X2, ...Xm to minimize E= f(XI), where m may or 
may not be prespecified. The problem has been ana- 
lyzed, under some simplified assumptions on the cost 
structure, in Hwang (1981), Barnes and Hoffman 
(1984), Chakravarty, Orlin and Rothblum (1985), and 
Anily and Federgruen (1991). Our model can be 
viewed as a special case of this class when f(XI) 
depends on the cardinality of Xi, if X, is feasible, and 
has infinite cost otherwise. 

In the next section, we introduce the notation and 
definitions that are used throughout this paper. 

2. NOTATION AND DEFINITIONS 

Let Zf (L) be the cost of the solution produced by a 
heuristic H on list L, using cost function f If H 
produces m nonempty bins and Xj is the set of items 
in the jth bin for j = 1, 2, ..., m, then ZfH(L) = 

J=uf(IXlI). Similarly, let Zf)(L) be the cost of the 
optimal packing of list L, with respect to cost function 
f If the optimal solution consists of m' nonempty 
bins and Sj is the set of items in the Jth bin for j = 1, 
2, ..., im', then Zf(L) = Xif(Sj1). 

We now formalize the worst-case analysis we con- 
sider in this paper. Let --( denote all nonempty lists 
of finite length. Given a heuristic H for any L E Y 
and f E X let RfH(L) = [ZfH(L)]/[Zf(L)]. The ab- 
solute performance ratio for H with respect to cost 
functionfe gis given by 

Rf= -inflr , I IRfH(L) < r, for all L E $. 

The asymptotic performance ratio for H with respect 
to cost functionfe E is given by 

Rf (to) 3inflr > 11 3N > 0, RH (L) < r, 

for all L E S with Zf7(L) 3 NJ. 

The absolute performance ratio for a heuristic H 
with respect to cost function f gives, for all possible 
lists, the heuristic solution's maximum deviation from 
optimality. The asymptotic performance ratio for H 
provides the heuristic solution's maximum deviation 
from optimality for all lists that are sufficiently 
"large." We say that H has no finite absolute perfor- 
mance ratio for the bin packing problem with general 
cost structures, if supEqRfR is unbounded. Similarly, 
we say that H has no finite asymptotic performance 
ratio for the bin packing problem with general cost 
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structures if supfejRb (oo) is unbounded. Note that, by 
definition, Rf(oo) < Rf' for all H andfe X- 

In this paper, we seek heuristics that work well for 
all possible cost functions f E X We concentrate on 
the class of heuristics that performs in an identical 
manner with different cost functions. In other words, 
with cost functions f and g, the heuristic produces 
exactly the same bins, though the cost of the solution 
may be different. 

The following family of cost functions, which we 
callflat costfunctions, plays a key role in our analysis. 
For any integer k > 1, the cost function fk is defined 
for each integer j 0 as: 

_= {j, if <k; 
f)Ike if k -,<j. 

Note that fk E - for all integers k > 1. Also, note that 
f, is exactly the cost function in the classical 
bin packing problem, where a unit cost is incurred if 
a bin has at least one item and no cost is incurred if a 
bin is empty. To simplify the notation, we let 
b*(L) = Z4*,(L) and bH(L) = Zj,(L), i.e., b*(L) is the 
number of nonempty bins in an optimal solution to 
the classical bin packing problem, while bH(L) is the 
number of nonempty bins produced by H. 

We now define the following terms which we use 
throughout the paper: Two lists L1 and L2 are consec- 
utive if L1 n L2 = 0, i.e., no item belongs to both of 
them, and for any i E L1 and j E L2 we have wi < wj. 
Similarly, define two bins to be consecutive if the lists 
consisting of the items from the first bin and the 
second bin are consecutive lists. Both of these defini- 
tions can be generalized in the obvious way to t 
consecutive lists (or bins) for any integer t a 2. 

Finally, we recall some definitions used throughout 
the bin packing literature. Call a bin feasible if the 
sum of the item sizes in the bin does not exceed 1. An 
item is said tofit in a bin if the bin resulting from the 
insertion of this item is a feasible bin. In addition, a 
bin is opened when an item is placed in a bin that was 
previously empty. 

3. BRIEF OVERVIEW OF BIN PACKING 
HEURISTICS 

We present a brief description of some of the simpler 
heuristics for the bin packing problem that have 
appeared in the literature. The first and most funda- 
mental heuristic is called next-fit (NF) and can be 
described in the following manner. Starting with item 
1, place this item in bin 1. Suppose that we are packing 
item j. Let bin i be the highest indexed nonempty bin. 

If item j fits in bin i, then place it there, else place it 
in a new bin indexed i + 1. Slightly more complicated 
is the first-fit (FF) heuristic, which can be described 
in the following manner. Place item 1 in bin 1. Sup- 
pose that we are packing item j. Place item j in the 
lowest indexed bin whose current content does not 
exceed 1 - wj. The best-fit (BF) heuristic has also 
been studied extensively and can be described suc- 
cinctly in the following manner. Place item 1 in bin 
1. Suppose that we are packing item j. Place item j in 
the bin whose current content is the largest but does 
not exceed 1 - wj. 

