
The Preemptive Swapping Problem on a Tree

Shoshana Anily
Faculty of Management, Tel-Aviv University, Tel-Aviv 69978, Israel

Michel Gendreau
CIRRELT, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7

Gilbert Laporte
GERAD, CIRRELT, and Canada Research Chair in Distribution Management, HEC Montréal,
3000, chemin de la Côte-Sainte-Catherine Montreal, Quebec, Canada H3T 2A7

This article considers the swapping problem on a tree. In
this problem at most one object of some type is available
at each vertex, and each vertex also requests at most
one object of a given type. The total demand and the
total supply of each object type are identical. The prob-
lem is to determine a minimum cost routing plan starting
and ending at a prespecified vertex which is the depot,
for a single vehicle of unit capacity and m object types,
so that all vertex requests are satisfied. We consider the
preemptive mode in which objects may be temporarily
dropped along the way. It is shown that this problem is
NP-hard. A heuristic with a worst-case performance ratio
of 1.5 is developed. Finally, it is shown that the case where
m = 1 is polynomially solvable. © 2011 Wiley Periodicals,
Inc. NETWORKS, Vol. 58(2), 83–94 2011

Keywords: swapping problem; stacker crane problem; Trans-
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1. INTRODUCTION

The swapping problem (SP), introduced by [2], is defined
as follows. Let G = (V , E) be a connected undirected graph
where V = {1, . . . , n} is the vertex set, vertex 1 represents a
“depot,” and E ⊆ {[v, w] : v, w ∈ V , v < w} is the edge set.
Each edge e ∈ E has a non-negative cost or length ce ≥ 0. Let
also c(v, w) be the length of a shortest path between vertices
v and w. Let O = {0, . . . , m} be a set of “object types.” Object
types 1, . . . , m are real objects whereas an object of type 0,
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also called the “null object,” is a dummy object introduced
to simplify the presentation. With each vertex v is associated
with a pair (av, bv), where av, bv ∈ O and possibly av = bv;
av represents an object type supplied by v, while bv represents
an object type required by v. If v has no supply or no demand,
this is represented by the null object av = 0 or bv = 0. A
vertex with av = bv = 0 is called a “transshipment vertex.”
It is assumed that the graph is “balanced,” that is, the total
demand of each object type is equal to its total supply. In
the SP, vehicles of finite capacity are used to swap objects
between vertices in such a way that each vertex receives its
required object. Vehicles start and end their trip empty at
the depot and must perform all swapping operations while
minimizing the total distance traveled.

In this definition of the SP, it is implicitly assumed that at
most one object is supplied or required by any vertex. This
assumption is not restrictive as long as the number of objects
supplied or required by each vertex is uniformly bounded,
as the vertices can be replicated to accommodate the case of
multiple objects. As in [2], we assume that there is a single
vehicle of unit capacity. In such problems, the objects can be
“preemptive,” “non-preemptive,” or “mixed.” In the preemp-
tive case, all objects can be dropped at intermediate vertices
while in the non-preemptive case, all objects remain in the
vehicle between their origin and their destination. The mixed
case allows some of the objects to be preemptive while the
others are non-preemptive, as was done in [1, 2]. Here we
assume that the preemptive mode applies.

Applications of the SP arise in the optimization of robot
arm movements [4] and in printed circuit board assembly [5],
as well as in the operations of automated guided vehicles and
of material handling devices used in manufacturing systems
(Katoh and Yano, 2006). The SP generalizes the classical
stacker crane problem (SCP) (Frederickson et al., 1978) in
which objects must be swapped between specified origin-
destination pairs without preemption. The SCP is a special
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TABLE 1. Complexity results for the SCP and the SP.

Stacker crane problem Swapping problem

Graph structure Non-preemptive Preemptive Mixed Non-Preemptive Preemptive Mixed

General NP-harda NP-hardb NP-hard NP-hardc NP-hardc NP-hardc

Tree NP-hardd Polynomiale NP-hard NP-hardd NP-hardf NP-hard
Line Polynomialg Polynomialh Polynomiali Polynomiali Polynomiali Polynomiali

Circle Polynomialj Polynomialj ? ? ? ?

aFrederickson et al. [15] provide a heuristic with a worst-case performance ratio of 9/5.
bBy reduction from the traveling salesman problem.
cAnily and Hassin [2] provide a heuristic with a worst-case performance ratio of 5/2. For m = 2, Chalasani and Motwani [9] improve this ratio to 2.
dFrederickson and Guan [11] provide several heuristics with bounded worst-case performance ratios.
eFrederickson and Guan [10].
f This article, Section 3. A heuristic with a worst-case performance ratio of 3/2 is provided in Section 4. The special case where m = 1 is polynomial, see

Section 5 of this article.
gAtallah and Kosaraju [4], Ball and Magazine [5].
hAtallah and Kosaraju [4].
iAnily et al. [1].
jAtallah and Kosaraju [4].

case of the SP in which each object type is supplied and
required by only one vertex. As the SCP is NP-hard, this
is also the case for the SP. A branch-and-cut algorithm [7]
and heuristics [8] have been developed for the SP on general
graphs. Given the NP-hardness of the problem, it makes sense
to investigate its complexity on simpler structures, such as
trees. Katoh and Yano [15] mention applications of the SP and
of the SCP on tree structures in the context of automated store
and retrieval systems. Tree structures are also encountered in
some river and highway networks [6] and in some pit mine
railways [16]. Known complexity results on the SCP and the
SP for various graph structures are summarized in Table 1.

The purpose of this article is to investigate the preemptive
SP on a tree graph. In Section 2, we introduce some notation
and preliminary results. We then show in Section 3 that the
problem is NP-hard. In Section 4, we develop a polynomial
time heuristic with a worst-case performance ratio of 1.5.
Finally, in Section 5, we show that the single-type case (m =
1) can be solved in polynomial time. The complexity of the
problem for any fixed value of m > 1 is an open question.

2. NOTATION AND PRELIMINARY RESULTS

The SP considered here is defined on a tree T = (V , E).
Everywhere in this article, except for the proof of Theorem 2,
we assume that T is rooted at the depot. We denote by z∗ the
cost of an optimal SP solution, and by Tv = (Vv, Ev) the
subtree rooted at v. If v is a leaf of T , then Tv = ({v}, ∅).
As in [10, 11], we assume without loss of generality that
all transhipment vertices, except the root, have a degree at
least 3. Whereas the SP is defined on an undirected graph, its
solution is better represented by a directed graph. A solution
is a sequence of arcs, each associated with a certain object
type. We will therefore consider the set of 2|E| arcs, denoted
by A, connecting two adjacent vertices of T . For each edge
e = [u, v] ∈ E, both the arc (u, v) directed from u to v,

and the arc (v, u) directed from v to u, are in A. In addition,
we define a set of (m + 1)|A| “loaded arcs,” denoted by Ā,
which associates an object type to each arc in A. Thus, Ā =
{(u, v)i : (u, v) ∈ A, i ∈ O}. A “service path” of object i ∈ O
is a sequence of loaded arcs (u�, u�+1)

i ∈ Ā, � = 1, . . . , L,
which is traversed while the vehicle is loaded by object i,
where the initial vertex on the path supplies object i, i.e.,
au1 = i, and the ending vertex on the path demands object
i, that is, buL+1 = i. A “service cycle of the null object” is a
sequence of loaded arcs (u�, u�+1)

0 ∈ Ā, for � = 1, . . . , L,
which is traversed while the vehicle is empty and u1 = uL+1.