The heuristics described above assign items to bins 
according to the order they appear in the list without 
using any knowledge of subsequent items in the list 
(see, for details, Coffman, Garey and Johnson). These 
types of heuristics are called on-line heuristics. In 
contrast to this class, off-line heuristics accept as input 
the exact size of all the items in the list and, therefore, 
assigning the items to bins according to some a prior 
sequence is possible. For example, the first-fit decreas- 
ing (FFD) heuristic first sorts the items in nonincreas- 
ing order of their sizes and then performs first-fit. A 
similar interpretation holds for the best-fit decreasing 
(BFD), next-fit increasing (NFI) and next-fit decreas- 
ing (NFD) heuristics. Table I presents performance 
ratios for these heuristics on the classical bin packing 
problem. 

4. PRELIMINARIES 

In this section we touch upon two fundamental ideas 
which are referred to throughout this paper. The first 
is Theorem 1 that reduces the number of different 
cost functions that need to be studied for the purpose 
of worst-case analysis. The second is a procedure that 
yields a lower bound on the cost of the optimal 
solution to the bin packing problem with general costs. 

To prove Theorem 1 we need the following lemma. 

Lemma 1. For any integer m > 1, nonnegative real 
numbers xj, sj, and 4j for j = 1, 2, . . , m, such that 
4j ;! 4+1 for j = 1, 25 . .. ,m - 1, sl> Oand A, >O. 
we have 

A Xj4 < max xi 
=1 Sj/d i=1,2.j, Si' 

Proof. LetR = maxi=,2,.., m n jBythisdefinition 
we have 

i i 

xj<R E sj for i= 1,2, ...1M. 
'j=l j=l 
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Multiplying the ith inequality by the nonnegative 
value (Ai - Ai+,), where A,+I 0, and summing the 
resulting inequalities, we get 
m i mi 

E (Ai-Ai~ E x < R E (Ai -Ai+) sj. 
i=1 j=1 i=1 j=1 

It is easy to see that 

E (x x- ,= E A 
i=1 j=1 j=1 

and 

E (Ai - Ai+1) X si= E sjAz. 
i=1 j=1 j=I 

Hence, 
m m 

Z xA, R E sj. 
j=1 j=1 

Consider any heuristic H that constructs a solution 
independent of the cost function. The following theo- 
rem implies, surprisingly, that for such a heuristic H 
and cost functionfthere is a function in the family of 
flat cost functions (i.e., fk for some k 2 1) which has 
an absolute performance ratio that dominates the 
absolute performance ratio of f To this end, define 
4 = f(j) - f(j - 1), when the cost function f is clear 
from the context. Note that because f is monotone 
and concave, A4, 2 I 2 0 for all integers j > 1. 

Theorem 1. For any cost function f E _ list L E _V 
and any heuristic H that constructs a solution inde- 
pendent of the cost function f there exists an integer 
k 2 1, such that 

Zf4(L) Zf(Lk (1) 
Zf*(L) Zf~k(L)' 

Proof. Given a list L with n items and a cost function 
f forj = 1, 2, .. ., n, let x; (respectively, sj) denote the 

number of bins that contains at least j items in 
the solution produced by H (respectively, the optimal 
solution with respect to cost function f). In view of 
the definition of 4 and the fact that no bin can contain 
more than n items, we can write Zf(L) as n=i Xjj 
and Z7 (L) as E=1 sj41. Furthermore, L ? 0 implies 
that s1 > 0, so let k 1 be the smallest integer 
such that 

max xi x 
i= 1,2,...,n =1 Si I= Si 

Then, since all the conditions required in Lemma 1 
are satisfied, we have 

Z4(L) = 1 x7 I X Xi 

Zf4(L) - =i SA SiA Si 

For j > 1, let 

& fik() -fk( 1) {O if] k; 

and because H produces exactly the same bins with 
costsfandfk, we have 

n k 

Zf)k(L) = E X'J = X, 
j=1 j=1 

It is also clear that 
n k 

Zfk(L) < ES AJ =E Sj 
j=1 j=1 

because Zfk(L) is the optimal solution to L with 
respect to cost function fk, while Ejk=j sj is the cost 
using function fk of a feasible solution, namely the 
optimal solution to L with respect to f Therefore, 

ZfH(L) Ejk=1 xj Zfk(L) 
Zf*(L ) -< F, k 1 Zfk(L ) 

The above property is used in subsequent sections 
to obtain worst-case results for the NFI heuristic. The 
proof of these results, as well as worst-case results for 

Table I 
Asymptotic Performance Ratios 

Classical General Cost 
Bin Packing Structure 

Heuristic R I (00) Reference supfeFRfH (oo) Reference 

BF 1.7 Johnson et al. Xo Theorem 4 
BFD 1.222 ... Johnson et al. Xo Theorem 4 
FF 1.7 Johnson et al. Xo Theorem 4 
FFD 1.222 ... Johnson et al. Xo Theorem 4 
NF 2 Coffman et al. Xo Theorem 4 
NFD 1.691 ... Baker and Coffman 2 Theorem 5 
NFI 1.691 ... Property 3 1.691 ... Theorem 6 
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other heuristics, naturally involve a lower bound on 
the optimal solution to the bin packing problem. For 
this purpose, we introduce the following procedure 
and devote the rest of this section to prove that it 
yields a lower bound on the minimal cost of the bin 
packing problem with general cost structures. The 
procedure, which we call procedure A, first orders the 
list L in nondecreasing order of the item sizes, such 
that w, s w2s . .. . wn. Starting from item 1, assign 
the maximum possible items to bin 1 such that this 
bin is feasible. Close bin 1. Suppose that we are 
packing bin i, i > 1. If bin i is feasible, then assign the 
next item to bin i, or else close bin i and place 
the item in a new bin indexed i + 1. 

It is clear that any nonempty bin generated by this 
procedure contains one more item than the bin can 
actually hold, except for the first and possibly the last 
bin. Hence, the solution produced by procedure A 
does not consist of feasible bins and, therefore, is not 
a feasible solution to the bin packing problem. 

Let Sj be the set of items in the jth bin produced by 
procedure A for j = 1, 2, . . ., m' where m' is the 
number of nonempty bins. From the construction 
Eisj Wi > 1 for 1 < j < m' and possibly for j = m'. 
Given a feasible solution to the bin packing problem, 
let Xj be the set of items in the jth bin for j = 1, 2, 
.. ., m, where m is the number of bins used in this 
solution. Index these bins so that IX1 1 > 1X2 I ..* 

IXm I. 

The following property shows that the number of 
nonempty bins created by procedure A is no more 
than the number of nonempty bins used in any feasi- 
ble solution. 

Property 1. Here m' s m. 

Proof. Note that bins 2, 3, .. ., m' - 1 of the solu- 
tion produced by procedure A are not feasible bins, 
hence jiEL\(SiUSm,) wi > mi' - 2. Also note that 
XiESiUSlmwi > 1 by the selection of the items for bin 1 
and the fact that items in bin m' are the largest items 
in L. Adding these two inequalities, we have 
Si=n wi > m' - 1. Since any feasible solution to the 
bin packing problem always consists of a set of feasible 
bins, we also have m > Sin-l wi. Therefore, m' - 1 < 
m, or mi' s m. 

For simplicity of notation, let Sm'+i = Sm+2= 
Sm =0. Also, for j = 1, 2,..., m, define 

Sj UJ,=Si and Xj = U',X1, and note that Sm = 

Xm = L. 
The next property shows that if we look at the first 

j bins of the solution produced by procedure A and 
the first j bins of any feasible solution, A can never 

pack fewer items in the first bins than can any feasible 
solution. This is the basic property that provides the 
lower bound. 

Property 2. Here ISjI > IAj Ifor j = 1, 2, ..., m. 

Proof. For j = m, we have equality. Hence, we only 
need to show that the claim is true for j < m. Assume 
that j < m and, by contradiction, IXj I > IS1j. Then 
Eiexj wi > EiE-j wi, because Sj consists of the j3jj 
smallest items in L. If we let item lj be the smallest 
item not in Sj, then Zijxj wi >, j,=gj wi + wij. Note that 
the following relation also holds: 

E wj + W/ >j for allj < m, 
iEsj 

because bin 1 is the only bin that is not filled over 
capacity and adding item lj to it would clearly make 
bin 1 go over its capacity. Since Eixj wi < 1 for j = 1, 
2, . ., m, we have 

w > E w i +wi>j forallj<m, 
iEX3j 3Ej 

which is a contradiction. 

The proof that procedure A yields a lower bound 
will be based on a counting argument. For this purpose 
we need to construct the m lists of integers denoted 
by El, E2, ..., Em, using the following procedure, 
which we call procedure B. To begin, let E be an 
empty list. Starting with bin k = 1 if I Ski > IXkI, 
then append the list of integers (IXkj + 1, IXkj + 
2, ... , Ski) to list E. If I SkI < IXkI, then remove the 
last IXkj - ISki elements of list E. Let Ek be 
the current list E (i.e., Ek E- F), and increment k until 
k> m. 

By the construction of these lists, the number of 
elements in list Ek, denoted by JEkI, is exactly 
Zj1= {lSjj -IXjiA} = S3ki - iXkj, which is always 
nonnegative by Property 2. 

The next lemma establishes the main fact used to 
show that the cost of the solution produced by pro- 
cedure A provides a lower bound on the cost of any 
feasible solution to the bin packing problem with 
general cost structures. For this lemma we recall the 
definition air = f(j) - f(j- 1). 

Lemma 2. For any concave cost function f E Rand 
any integer p, 1 < p < m, we have 
P P 

E f(ISJI) < E f(IXJI) + Ei 1AJ (2) 
j=I j=I jEEp 

where j E Ep means j ranges over the elements of the 
list Ep. 
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Proof. The proof is by induction. If p = 1, then from 
Property 2, we have IS, I > I X I. Hence, inequality (2) 
is satisfied as an equality because 

1ill 

A lSI ) = A~XI 1) + Ai t = fa~x, ) + j 
j=IXII+I jE1E 

Assume that the claim is true for p = k - 1, i.e., 

k-I k-I 

E falsjl) <' E falxjl) + E Aj. (3) 
j=I j= I jEEk-I 

There are three cases to consider. 

Case 1. (ISkI = lXkl) Then we havef(ISkj) =f(lXkI) 
and Ek = Ekli. Combining these facts with inequality 
(3), we see that (2) is satisfied for p = k. 