A feasible solution to the SP consists of a set of service
paths, as well as service cycles of the null object. The loaded
arcs of a service path of object i �= 0 do not necessarily
occur consecutively in the solution because of the preemption
option, but their order is preserved. In particular, the first
loaded arc on the service path departs from a supply vertex
of object i and the last loaded arc enters a demand vertex of
object i. Suppose that V contains ni vertices whose supply
is i but whose demand is different from i. If a vehicle never
unloads an object at a vertex to immediately load the same
object, then any feasible solution contains exactly ni service
paths of object i. Each vertex v for which i = av �= bv is a
starting point for such a service path, and each vertex v for
which i = bv �= av is the end point of such a service path.
The set of loaded arcs carrying the null object in a feasible
solution forms service paths and service cycles of the null
object. However, the loaded arcs of the null service paths are
not necessarily traversed consecutively in a feasible solution,
or in the order defined by the service path, as any vertex can
be assumed to hold or require the null object.

As in [1], we construct the directed “multitype multigraph
B,” which we call the “basic graph.” Multitype refers to the
fact that an object type is associated with each arc, referred
to as a loaded arc; multigraph means that several copies of
the same loaded arc (origin, destination, object type) can
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exist. More specifically, the loaded arcs of the basic graph
can be partitioned according to their object type, that is,
B = (V , Ā0 ∪ · · · ∪ Ām). We construct B as follows: First
initialize the sets of loaded arcs Ā0 := Ā1 := . . . =: Ām = ∅.
Consider in turn every vertex v ∈ V , the subtree Tv and the
predecessor (father) vertex p(v) of v. For every i ∈ O, com-
pute �i

v = |{w ∈ Vv : aw = i}| − |{w ∈ Vv : bw = i}|.
The quantity �i

v represents the net supply of object i in Tv.
If �i

v is positive, then �i
v copies of the loaded arc (v, p(v))i

are added to Āi. If �i
v is negative, then |�i

v| copies of loaded
arc (p(v), v)i are added to Āi. |�i

v|, for the case �i
v > 0 (resp.

�i
v < 0), represents the minimum number of times the loaded

arc (v, p(v))i (resp. (p(v), v)i) will be traversed in an optimal
SP solution. This construction process ensures the existence
of a service path between the origin of every object and at least
one of its destinations. The total length of the loaded arcs of
B is denoted by z(B), and thus z(B) ≤ z∗. Constructing B can
be achieved in O(n) time, starting from the leaves of T and
gradually moving toward the root. The basic graph is directed
and the in-degree of each vertex is equal to its out-degree, as
for every subtree Tv we must have

∑
i∈O �i

v = 0. The loaded
arcs of the basic graph B form a union of service paths, where
each service path of object i ∈ O starts at a vertex which is
the origin of i and ends at a vertex that demands i. The graph
B is not necessarily connected, but when it is connected, it
is also strongly connected as the in-degree of each vertex is
equal to its out-degree. If the basic graph B is not connected
then it can be partitioned into strongly connected compo-
nents. We note that strong connectivity is determined by the
arcs without considering the load of the arcs. Therefore, even
if B is strongly connected, it may not be possible to obtain
a feasible SP solution by using its loaded arcs. Consider for
example the tree depicted in Figure 1, where the label of v is
(av, bv), and the corresponding basic graph where the label
of each loaded arc is the object type carried on this arc. No
SP solution using the loaded arcs of B exists given that the
vehicle must start and end its trip empty at vertex 1.

A “feasible path” in the basic graph B consists of a
sequence (u�, u�+1)

i� ∈ Ā, � = 1, . . . L, i� ∈ O of loaded
arcs of B, which a unit capacity vehicle can follow assuming
that the vehicle starts empty at the first vertex u1. This means
that the necessary object on each loaded arc is available when
the vehicle reaches the tail of the loaded arc.

We also note that a vertex v with av = bv ∈ O\{0} can-
not be replaced by a transshipment vertex, as the supply at

FIG. 1. Instance for which B is connected but does not contain a feasible
SP solution.

FIG. 2. Strongly connected graph in which not all vertices are mutually
reachable.

vertex v is not necessarily used for covering the demand of the
vertex. To see this, consider the example in Figure 1 where
(a1, b1) = (1, 1). This change does not affect the basic graph
B, but a feasible SP solution now exists. However, without
loss of generality, the leaves of the tree can be assumed to
supply a different object type from the one they demand.

The example of Figure 1 demonstrates that a stronger
property than strong connectivity is required to guarantee
a feasible SP solution. To this end we recall the property of
“reachability” introduced in [1]. Vertex w is said to be reach-
able from vertex u if there exists a feasible path from u to
w in the basic graph B, taking into account the object type
carried on each arc. For example, in Figure 1, vertices 1 and
w are reachable from u, vertices 1 and u are reachable from
w but neither u nor w is reachable from 1. Indeed, starting
from vertex 1, it is impossible to supply vertices u and w
without traversing an arc more than once. Thus reachability
is not symmetric but is transitive. Two vertices are “mutually
reachable” if they are reachable from one another. It may
sometimes be necessary to drop an object at an intermediate
point along a path to allow reachability. For example, in the
graph depicted in Figure 2, vertex u is reachable from vertex
v assuming object 1 can be dropped at vertex 1. However, v
is not reachable from u as object 2 cannot be made available
at vertex 1.

As mutual reachability is symmetric and transitive and
each vertex is self-reachable, the mutual reachability relation
induces a partition of each of the strongly connected compo-
nents of V into equivalence classes called “fully connected
components.” The vertices of the fully connected compo-
nents are not necessarily contiguous. For example, in the SP
depicted in Figure 1, there are two fully connected compo-
nents: the first one consists of vertices u and w, which are not
contiguous vertices, and the second one consists of vertex 1.
However, if instead of being a transshipment point vertex 1
had a1 = b1 = 1, then the basic graph B would consist of a
single fully connected component. We say that a basic graph
is “fully reachable” if it consists of a single fully connected
component, that is, all vertices are reachable from all ver-
tices. The loaded arcs of a fully connected component form
a cycle which is a feasible path. Each vertex on the cycle
that can be an initial and terminal vertex for the path is in
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the fully connected component. If there exist vertices on the
cycle that cannot serve as an initial and terminal vertex for this
cycle, then they belong to other fully connected components.
In other words, the loaded arcs of a fully connected compo-
nent form a directed cycle that visits all the vertices of the
component. Focusing on the vertices of the component, each
vertex on the cycle supplies the null object or the object that
is needed by the next vertex on the cycle. It follows that any
fully connected component of B is balanced, that is, in each
component the total demand for object i ∈ O equals the total
supply of object i. If there exists a vertex on the cycle that does
not belong to this component, then it belongs to another fully
connected component which is reachable (but not mutually
reachable) by the former component. The following lemma
follows from the above discussion.