Case 2. (ISkI > IXkI) Then 
Ski 

A |Sk ) =f(IXk1I) + 1 A 
j=lXkl+l 

f~Xk 1) + Z AJ - E 

jEEk jEEk-I 

and, therefore, adding this equation to inequality (3) 
shows that (2) also holds for p = k in this case. 

Case 3. (ISkI < IXkI) First note that if j E Ekl this 
integer represents an item that came from some bin i 
with i s k - 1, where tS, ?I j > IXi . This is the only 
case where elements are added to the list. So by 
the indexing of the bins in the feasible solution, j > 
IXii I IXkI. Let D represent the list of IXkI - ISkI 
elements removed by procedure B from list Ek-I to 
construct list Ek. If j E D, then j E Ek- and hence, 
j> IXkI =* 4 S A IxkI, since fis concave. 

Summing over the elements of the list D we have, 
IXkI 

A j S- IDI - Axkj < E Aj5 (4) 
jeD J=ISkI+l 

because IDI = IXkI - ISki and 4 >, j+, for all j > 1. 
By the definition of D, we have 

E j=E 'Ai+ E t 
jEEk-l jEEk jED 

IXkI 

< E Aj + E 4 (by 4) 
jEEk j=ISk|+l 

= ' i +f(IXk) -f(iSkl). 
jEEk 

Or, equivalently, 

A(|Skj) S f(IXkl) + E Aj AE j 
jE-Ek jE Ek- I 

Adding inequality (3) to this inequality, we see that 
(2) also holds for p = k in this case. Hence, (2) holds 
for all p < m and the proof is complete. 

We may conclude the following. 

Theorem 2. The cost of the solution produced by 
procedure A is a lower bound on the cost of the optimal 
solution to the bin packing problem with general cost 
structures. 

Proof. Since IEkI =-Ikj - IXkI for k = 1, 2, ..., ml 
then Em is an empty list, so from Lemma 2 we have 
X,=, f(1Sjj) _ Aj1=f(jXjI) for any feasible solution, 
where bin j contains items Xj for j = 1, 2, . . ., m. 

Our analysis indicates that a stronger result holds. 
Indeed, a variety of different procedures yields lower 
bounds on the optimal solution value to the bin 
packing problem with general cost structures, as dem- 
onstrated by the following corollary. 

Corollary 1. Any packing rule that results in consec- 
utive bins where each bin is filled over the capacity, 
except possibly the last bin (the bin with the largest 
items), provides a solution whose cost is a lower bound 
to the cost of any feasible solution to the bin packing 
problem for all concave cost functions. 

5. NEW RESULTS FOR THE CLASSICAL BIN 
PACKING PROBLEM 

In this section, we show that the lower bound provided 
by procedure A reveals new worst-case results for the 
classical bin packing problem. Specifically, we prove 
that the absolute performance ratio of the well-studied 
NFD heuristic (see Baker and Coffman) is no more 
than 1.75. Our proof requires the following property. 

Property 3. For any list L E V bNFI(L) = bNFD(L). 

Proof. For any two consecutive lists LI and L2, let 
L LI U L2. We clearly have 

bNFI(L) 6 bNFI(LI) + bNFI(L2) (5) 

and 

b NFD(L) bNFD (LI) + bNFD (L2). 

These inequalities are true because, given a set of 
consecutive feasible bins, NF1 and NFD can only 
improve on that solution. Then each heuristic can 
only improve on each other's solution. Hence, NFD 
and NFI, surprisingly, must produce exactly the same 
number of bins for any list L. 
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Theorem 3. For any list L E XV 

bNFD (L) bNF (L) 

b*(L) b*(L) * 1 

Proof. We prove the result for NF1 and by Property 
3 the result holds for NFD as well. Given any list L, 
let T be the sublist of L consisting of all items whose 
size is strictly greater than 1/2. Let Sj be the items in 
the jth bin produced by procedure A for ] = 1, 2, ... . 
m, where bin 1 contains the smallest items and 
bin m, the largest items. Clearly, any two items in L\T 
can share a bin, and no feasible bin can contain two 
elements from T. Omitting trivial cases, we assume 
that m 2 2 and L\TO 0. In view of these assumptions, 
a lower bound on any solution will be maxIm, I TI }. 
Define bin p to be the highest indexed bin produced 
by procedure A that has an element of L\T. 

Case 1. (p = 1) The solution produced by A consists 
of bin 1 which is feasible, while bins 2, 3, . . ., m have 
at most two items, each of which is an element of T. 
Clearly, we have I Tl 2 2(m - 2) + ISmI. Since bin 1 
is feasible, NF1 produces exactly 1 + 2(m - 2) + I Sm I 
bins, and therefore 

bNFI(L) = 1 + 2(m - 2) + ISmI 

I TI + 1 

s ITI + 2 (since m > 2) 
3 

3 
b*(L). 2 

Case 2. (m = p > 1) In the solution produced by 
procedure A, at most m - 1 bins are filled over their 
capacity. Therefore, if we take the largest item from 
bin 2 and move it to bin 3, bin 2 will be feasible. If 
we take the two largest items now in bin 3 and move 
them to bin 4, bin 3 will be feasible. Continuing this 
process until bin m - 1 we end up with m - 1 feasible 
bins and m - 2 items left over, as well as bin m. 
Clearly, these m - 2 extra items can be put two in a 
bin in a consecutive manner since these items are not 
in T. Bin m can be split into two consecutive bins by 
taking the largest item out if necessary. Hence, the 
bins created are consecutive, and from (5) we have 

bNFI (L) m - 1 + [ (m - 2)/2 1 + 2 

3 1 
s2 m+2 

7 
(since m > 2) 

7 
b*(L). 