Lemma 1. Any fully connected component of B is balanced.

This lemma implies that a fully connected component
which is a singleton, must necessarily consist of a vertex
v with av = bv. However, not every vertex v with av = bv

defines a singleton in B.

Theorem 1. An SP solution exists on the basic graph B if
and only if this graph is fully reachable.

Proof. If B is not fully reachable, then no SP solution
exists since either the depot cannot be reached from at least
one vertex, or at least one vertex cannot be reached from
the depot. If B is fully reachable, then it is Eulerian because
it is strongly connected and the in-degree of each vertex is
equal to its out-degree. An SP solution can therefore be iden-
tified by suitably modifying [14] “end-pairing” algorithm for
the “Chinese Postman Problem” on an undirected Eulerian
graph.

Modified End-Pairing Algorithm

Step 1. Starting at an arbitrary vertex v ∈ V , follow a
service path of object of type av in the basic graph B ema-
nating from v, until the object reaches its first destination
at u. Mark all the loaded arcs of B along the service path.
Iteratively apply this process starting from u until v is even-
tually reached by using only unmarked loaded arcs of B,
thus defining a first circuit. Go to Step 3.

Step 2. Construct a second circuit of unmarked arcs of
B starting from a vertex w of the first circuit whose
supply has not yet been delivered (such a vertex nec-
essarily exists since B is fully reachable and not all
vertices have yet been served). Mark all the loaded arcs
of the second circuit. Merge the two circuits (v, . . . ,
w1, w, w2, . . . , v) and (w, w3, . . . , w4, w) into a single cir-
cuit (v, . . . , w1, w, w3, . . . , w4, w, w2, . . . , v), which now
becomes the first circuit. When reaching w for the first
time on the merged circuit, drop the object loaded on the

vehicle and replace it by the object of type aw. When reach-
ing w for the second time the object dropped at w is loaded
on the empty vehicle.

Step 3. If the circuit contains all the loaded arcs of B, or
equivalently, all arcs of B are marked, stop. Otherwise, go
to Step 2.

The construction process of B ensures that this graph
contains a necessary and sufficient set of arcs to transport
all objects, and the end-pairing algorithm together with the
marking procedure ensure that all arcs of B are traversed
exactly once. ■

If B is not fully reachable, then it must be augmented into a
fully reachable graph by adding new loaded arcs to it. As will
be seen in Section 3, the problem of determining a least cost
augmentation of B into a fully reachable graph is NP-hard.

Finally, a natural question is the extent to which preemp-
tion can shorten the solution relative to the non-preemptive
case.

Theorem 2. Preemption can shorten the solution by at most
50%, and this bound is tight.

Proof. We first show that the ratio between the optimal
non-preemptive solution and the optimal preemptive solution
can never be larger than 2. Consider an optimal preemptive
solution on a tree T . Let T̃ be a subtree of T spanning the
depot and the vertices that were used for preemption by the
preemptive solution. The additional cost involved in trans-
forming the preemptive solution into a non-preemptive one
is the cost of enabling accessibility to each of the vertices that
were used for preemption while the vehicle is free. The trans-
formation cost is bounded above by the cost of adding two
arcs of the null object (one in each direction) along each of
the edges of T̃ . Because the preemptive solution covers each
edge of T̃ at least twice (once in each direction), we conclude
that the transformation increases the cost by at most 100%.

To show that this bound is tight, consider the example
depicted in Figure 3 and representing a comb. We assume
that the vertices on the base of the comb are equidistant, that
is, c(v, 1) = c(w, n) = c(i, i + 1) = c for i = 1, . . . , n − 1.

A preemptive solution on the arcs of the basic graph B
exists. One such solution is obtained when the vehicle loads
object 1 at the depot, drops it at vertex 1 to swap objects 3
and 4, reloads object 1 at vertex 1 to ship it to vertex 2, drops
it there to swap objects 5 and 6, etc. until it swaps objects
2n+1 and 2n+2 between vertex n and vertex un, and then it
reloads object 1 at vertex n, and carries it to vertex w. There it
loads object 2 and ships it back to the depot. Next we propose
an optimal non-preemptive solution. In addition to the arcs
of the basic graph, an empty trip from the depot to vertex
n, is added, along which the vehicle stops at each vertex
i for i = 1, . . . , n to swap the objects between vertex i and
vertex ui. After swapping all these objects, the vehicle returns
empty to the depot to swap objects 1 and 2 between vertices
v and w. Thus, we add to B the arcs (v, 1)0, (1, v)0 and for
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FIG. 3. Example showing that the preemption bound is tight.

i = 1, . . . , n − 1 the arcs (i, i + 1)0, and (i + 1, i)0. Assuming
that the distance between vertex i and vertex ui is 1/c, and
that c = n, the ratio between the optimal non-preemptive
solution and the optimal preemptive solution can be made as
large as limn→∞ = [(4n+2)n+2]/[(2n+2)n+2] = 2. ■

See [3] for more information about the advantage of using
preemption in general directed or undirected graphs under
various restrictions.

3. THE PREEMPTIVE SWAPPING PROBLEM ON A
TREE IS NP-HARD

We now state our main theorem.

Theorem 3. The preemptive SP on a tree is NP-hard.

Proof. The proof is rather long and technical and is
therefore presented in Appendix 1. Essentially, we show that
the problem is at least as hard as the Steiner Tree Problem
(STP) on a bipartite graph, which is defined as follows (see
[13], pages 208–209). Consider a bipartite graph G̃ = (Ṽ , Ẽ)

with bipartition {R, S} of Ṽ , an integer weight c̃e for each
edge e ∈ Ẽ, and a positive integer number β. The problem
is to determine whether there exists a subtree of G̃ that spans
at least the vertices of R such that the total weight of the
edges in the subtree does not exceed β. Frederickson and
Guan [11] use a similar version of the STP where all weights
are equal to prove that the non-preemptive SCP on a tree
is NP-hard. ■

4. A 1.5-APPROXIMATION ALGORITHM FOR THE
PREEMPTIVE SP ON A TREE

In this section, we develop a 1.5-approximation algorithm
for the preemptive SP on a tree. We proceed in two steps.
We first compute a lower bound on the cost of an optimal
solution and we then propose an augmentation procedure that
guarantees a feasible solution whose cost never exceeds 1.5
times the optimal cost.

A lower bound on the cost of an optimal solution to the
preemptive SP on a tree T can easily be found. Consider
the basic graph B associated with the problem. This graph
is balanced but not necessarily connected. In the first step,
we augment B by identifying the edges of T not covered by
any loaded arc of B. For each such edge we add to B two
opposite loaded arcs, each associated with the null object.
Let B′ be the resulting directed multitype, multigraph which
is clearly balanced and connected (Fig. 4). As explained in
Section 2, this augmentation does not guarantee the existence
of a feasible SP solution on B′, but z(B′) ≤ z∗. In Fig. 4, B′
has two fully connected components {1, 2, 3}, and {4, 5}. We
will show below that graph B′ can be further augmented to
obtain a feasible SP solution by adding loaded arcs of the
null object, so that the cost of the heuristic solution is at most
1.5z∗.

Graph B′ consists of a number of fully connected compo-
nents C1, . . . , Cr . Recall that the depot is located at the root
of T , which we assume to be in component C1. If r = 1, then
by Theorem 1 the loaded arcs of B′ induce a feasible and opti-
mal SP solution. A fully connected component of B′ is said
to be “unreachable” if none of its vertices is reachable from a
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FIG. 4. Example showing that the worst-case bound of the heuristic is
tight.

vertex in any other fully connected component by following
the service paths induced by B′’s loaded arcs. Component
C1, where the depot is located, is considered to be reachable
(from the depot). In Figure 4 component {4, 5} is unreach-
able. In the next lemma, we prove that if r ≥ 2, then there
must exist at least one fully connected component of B′ that
is unreachable.

Lemma 2. If B′ contains at least two fully connected com-
ponents then at least one of the components is unreachable.

Proof. Provided in Appendix 2. ■

The algorithm we propose adds pairs of opposite direction
loaded arcs of the null object until it forms a partition of V into
a fully connected component which contains the depot, and
possibly some singleton fully connected components. More
specifically, as long as the multigraph on hand is partitioned
into more than one fully connected component which are not
singletons, we start a new iteration (a singleton can serve
itself). At each iteration we identify the set of all unreach-
able vertices, which belong to nonsingleton fully connected
components in the multigraph at hand, for which all their
predecessors (in T ) are reachable. Among those unreachable
vertices, we find one which is closest to its predecessor in
T in terms of the cost function c : E → �+. We update
the multigraph at hand by adding to it two opposite-direction
loaded arcs of the null object connecting this vertex to its pre-
decessor vertex (in T ), and we restart a new iteration. This
procedure obviously preserves the balance of the graph and
is finite. We present now the “Augmentation Algorithm” for

the SP on T = (V , E). The algorithm returns a multidirected
graph H in which each loaded arc is associated with one of
the objects in O.

Augmentation Algorithm

Step 1. Input: T = (V , E), the cost ce for each e ∈ E
and the associated graph B′. Output: multitype, directed
multigraph H, and its cost z(H). Set B̃ ← B′.

Step 2. Find the partition of B̃ into fully connected com-
ponents {C1, . . . , Cr , Cr+1, . . . , Cr′ }, where Cr+1, . . . , Cr′

are singletons. If r = 1, return H ← B̃ and z(H); stop.
Otherwise, let C′

1, . . . , C′
K , K ≥ 1, be the unreachable

components of B̃ that are not singletons.

Step 3. For � = 1, . . . , K define S� ⊂ V to be the set of ver-
tices of the unreachable component C′

�. Set S ← ∪K
�=1S�

and S̃ ← ∅. For each v ∈ S do begin: if the predecessor
of v in T is not a vertex in S, then set S̃ ← S̃ ∪ {v}; end.

Step 4. For each vertex v ∈ S̃ do begin: set κv ← c(p(v), v);
let v∗ ∈ argmin{κv : v ∈ S̃}.

Step 5. Augment the graph B̃ by adding to it the loaded arcs
(v∗, p(v∗))0 and (p(v∗), v∗)0. Go to Step 2.

We first prove that the resulting graph H induces a feasible
SP solution.

Theorem 4. There exists a feasible SP solution on H.

Proof. The graph H is connected and balanced as graph
B′ had this property and during the augmentation the balance
is preserved. In the graph H there are no unreachable com-
ponents, which are not singletons. A feasible SP solution on
graph H can be obtained by the modification of Hierholzer’s
end-pairing algorithm for the Chinese Postman Problem used
in the proof of Theorem 1. ■

To analyze the worst-case performance ratio of the pro-
posed heuristic we need a further characterization of the
intermediate graphs B̃ obtained during the application of the
algorithm.

Lemma 3. Consider a tree T = (V , E) and a corresponding
balanced and connected graph B̃ obtained in the applica-
tion of the Augmentation Algorithm. Suppose that C′ is an
unreachable component of B̃. Consider a vertex w ∈ C′ and
the subtree Tw = (Vw, Ew). If in the subtree Tw = (Vw, Ew),
the set of vertices Vw contains a vertex u belonging to an
unreachable fully connected component of B̃, say C̃, C̃ �= C′,
then C̃ ⊂ Vw.

Proof. Suppose that C̃ is not a subset of Vw. Then, there
exists a vertex u1 ∈ C̃ ∩ Vw, but C̃ has at least one vertex u2

that is not a member of Vw. By definition of a fully connected
component, there must exists in B̃ a service path that starts
at u1 and ends at vertex u2. By the property of a tree, this
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unique path must pass through vertex w. This service path
makes vertex w reachable from C̃, violating the assumption
that w belongs to an unreachable fully connected component
of B̃. ■

Consider any unreachable component of B̃. In Lemma 4,
we prove that the root of the minimal subtree containing this
component is not a member of the component.

Lemma 4. Consider an unreachable component C′ of
graph B̃ obtained in the Augmentation Algorithm. Let Tw =
(Vw, Ew) be the minimal subtree for which C′ ⊆ Vw. Then
w �∈ C′.

Proof. Suppose by contradiction that w ∈ C′. The fact
that Tw = (Vw, Ew) is the minimal subtree for which C′ ⊆ Vw

implies that p(w) �∈ C′. By Lemma 3 all nonreachable com-
ponents of B̃ having a vertex in Vw are contained in Vw.
Suppose that u ∈ Vw, and u belongs to a reachable com-
ponent of B̃, which we denote by C∗. If C∗ �⊂ Vw then there
exists a service path in B̃ connecting vertex u to a vertex
v �∈ Vw through vertex w, contradicting the fact that C′ is
a nonreachable component. Thus, C∗ ⊂ Vw. Therefore, Vw

is equal to the union of some fully connected components,
which means that the basic graph B is disconnected along the
edge (p(w), w) of T . This implies that in the augmentation
of B to B′ two opposite loaded arcs of the null object con-
necting the vertices w and p(w) are added. Thus, in graph B̃,
the vertices w and p(w) belong to the same fully connected
component, contradicting our assumption that C′ ⊂ Vw. ■

In Theorem 5, we prove that the worst-case performance
ratio of the heuristic is 1.5.

Theorem 5. z(H) ≤ 1.5z∗, and this worst-case bound is
tight for our algorithm.

Proof. The proof is provided in Appendix 3. ■

5. THE CASE m = 1 IS POLYNOMIAL

In this section, we consider the special case where the set
of items consists of a single type object and the null object,
that is, O = {0, 1}. We show that there exists an optimal
routing of the vehicle that only uses the loaded arcs of the
graph B′. We note that for m = 1, the preemptive and non-
preemptive cases coincide. But as the non-preemptive SP on a
tree has never been studied on its own (the NP-hardness of the
problem follows from the proof of [11] on the NP-hardness
of the non-preemptive SCP on a tree), this result is new. The
vertices of the tree are of four types: a vertex is either (i) a
supply vertex associated with the pair (a, b) = (1, 0); or (ii)
a demand vertex associated with the pair (a, b) = (0, 1); or
(iii) a transshipment vertex associated with the pair (a, b) =
(0, 0); or (iv) a vertex associated with the pair (a, b) = (1, 1).
Clearly, in the case of one object type there is no need to
preempt. Thus, there exists an optimal solution in which a

vertex v which is associated with (av, bv) = (1, 1) will always
serve itself by using its own supply.