4 

Case 3. (m > p> 1 and T n Sp = 0). The lower 
bound on the optimal solution is maxim, 2(m - p - 
1) + ISmI }, because there are 2(m - p - 1) + ISmI 
items in T. Hence, using similar reasoning as in case 
2, 

bNFI(L) 

up + f(p - 1)/21 + 2(m - p - 1)+ 

< P + P + 2(m - p) - 2 + ISm 

= m + I[2(m -p - 1) + ISm] 2 + ISmI 
3 
2 

+ 
I 

[2(m-p - 1) + ISmI] (since ISm I 2) 4 

-7 b*(L). 
4 

Case 4. (m > p > 1 and T n Sp ? 0) Let 
WA be the size of the largest item in bin p, and WB the 
size of the second largest item in that bin. Note that 
WA > 1/2 by the assumption that T n Sp $ 0 and the 
definition of p. 

Subcase 4.1. (WA + WB S 1) The lower bound on the 
optimal solution is maxim, 2(m - p - 1) + ISmI + 
1 }, because there are 2(m - p - 1) + I Sm I + 1 items 
in the list T. First note that bins 1, 2, ... , p - 2 have 
no items of size greater than ?/2. So if we let LI be the 
items in the first p - 2 bins, from case 2 we have 
bNFI(LI) s p - 2 + r(p - 3)/21. Let L2 be the items 
in bins p - 1 and p. We claim that bNFI(L2) s 3. Take 
the largest item from bin p - 1 and place it in bin p, 
so bin p - 1 is now a feasible bin. Taking the two 
largest items out of bin p (the items of size WA and WB) 

will now leave a feasible bin. Since WA + WB < 1, these 
two items fit in a bin together, and therefore we have 
constructed three consecutive bins consisting of the 
items in L2. Hence, 

bNFI(L) 

bNFI(LI) + bNFI(L2) + 2(m - p - 1) + ISmI 

p - 2 + r(p - 3)/21 + 3 

+ 2(m - p - 1) + ISmI 

u p + + 2(m - p- 1) + ISmI 
2~~~~~~~~~~~~ 

=2 m + 4(2(m -p - 1) + ISml) + I SM| - 

7 
-57 b*(L) (since ISmI s 2). 4 
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Subcase 4.2. (WA + WB> 1). The lower bound on the 
optimal solution is now maxIm, 2(m - p) + ISmI }, 
because there are 2(m - p) + ISSm I items that must be 
in separate bins. Note that bins 1, 2, . .. , p - 1 have 
no items of size greater than 1/2. So if we let 
LI be those items, we have bNFI(L1) s p - 1 + 
[ (p - 2)/21. Let L2 be the items in bin p. Clearly 
bNFI(L2) = 2. Hence, 

bNFI(L) 

s b NF(LI) + bNFI(L2) + 2(m - p - 1) + ISmI 

up-1 + [(p-2)/21 +2 

+ 2(m - p - 1) + ISmI 

<p +1 +2 + 2(m-p- 1) + ISmI 

2 m+ 
I 

(2(m -p) + ISmI) + 
3 

ISmI 
3 

7 < b*(L) (since IUSE I-< 2). 
4 

Therefore, in all possible cases the solution provided 
by NF1 is within 1.75 of the optimal solution, and 
hence, by Property 3 both NF1 and NFD have absolute 
performance ratios of no more than 1.75 for the 
classical bin packing problem. 

Johnson et al. provide an example where the ratio 
of the number of bins produced by NF1 and the 
number of bins used in the optimal solution is exactly 
1.7. This example gives the largest deviation from 
optimality known. 

6. ANALYSIS OF HEURISTICS FOR THE 
GENERAL COST MODEL 

In this section we analyze heuristics for the bin packing 
problem with general cost structures, and give some 
worst-case results. We start with a theorem whose 
proof is given in Bramel. 

Theorem 4. NF, FF, BF, FFD and BFD have neither 
finite absolute performance ratios norfinite asymptotic 
performance ratios for the bin packing problem with 
general cost structures. 

It is interesting to observe (see Table I) that while FFD 
and BFD are among the best known heuristics for the 
classical bin packing problem, in terms of deviation 
from optimality, they can perform very poorly with 
the general cost structure. We, therefore, turn our 
attention to heuristics that have finite performance 

ratios for the bin packing problem with general cost 
structures. 

Our first result is that the best absolute and asymp- 
totic performance ratios possible for NFD over all cost 
functions f in EF is 2. For a formal proof, the reader 
is referred to Bramel. 

Theorem 5. For any L E Y and for all f E J the 
following relation holds [4fFD(L)/Z(L)] s 2, and, 
moreover, for any given E > 0 there exists an f E X 

such that Rj FD(o) 2 21- _. 