Recall from Section 2 that “all” the loaded arcs in the
basic graph B, which are directed from vertex u to vertex
v, are associated with a an object i ∈ {0, 1}, where all the
loaded arcs directed from vertex v to vertex u are associated
with the other object 1 − i. As the basic graph B is balanced,
the two sets of loaded arcs have the same cardinality. If B is
not connected, the graph is augmented by adding two oppo-
site direction loaded arcs of the null object between any two
adjacent vertices of T which are not covered by any loaded
arc of B. This results in graph B′. We show in Theorem 6
that graph B′ consists of a single reachable fully connected
component implying that z∗ = z(B′).

Theorem 6. For the case m = 1, graph B′ consists of a
single fully connected component.

Proof. We show that none of the fully connected com-
ponents of graph B′ is unreachable. Suppose by contradiction
that there were at least one unreachable fully connected com-
ponent C. Let the subtree Tw be the minimal subtree that
contains C. According to Lemma 4, w /∈ C. By definition,
there must exist a service path of object 1 starting at a vertex
v1 ∈ C, passing through vertex w, and ending at a vertex
v2 ∈ C. Since B is balanced, there must also exist a service
path of the null object starting at v2, passing through w and
ending at v1. This makes v1 reachable from w, contradicting
our assumption that C is unreachable. ■

APPENDIX 1: PROOF OF THEOREM 3

To prove Theorem 3, we start by describing a general
bipartite graph. We show then that the NP-hard problem of
finding a minimum cost Steiner tree that spans the vertices on
one side of the graph can be reduced in polynomial time to
the preemptive SP on a tree, proving that the later is at least
as hard as the former. As the proof is long and the reduction
is non-trivial, we break the proof into several parts in order
to make it simpler for the readers.

Part 1. The Steiner Tree Problem in Bipartite Graphs

Given a graph G̃ = (Ṽ , Ẽ) with a bipartition {R, S} of Ṽ .
Let |Ṽ | = ϑ , |Ẽ| = ε, and |R| = ρ. We number the vertices of
R by 1, . . . , ρ, and the vertices of S by ρ+1, . . . , ϑ . The length
of edge [v, u] ∈ Ẽ is denoted by c̃(v, u). We also let �v be
the set of vertices adjacent to vertex v, i.e., the neighborhood
of vertex v, and dv the degree of vertex v, thus dv = |�v|,
	

ρ
v=1dv = ε and 	ϑ

u=ρ+1du = ε. For any vertex v ∈ R, let

ϕ(v, i) be the ith closest vertex to v among the dv vertices in
�v (where ties are broken arbitrarily). Thus, for a given vertex
v ∈ R, ϕ(v, ·) is a one-to-one mapping of {1, . . . , dv} into �v

such that c̃(v, ϕ(v, 1)) ≤ c̃(v, ϕ(v, 2)) ≤ . . . ≤ c̃(v, ϕ(v, dv)).
The objective in this problem is to determine a minimum
Steiner tree on G̃ = (Ṽ , Ẽ) spanning the vertices of R.
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FIG. 5. Graph G̃ = (Ṽ , Ẽ) for the Steiner tree problem on a bipartite graph.

Example: Figure 5 depicts a graph G̃ = (Ṽ , Ẽ) with ρ =
2, ϑ = 5, ε = 4, c̃(1, 3) = 10, c̃(1, 5) = 40, c̃(2, 4) =
20, c̃(2, 5) = 30, ϕ(1, 1) = 3, ϕ(1, 2) = 5, ϕ(2, 1) = 4,
ϕ(2, 2) = 5, �1 = {3, 5}, �2 = {4, 5}, d1 = 2, d2 = 2,
�3 = {1}, �4 = {2}, �5 = {1, 2}, d3 = 1, d4 = 1, d5 = 2.

We next show that if there exists a polynomial algorithm
for solving the preemptive SP on a tree then we could have
used it to solve the above described STP on a bipartite graph
in a polynomial time, contradicting the fact that the later
problem is NP-hard. To this end we construct the following
reduction.

Part 2. The SP Associated With the Given Steiner Tree
Problem

Given a bipartite graph G̃ = (Ṽ , Ẽ), we construct an SP
on tree T = (U, E∗) with |U| = 3ε + 2ρ + 1 vertices, and
m = ϑ −ρ+ε object types, in addition to the null object. The
objects’ names in the SP are determined as follows: consider
graph G̃ = (Ṽ , Ẽ) and the bipartition of Ṽ = R ∪ S. For each
vertex u ∈ S we define 1 + du different object types, named
u∗ and uv for v ∈ �u. We let also the function cT : E∗ → �+
represent the length of the edges of T . We next describe the
construction of T . To simplify the presentation, we break the
description of T into levels, from the root down to its leaves.

Level 1. The tree T is rooted at vertex �(0, 0) (which does
not serve as the depot) and is connected to ρ children named
�(1, 0), . . . , �(ρ, 0). The root and its children are transship-
ment points, that is, a�(v,0) = b�(v,0) = 0 for v ∈ {0, . . . , ρ}.
Let the length of the edges connecting the root of T to its
children be defined as: cT (�(0, 0), �(v, 0)) = c̃(v, ϕ(v, 1)) for
v ∈ {1, . . . , ρ}, that is, the distance between the root of T ,
namely vertex �(0, 0), and its child �(v, 0), is equal to the
minimum distance in graph G̃ between v and a vertex in �v.
Each of the ρ children of the root serves as the root of a sub-
tree T�(v,0) for v ∈ {1, . . . , ρ}, described below. If dv = 1 go
to Level Intermediate. Otherwise, go to Level 2.

Level 2. We next describe the construction of the second
level of T , which is the first level of T�(v,0) for v ∈ {1, . . . , ρ}.
Vertex �(v, 0) is a parent of two children, the right-hand side
child r(v, 1) and the left-hand side child �(v, 1). The right-
hand side child of �(v, 0), namely vertex r(v, 1), is a leaf
associated with objects (a, b) = (ϕ(v, 1)∗, ϕ(v, 1)v). We let
cT (�(v, 0), r(v, 1)) = M for some M ∈ �+ to be speci-
fied later. The left-hand side child of �(v, 0), namely �(v, 1),
is a transshipment vertex, and we let cT (�(v, 0), �(v, 1)) =
c̃(v, ϕ(v, 2)) − c̃(v, ϕ(v, 1)), which is non-negative by def-
inition of the function ϕ(v, ·). If dv = 2 go to to Level
Intermediate. Otherwise, go to Level 3.