6.1. Next-Fit Increasing 

In this subsection, we consider the NFI heuristic and 
prove the following result. 

Theorem 6. For any list L and for allf E 3 we have 

R7 FI(L) 

ZNFI(L) 

Zf4(L) 

6 minj1.75, 1.7 + 1i .691... + 
3 

b*(L)' 

andfor allf E R7FI (00) 6 R7FI(oo) - 1.691 

RNFI (0o) N R7FI(oo) = 1.691 

The proof of Theorem 6 requires several steps. We 
start with the following lemma. 

Lemma 3. For any cost function f E Yand any two 
consecutive lists L1 and L2, let L - L1 U L2. Then 

Z FI(L) 6 Z FI(L1) + zf (L2). 

Proof. Let X1, X2, ..., Xmj be the nonempty bins 
produced by NFI on list LI, indexed in the order the 
bins are opened. Let Y1,Y2, ..., YM2 be the nonempty 
bins produced by NFI on list L2, also indexed in the 
order the bins are opened. We prove the lemma by 
induction on the value of IL2 1 

If IL21 = 1, then ZfFI(L2) = 1. Given the NFI 
solution to Li, if the item in L2 fits in bin mlI, then it 
would be placed there in the NFI solution to list L. 
Therefore in this case, 

ZFI(L) = ZFI(LI) + A Ixml+l 6 Zf I(L1) + Zi FI(LA) 

If the item in L2 does not fit in bin mlI, then the item 
would be in a bin by itself with added cost of exactly 

f= Zf(L2). Therefore, the claim is true for all 
consecutive lists L, and L2 with L2 1 = 1. 

For k : 2 assume that for all consecutive lists 
L, and L2 with IL21 6 k - 1 we have ZfNFI(L) 6 
ZjNFI(LI) + ZjNFI(L2), where L L1 U L2. Given two 
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consecutive lists L1 and L2, with IL2 I= k, perform 
heuristic NF1 separately on each of these lists. Using 
the notation defined above, let Lj = L1 U Y1 and 
Lf = L2\Y1. Therefore, list Lj consists of list L1 
and all the items from the first bin of the NF1 solution 
to list L2, while list L' consists of all the remaining 
items. Moreover, because IY >I 1, we have I L2 
k - 1. From the induction assumption, because L 
and L are consecutive lists and Lj U L2 = L, we 
have 

ZNFI(L) < Zf1(L ) + Zf (L2). 

Now, the first ml - 1 bins of the NF1 solutions to L1 
and L' are identical. However, items in the set Y1 
may now be placed in bin ml in the NF1 solution to 
L . Let B be this set of items from Y1 that are placed 
in bin mIn. Clearly B C Y1 consists of the IBI smallest 
items of Y1. In the NFI solution to Li, bin mI con- 
sists of IXm1I + IBI items and an extra bin m1 + 1 
consists of I I - IBI items, hence we have 

ZNFz _ zNFI{L\_t 
lf I(L1 (LI)1J J lIml 1) 

+f(lXmlI + IBI)+f(1Yl - IBI). 

On the other hand, the NFI solution to L2 consists 
of the same bins as the NFI solution to list L2 with 
the first bin removed, and therefore Z FI(L2) = 

Z FI(L2) - f(I YI ). Using the induction assumption, 
we have 

Z FI(L) Z7 FI(Li)-f(IXmiI)+f(IXmI + IBI) 

+f(I Y1 I - IBI) +Zf (L2)-f(I Y1 iI) 

To prove the lemma, we need only show that 

f(lXmlI + IBI)-f(lXmlI) 

+f(l Y1I - IBI)-f(I Y1 1) 0, 

or, equivalently, that 

f(IXmiI + IBI)-f(lXml )?f(I Y1) -f(IYiI - IBI). 

Becausefis concave and monotone, it should be clear 
that this is equivalent to showing that IXmi I 2 I YI I - 
I BI. But this is clearly true because the number of 
items in bins produced by NF1 is nonincreasing with 
the bin index. So IXmi I + IBI > I Y' I and hence the 
lemma is true. 

It is interesting to observe that if the lists L1 and L2 

are not consecutive, the lemma does not necessarily 
hold, as demonstrated by the following example. Con- 
sider lists L1 = L2= (1/3, 2/3) with cost functionJf. 

The solution produced by NFI on the union of the 
lists produces three bins, while the NFI solution to 
each list produces one bin. 

In addition, note that Lemma 3 can be generalized 
to t consecutive lists for any integer t 2 2, and the 
claim in the lemma is changed in the obvious way. As 
a result we have the following corollary. 

Corollary 2. If a heuristic H always produces consec- 
utive bins, then for all L E Yand f E X Z, FI(L) , 
ZfH(L), that is, NF1 is the best heuristic among all 
those that produce consecutive bins. 

We can now present Lemma 4, which is crucial to 
proving the worst-case results for the NFI heuristic. 
Let Xj be the set of items in the jth bin produced by 
the heuristic NFI on list L for j = 1, 2, . . ., m, and 
let Sj be the set of items in the jth bin produced by 
procedure A on list L forj = 1, 2, .. ., m'. In addition, 
let ZfA(L) denote the cost of the solution produced by 
procedure A using cost function f From Property 1 
we know that m ' m m. So for notational purposes let 
Sm +I = Sm'+2 = ... = Sm = 0, and as in the previous 
section define Xj = U'1,=Xi and Sj = Uj_=,Si for] = 1, 
2, . .. , m. 

The following lemma characterizes the absolute per- 
formance ratio of NFI on the family of flat cost 
functions described in Section 2. 

Lemma 4. For any cost function fk, k > 1, and for all 
L E Y we have 

ZNFI(L) ZN*FI(L) 
1 

Zftk(L) Zftk(L) k 

Proof. All the bins in the solution produced by pro- 
cedure A are filled over the capacity, except bin 1 and 
possibly bin m'. We now construct a feasible packing 
from this solution. For each bin i, i = 1, 2, . .. ., m', 
we open a new bin to which we transfer the largest 
element of Si. Clearly, the new packing consists of 
consecutive bins and for any cost function f E E its 
total cost equals: 

E [f(1S1l - 1) + f(1)] = if(ISil - 1) + m'. 

In view of Corollary 2, 

m' 

ZjFI(L) S f(ISi - 1) + . 
i=lI 

Let I(B) be the indicator function of the Boolean vari- 
able B. Consider any cost function of the form fk for 
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k 2 1, then we have 

zkF(L) Ei'l fk(ISiI - 1) + m' 

Zfk(L ) 
Mt 

f S 
YI= I fA |Si 1) 

-I1+ m'- Zi-1 I(lSilok) 
= 1+ 1 (ISil 'I(S1j_-k) + k*I(Isi>k)) 

6 1+- 

where 
_v= 

El fk(lSII)+X='l [fk(ISI - 1)+k(1) - 

fk(IsiI)I. 

The second equality follows from the fact that 

fk( Si - 1) + fk(l) - fA Si ) I( Sil >k) 

_J1, if ISil>k; 
t0, if ISiI s k. 

We can now complete the proof of Theorem 6. 

Proof. Due to Theorem 1, there exists an integer 
k > 1 such that 

ZfI(L) k 

Zf(L) j"; Zfk(L) 

If k = 1, then from Section 5 we know that NFI has 
an absolute performance ratio of at most 1.75 for the 
classical bin packing problem. To derive the second 
value in the bound, we recall the tight asymptotic 
performance bound for NFD, proved by Baker and 
Coffman. The authors show that bNFD(L) < 1.691 ... 
b*(L) + 3. Therefore, by Property 3, RFI(L) < 
1.691 ... + 3/b*(L). The third value in the upper 
bound for k = 1 is an immediate consequence of 
Johnson et al., who showed that the number of bins 
produced by any BF or FF heuristic is no more than 
1.7 + 2/b*(L) times the optimal number of bins. In 
fact, it is easy to show that for a nondecreasing 
sequence of items NF and BF (or FF) are identical, 
and hence we have ZfjFI(L) s 1.7 + 2/b*(L). On the 
other hand, if k , 2, then Lemma 4 tells us that the 
absolute performance ratio for NFI with respect to fk 

is at most 3/2. Hence the theorem is proven. Clearly 
from these results, RYFI(oo) ? 1.691 ... for all fe E 
and the bound is tight forf. 

7. EXTENSIONS AND CONCLUSIONS 

In this section we look at a number of possible exten- 
sions of our analysis and results. We first look at the 
question of how well a heuristic can perform in terms 

of asymptotic worst-case performance, if it does not 
take into account the structure of the cost function f 
The following theorem, whose proof is given in 
Bramel, provides a lower bound on the asymptotic 
performance ratio of any heuristic that has no infor- 
mation about the cost function. 

Theorem 7. If H does not use any information about 
the cost function f then Rf(oo) > 4/3. 

This result merely says that the techniques devel- 
oped in this paper cannot be extended to produce 
heuristics with asymptotic performance ratios better 
than 4/3. However, algorithms that make use of the 
particular objective function may well have superior 
performance guarantees. 

Next, we try to extend our results by relaxing the 
monotonicity assumption of the cost function f We 
observe that the proof of Lemma 2 uses only the 
concavity assumption of the cost function and, there- 
fore, the solution produced by procedure A still yields 
a valid lower bound even if we relax our assumption 
that f is a monotone function. The monotonicity of 
the cost function is needed, however, for the purpose 
of worst-case analysis. If the monotonicity require- 
ment is relaxed, one can construct a nonempty list 
where the optimal solution has zero cost, which would 
make any finite worst-case bound impossible to attain. 

Another possible extension of our results is based 
on observing that the cost structure analyzed in the 
previous sections is a special case of a submodular 
cost function. Hence, one may consider worst-case 
analysis of other submodular cost structures. How- 
ever, the heuristics we have found to have good per- 
formance ratios for the previous cost structure do not 
have good performance ratios for general submodular 
costs, as can be seen by Theorem 8. Consider the 
following cost structure: Associated with each item 
are two attributes, a real number ri and its size wi. Let 
the cost of a bin containing items represented by the 
set S be F(S) = maxiEs{rij. It is easy to verify that this 
cost is submodular. Now construct a list in the follow- 
ing manner: Starting with L = 0, for each integer 1 < 
i < n, add to the list one item of size 1/2i, and attribute 
value n, and 2i - 1 items of size 1/2', and attri- 
bute value 1. In the end we have a total of X,= 2' 
items. A straightforward calculation shows that the 
NF1 and NFD heuristics produce a solution with a 
total cost n2, while the optimal cost is 2n - 1. We thus 
have Theorem 8. 