Level 3. Similarly to Level 2, we add a new level to
the tree T : We let �(v, 1) to be a parent of the two chil-
dren r(v, 2) and �(v, 2). The right-hand side child of �(v, 1),
namely vertex r(v, 2), is a leaf associated with objects
(a, b) = (ϕ(v, 2)∗, ϕ(v, 2)v). We let cT (�(v, 1), r(v, 2)) = M.
The left-hand side child of �(v, 1), namely vertex �(v, 2),
is a transshipment vertex, and we let cT (�(v, 1), �(v, 2)) =
c̃(v, ϕ(v, 3)) − c̃(v, ϕ(v, 2)), which is again non-negative.

This construction process continues up to but not inclusive
Level dv before reaching Level Intermediate.

Level Intermediate. By construction, the total distance on
T between the root of the tree, namely vertex �(0, 0) and
vertex �(v, dv − 1), is c̃ (v, ϕ(v, dv)), which is the farthest
distance in graph G̃ between vertex v and one of the vertices
adjacent to it. We let �(v, dv − 1) to be a parent of the two
children r(v, dv) and �(v, dv). The right-hand side child of
�(v, dv − 1), namely vertex r(v, dv), is a leaf associated with
objects (a, b) = (ϕ(v, dv)

∗, ϕ(v, dv)v), and we let cT (�(v, dv−
1), r(v, dv)) = M. The left-hand side child of �(v, dv − 1),
namely vertex �(v, dv), is associated with objects (a, b) =
(ϕ(v, 1)v, ϕ(v, 1)∗), and we let cT (�(v, dv−1), �(v, dv)) = M.
Go to Levels Bottom Subtree.

Levels Bottom Subtree. Vertex �(v, dv) has two children.
The right-hand side child r(v, dv + 1) is a leaf associated
with objects (a, b) = (ϕ(v, 1)∗, ϕ(v, 1)v). The left-hand side
child of �(v, dv), namely vertex �(v, dv + 1), is the root of
a subtree, which is a path consisting of exactly dv vertices
named �(v, dv +1), . . . , �(v, 2dv). The last vertex on the path,
that is, vertex �(v, 2dv), is associated with objects (a, b) =
(ϕ(v, 1)v, ϕ(v, 1)∗). For i = 1, . . . , dv − 1, vertex �(v, dv + i)
is associated with objects (a, b) = (ϕ(v, i+1)v, ϕ(v, i+1)∗).
The length of all edges of the subtree, which is rooted at
vertex �(v, dv), can be assumed to be 0.

Example (contd.): Figure 6 depicts the tree T = (U, E∗),
corresponding to the example of Figure 5, with m = ϑ −ρ +
ε = 5 − 2 + 4 = 7, |U| = 3ε + 2ρ + 1 = 17, and the object
set O = {0, 3∗, 31, 4∗, 42, 5∗, 51, 52}.

Properties of T

We note that by this construction each subtree T�(v,0)

consists of 3dv + 2 vertices, where exactly dv of them are
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FIG. 6. Swapping problem on a tree T = (U, E∗) corresponding to the Steiner tree problem of Figure 5. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

transshipment points. The subtrees are balanced because the
total supply of each object type is equal its total demand.
More precisely, each of the objects ϕ(v, i)∗ and ϕ(v, i)v for
i = 2, . . . , dv is the supply and the demand of exactly one ver-
tex in the subtree. Each of the objects ϕ(v, 1)∗ and ϕ(v, 1)v

is the supply and demand of two vertices in the subtree. We
also note that object type ϕ(v, i)v for i = 1, . . . , dv are not
used by any subtree T�(v′,0), v′ = 1, . . . , ρ other than T�(v,0).
On the other hand, objects ϕ(v, i)∗ for i = 1, . . . , dv are used
by all subtrees T�(v′,0) with ϕ(v, i)∗ ∈ �v′ and v′ = 1, . . . , ρ.
In other words, object u∗ for u ∈ S is used by all subtrees
T�(v′,0) for which v′ ∈ �u.

The Basic Graph Associated With T. We denote the basic
graph associated with T by B(T). Note that it consists of
exactly ρ fully connected components which are not single-
tons. Each fully connected component Cv for v = 1, . . . , ρ
consists of all vertices of the subtree T�(v,0), which are
not transshipment points, namely vertices r(v, i) for i =
1, . . . , dv + 1, and vertices �(v, dv + i) for i = 0, . . . , dv.
Each of the transshipment vertices of T�(v,0) serves as a fully
connected component which is a singleton. In particular,
each singleton in T�(v,0) is reachable from the component
Cv. The graph B(T) is disconnected as the root of T is not
incident to any loaded arc of B(T), that is, vertex �(0, 0) is
not reachable from any of the other fully connected compo-
nents. Thus graph B(T) must be augmented by adding two
opposite direction loaded arcs of the form (�(0, 0), �(v, 0))iv

and (�(v, 0), �(0, 0))iv for v = 1, . . . , ρ and iv ∈ O. The
total cost of these new loaded arcs is 2	

ρ
v=1c̃(v, ϕ(v, 1)).

Independently of the location of the depot, any feasible solu-
tion for the SP on T must be of a length at least as large as
z(B(T)) + 2	

ρ
v=1c̃(v, ϕ(v, 1)).

Large Loaded Arcs. The loaded arcs of B(T) that were
assigned a length M are called “large loaded arcs” in the
sequel; they play a key role in the remainder of this proof.
We first note that the number of these arcs is 	

ρ
v=14dv =

4ε, as each edge of T of the form [�(v, i − 1), r(v, i)] for
i = 1, . . . , dv is associated with two loaded arcs in B(T),
and the edge [�(v, dv − 1), �(v, dv)] of T is covered by 2dv

loaded arcs in B(T). We choose M to be a large number, say
M = z(G̃) = ∑

(v,u)∈Ẽ c̃(v, u), to guarantee that the optimal
SP solution includes the smallest possible number of copies
of large loaded arcs. In B(T) all the large loaded arcs are
associated with a real object in O\{0}. Considering Figure 6,
we can see that if the vehicle while empty enters vertex �(v, 0)

for v = 1, . . . , ρ, for the first time, coming from �(0, 0), then
to continue servicing component Cv from there, the vehicle
must travel along two opposite-direction large loaded arcs of
the null object in addition to the loaded arcs of B(T). The first
empty such travel along a large loaded arc is needed to first
reach a vertex in Cv from which an object can be loaded. The
cost of travel along large loaded arcs of the null object can be
avoided only if vertex �(v, 0) is reached from �(0, 0) while
the vehicle is already loaded by an object that is needed in Cv.
As will be shown below, if there exists a Steiner tree on the
bipartite graph G̃ = (Ṽ , Ẽ) spanning the vertices of R, then
any optimal SP solution for T includes only the large loaded
arcs that are members of B(T), that is, exactly 4ε large loaded
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arcs, which are all travelled while the vehicle is loaded by a
real object, meaning that objects in one component are used
to cover the demand in other components.

Locating the Depot. To complete the definition of the SP
on T , we assume that the depot is located at vertex r(1, 1),
which, by definition, is not a transshipment vertex (any other
choice of the depot’s location at a non-transshipment vertex
of T would do as well). Any feasible solution to the preemp-
tive SP on T consists of B(T)’s loaded arcs, and augmenting
loaded arcs that connect the fully connected components of
the basic graph B(T) into a single such component.

Solutions with Autonomous Components. In a solution
in which a fully connected component Cv, v �= 1, is
autonomous, that is, it satisfies its own demand, the aug-
mentation of B(T) must include two-opposite direction paths
of the null object, connecting the root, namely �(0, 0), to
the closest vertex in Cv, namely vertex r(v, 1), a path whose
length is c̃(v, ϕ(v, 1)) + M. Thus, the total cost of a solu-
tion in which all components are autonomous is z(B(T)) +
2	

ρ
v=1c̃(v, ϕ(v, 1))+2(ρ −1)M. We show below that if there

exists a Steiner Tree for G̃, then exploiting the possibility of
using objects of type u∗, u ∈ {ρ + 1, . . . , ϑ}, supplied in
one fully connected component of T to cover the demand of
another component, generates shorter SP solutions, in which
the vehicle does not make unnecessary empty trips along
large arcs.

Constructing Cheaper Solutions. Consider now a certain
fully connected component Cv for v ∈ {2, . . . , ρ}. The only
way to serve Cv without paying empty travels along a large
loaded arc of Cv, is by entering Cv while carrying an object
u∗, which was loaded at another fully connected component
visited earlier, say Cv′ for v′ ∈ {1, . . . , ρ}\{v}, and the object
u∗ is needed by a vertex in Cv. This can be achieved only
if u ∈ �v ∩ �v′ . To this end suppose that ϕ(v′, i) = u and
ϕ(v, j) = u. The transfer of object u∗ from component Cv′

to component Cv is done as follows: suppose that the vehicle
loads object u∗ at vertex r(v′, i), when there is still demand for
this object in Cv. The vehicle then follows the loaded arc of
B(T), (r(v′, i), �(v′, i − 1))u∗

, and along an augmenting path
of object u∗, the vehicle continues from �(v′, i−1) to the root
of the tree, and from there to vertex �(v, j − 1) in component
Cv. From �(v, j − 1) the vehicle follows the path of loaded
arcs of object u∗ in B(T), to vertex �(v, dv + j − 1) in Cv

demanding this object. To balance the shipment of the unit of
object u∗ to Cv, another unit of object u∗ must eventually be
carried out from Cv to cover the demand in some other com-
ponent. This solution necessitates, in addition to the loaded
arcs of B(T), two augmenting opposite-direction loaded paths
associated with object u∗ that connect vertex �(v′, i − 1) to
vertex �(v, j − 1). The cost of these two augmenting paths
is 2cT (�(v′, i − 1), �(0, 0)) + 2cT (�(0, 0), �(v, j − 1)) =
2c̃(v′, ϕ(v′, i)) + 2c̃(v, ϕ(v, j)) = 2c̃(v′, u) + 2c̃(v, u), that
is, the cost of this augmentation boils down to twice the cost

of two edges [v′, u] and [v, u] in the bipartite graph G̃. Com-
paring the cost of serving Cv by the last proposed solution
and the solution in which the vehicle enters Cv while empty,
we find that the former is strictly cheaper. (The saving is
2(M − cT (�(v′, 0), �(v′, i − 1)) − cT (�(v, 0), �(v, j − 1))) =
2(z(G̃) − (c̃(v′, ϕ(v′, i)) − c̃(v′, ϕ(v′, 1))) − (c̃(v, ϕ(v, j)) −
c̃(v, ϕ(v, 1)))) > 0.)

Conclusion. If there exists a Steiner tree on the bipartite
graph G̃ = (Ṽ , Ẽ) spanning the vertices of R, then an optimal
SP solution for T does not contain any extra large loaded
arcs beyond the 4ε such arcs that are part of B(T). In such
a case, all fully connected components Cv, v ∈ R, must be
connected to each other by transferring objects of type u∗,
u ∈ S as explained above. Any feasible solution to the SP on
T that does not contain more than 4ε large loaded arcs induces
a Steiner tree spanning R on the bipartite graph G̃ = (Ṽ , Ẽ).
The cost of the SP solution is the sum of z(B(T)) and twice
the cost of the associated Steiner tree on G̃(Ṽ , Ẽ) used to
connect the components. Thus, an algorithm that finds the
optimal SP solution on T would also find an optimal Steiner
tree spanning R in G̃.

Example (contd.): The optimal Steiner tree that spans
R = {1, 2} in the bipartite graph G̃ depicted in Figure 5
consists of edges (1, 5) and (2, 5) and its length is 70. The
associated SP tree T = (U, E∗), depicted in Figure 6, with the
depot located in vertex r(1, 1), induces a basic graph B(T),
which consists of two fully connected components, namely
C1 = {�(1, 2), �(1, 3), �(1, 4), r(1, 1), r(1, 2), r(1, 3)} and
C2 = {�(2, 2), �(2, 3), �(2, 4), r(2, 1), r(2, 2), r(2, 3)} (in
addition to the components that consist of singletons, which
are the transshipment vertices). In the Steiner tree problem,
vertex 5 is the only vertex in S which is adjacent to more than
one vertex in R. Therefore, the only object that can be used to
connect the components C1 and C2 of B(T) is object 5∗. The
optimal solution for the SP is to load object 3∗ at the depot
located at vertex r(1, 1) in component C1, carry it to �(1, 4) to
supply its demand, load there object 31 and temporarily drop
it at �(1, 3). Load at �(1, 3) object 51 and carry it to r(1, 2)

to supply its demand. There, at r(1, 2), load object 5∗ and
carry it to the other component, C2. More specifically, carry
it directly to vertex �(2, 3) in order to supply its demand. Then
by following the arcs of the basic graph of T in C2 we can
supply all the demand in that component, and exit C2 while
the vehicle is loaded with object 5∗, which is now shipped
to vertex �(1, 3) in C1. The vehicle then continues to follow
the arcs of B(T) in C1, which have not yet been used by the
solution, to complete the supply of the demand in all the ver-
tices in C1, and end its trip at the depot. To conclude, the
only loaded arcs used by this solution except of the loaded
arcs of the basic graph are two copies (one to each direction)
of (�(1, 1), �(1, 0))5∗

, (�(1, 0), �(0, 0))5∗
, (�(0, 0), �(2, 0))5∗

,
and (�(2, 0), �(2, 1))5∗

. Therefore, the length of the swapping
solution is the cost of B(T) plus twice the cost of the optimal
Steiner tree of G̃, i.e., it is z(B(T)) + 2 × 70.
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APPENDIX 2: PROOF OF LEMMA 2

Suppose by contradiction that none of the r ≥ 2 fully
connected components of B′ is unreachable, that is, each
component (except possibly for the component that con-
tains the depot) can be reached from some other component.
Choose any fully connected component that does not contain
the depot. Call it Cα(1) and mark it. As Cα(1) is reachable,
there exists another component Cα(2) from which Cα(1) can
be reached. Clearly Cα(2) cannot be reached from Cα(1) as
otherwise the two components could be merged, and r would
be smaller. Mark Cα(2). Similarly, Cα(2) can be reached
from some other component Cα(3), α(3) �= α(1). Mark
Cα(3). Component Cα(3) cannot be reached from neither Cα(1)

or Cα(2), otherwise the two components could be merged,
contradicting the partition of B′ into r fully connected com-
ponents. This procedure can be followed for at most r steps.
At the end of this part of the procedure, we obtain a sequence
of at most r mutually disjoint fully connected components
which are all marked, where Cα(q−1) is reachable from Cα(q)

for q = 2, . . . , Q and Q ≤ r. Thus, component Cα(Q) = C1,
i.e., it is the component that contains the depot, as other-
wise it would be an unreachable component, contradicting
our assumption. If r is greater than the number of marked
fully connected components, then this process is repeated
starting with a fully connected component Cα(Q+1) which is
still unmarked. We terminate the process when all the r fully
connected components of B′ are marked.