Theorem 8. There exist submodular cost structures 
for which NF1 and NFD do not havefinite performance 
ratios. 



298 / ANILY, BRAMEL AND SIMCHI-LEVI 

ACKNOWLEDGMENT 

The research of the second and third authors was 
supported in part by ONR contract NOOO 1 4-90-- 1649 
and NSF contract DDM-89227 12. 

REFERENCES 

ANILY, S., AND A. FEDERGRUEN. 1990. A Class of 
Euclidean Routing Problems With General Route 
Cost Functions. Math. Opns. Res. 15, 268-285. 

ANILY, S., AND A. FEDERGRUEN. 1991. Structured Par- 
titioning Problems. Opns. Res. 39, 130-149. 

BAKER, B. S., AND E. G. COFFMAN JR. 1981. A Tight 
Asymptotic Bound for Next-Fit-Decreasing Bin- 
Packing. SIAM J. Alg. Disc. Meth. 2, 147-152. 

BARNES, E. R., AND A. J. HOFFMAN. 1984. Partitioning, 
Spectra, and Linear Programming. In Progress in 
Combinatorial Optimization. W. Pulleyblank (ed.). 
Academic Press, Toronto, 13-26. 

BRAMEL, J. 1992. Analytical Results and Algorithms 
for Vehicle Routing Problems With Bin-Packing 
Features. Ph.D. Thesis, Columbia University, 
New York. 

BRAMEL, J., E. G. COFFMAN, JR., P. SHOR AND D. SIMCHI- 
LEVI. 1992. Probabilistic Analysis of Algorithms for 
the Capacitated Vehicle Routing Problem With 
Unsplit Demands. Opns. Res. 40, 1095-1106. 

CHAKRAVARTY, A. K., J. B. ORLIN AND U. G. 
ROTHBLUM. 1985. Consecutive Optimizers for a Par- 
titioning Problem With Applications to Optimal 
Inventory Groupings for Joint Replenishment. 
Opns. Res. 33, 820-834. 

COFFMAN, E. G. JR., M. R. GAREY AND D. S. JOHNSON. 
1984. Approximation Algorithms for Bin Packing- 
An Updated Survey. In Algorithm Design for Com- 
puter System Design, G. Ausiello, M. Lucertini, and 
P. Serafini (eds.). Springer-Verlag, Berlin and New 
York, 49-106. 

HWANG, F. K. 1981. Optimal Partitions. J. Optim. 
Theory Appl. 34, 1-10. 

JOHNSON, D. S., A. DEMERS, J. D. ULLMAN, M. R. GAREY 
AND R. L. GRAHAM. 1974. Worst-Case Performance 
Bounds for Simple One-Dimensional Packing 
Algorithms. SIAM J. Comput. 3, 299-325. 

SIMCHI-LEVI, D., AND J. BRAMEL. 1990. On the Optimal 
Solution Value of the Capacitated Vehicle Routing 
Problem With Unsplit Demands. Working Paper, 
Columbia University, New York. 


	Article Contents
	p. 287
	p. 288
	p. 289
	p. 290
	p. 291
	p. 292
	p. 293
	p. 294
	p. 295
	p. 296
	p. 297
	p. 298

	Issue Table of Contents
	Operations Research, Vol. 42, No. 2 (Mar. - Apr., 1994), pp. 197-388
	Front Matter [pp. 197-388]
	In This Issue [pp. 198-200+388]
	OR Forum
	Needed: An Empirical Science of Algorithms [pp. 201-212]

	OR Practice
	Insights on Modeling from a Dozen Experts [pp. 213-222]
	Integrated Simulation and Optimization Models for Tracking Indices of Fixed-Income Securities [pp. 223-233]

	Scheduling Multiple Variable-Speed Machines [pp. 234-248]
	The Multi-Airport Ground-Holding Problem in Air Traffic Control [pp. 249-261]
	A Stochastic Analysis of State Transitions in an Air-Space Management System [pp. 262-273]
	An Algorithm for the Multiattribute, Multicommodity Flow Problem with Freight Consolidation and Inventory Costs [pp. 274-286]
	Worst-Case Analysis of Heuristics for the Bin Packing Problem with General Cost Structures [pp. 287-298]
	Heuristic and Special Case Algorithms for Dispersion Problems [pp. 299-310]
	Conditional Stochastic Decomposition: An Algorithmic Interface for Optimization and Simulation [pp. 311-322]
	Process Control with Learning [pp. 323-336]
	Optimal Control of a Two-Station Tandem Production/Inventory System [pp. 337-350]
	Sample Path Derivatives for (s, S) Inventory Systems [pp. 351-364]
	Observing Queues before Joining [pp. 365-371]
	On the Conservation Law and the Performance Space of Single Server Systems [pp. 372-379]
	The Relationship between Bernoulli and Fixed Feedback Policies for the M/G/1 Queue [pp. 380-385]
	Back Matter