At the end of the process, we obtain a directed tree ϒ

whose r nodes are the fully connected components of B′, and
whose arcs define the reachability among the components.
Assuming that the tree is rooted at C1 = Cα(Q), all the arcs
of ϒ are directed toward the leaves of ϒ , meaning that all the
fully connected components are reachable from the depot,
but none of them can reach the depot. We will show that this
yields a contradiction. Consider the fully connected compo-
nent Cα(Q−1) which is reachable from C1. The reachability
is along an arc of the basic graph B, as otherwise it would be
along an arc of the null object added to B while constructing
B′, and this would make C1 reachable from Cα(Q−1) along the
opposite direction arc of the null object in B′. As a result the
two fully connected components Cα(Q−1) and C1 would be
merged into one, contradicting our assumption about r. This
means that the reachability of any fully connected component
Cα(Q−1), from C1, is along a loaded arc (p(vQ−1), vQ−1)

i1

of B, where vQ−1 is a vertex in Cα(Q−1). As B is balanced,
there must also exist an arc (vQ−1, p(vQ−1))

i2 in B, such that
i1 �= i2. If object type i2 is the supply of at least one vertex in
Cα(Q−1), or if i2 = 0 then this would make C1 reachable from
Cα(Q−1), merging the two components into one, contradicting
our assumption about r. Thus, object type i2 is shipped into
Cα(Q−1) from some other fully connected component Cα(q),
where Cα(q) �= C1 and Cα(q) �= Cα(Q−1). This means that
the two fully connected components Cα(q) and Cα(Q−1) can
be merged, contradicting again our assumption regarding the
number r of fully connected components of B′. Therefore, it

is impossible that none of the fully connected components of
B′ is unreachable. ■

APPENDIX 3: PROOF OF THEOREM 5

While implementing the Augmentation Algorithm, an
edge of T is augmented at most once since in future iterations
both end vertices of the edge are reachable in B̃ from vertex
1. Let θ be the number of iterations run by the Augmentation
Algorithm. To prove that the worst-case performance ratio
of the proposed heuristic is 1.5, we will prove the following
statements:

1. In each iteration, j = 1, . . . , θ , the algorithm identifies
an edge of T , denoted by ej ∈ E, that is augmented, and
we also identify a set of edges Dj ⊂ E that are never
augmented by the algorithm. In particular, ej /∈ ∪θ

i=1Di.
2. cej ≤ z(Dj).
3. ej �= ei and Dj ∩ Di = ∅ for i �= j.
4.

∑θ
i=1{2cei + 2z(Di)} ≤ z(B′).

We now provide the proofs.

1. We will first show that for a given graph B̃ the set S̃
defined by the algorithm contains at least two vertices
from each (nonsingleton) unreachable fully connected
component C′

� of B̃, for which S̃ ∩ S� �= ∅. Suppose by
contradiction that for the multigraph B̃, the set S̃ contains
only one vertex v from S�. As C′

� is not a singleton, the
set S� contains at least two vertices. According to our
assumption, none of the vertices in S�\{v} is a vertex in
S̃, thus either there exists a vertex in S�\{v} which is a
descendant of a vertex w ∈ S̃\S�, or all vertices of S�\{v}
are descendants of v. We will show that both cases yield
a contradiction.

First suppose that there exists a vertex in S�\{v}
which is a descendant of a vertex w ∈ S̃\S�. According
to Lemma 3, S� ⊂ Vw, where Vw is the set of vertices
of the subtree Tw of T . This is in contradiction with the
fact that v ∈ S� and v /∈ Vw, as v, w ∈ S̃. Suppose now
that all vertices of S�\{v} are descendants of v. Thus,
the minimal subtree of T containing C′

� is rooted at v.
Recall that C′

� is unreachable, and v is a vertex of C′
�

contradicting Lemma 4.
Let vertex v∗ be selected according to Step 4 of the

Augmentation Algorithm when applied on B̃ in iteration
j. Suppose that v∗ ∈ C′

�, where C′
� is an unreachable fully

connected component of B̃ (which is not a singleton).
Thus, the set S̃ associated with B̃ must contain at least
one more vertex from C′

�. Let S̃� = S̃ ∩ S�. By definition
of v∗, κv∗ ≤ κv for any v ∈ S̃. Note that after augmenting
B̃ along the edge [p(v∗), v∗] at a cost of 2κv∗ , we have
made all vertices in S�, and in particular all vertices in S̃�,
reachable from vertex 1 where the depot is located. This
means that the algorithm in future iterations will never
augment the graph B̃ along the edges [p(v), v] for v ∈ S�.
Let ej = [p(v∗), v∗] and Dj = ∪v∈S�\{v∗}{[p(v), v]} ⊇
∪v∈S̃�\{v∗}{[p(v), v]}.

2. It follows from the selection procedure of v∗ in
Step 4 of the Augmentation Algorithm that cej ≤
z(∪v∈S̃�\{v∗}{[p(v), v]}) ≤ z(Dj).
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3. This observation follows directly from the fact that once
a vertex is made reachable from the root by adding the
null object loaded arcs in a certain augmentation itera-
tion, then there is no need to augment along the same
edge again. Also, if in some iteration, vertex v∗ is made
reachable by augmenting along the edge [p(v∗), v∗], then
all vertices that belonged to the same unreachable com-
ponent as v∗ become reachable from the root, and thus
these vertices will never again be members S̃.

4. By construction, the multitype multigraph B′ is con-
nected and balanced, thus each edge of E is covered in B′
at least twice. The Augmentation Algorithm augments B′
along the edges ∪θ

j=1{ej}, and it does not augment it along

the edges in ∪θ
i=1Di. The statement follows directly from

the facts that these 2θ sets ({ej}, and Dj) for 1 ≤ j ≤ L
are disjoint, and ∪θ

j=1({ej} ∪ Dj) ⊂ E.

Recall that z(B′) is a lower bound on the optimal SP cost.
By the above statements, it follows that the total augmentation
cost, satisfying

∑θ
j=1 2cej ≤ 0.5z(B′), which proves that the

worst-case performance ratio of the algorithm is 1.5, that is,
z(H) ≤ 1.5z∗.

To complete the proof, we present an example (Figure 4)
where the bound 1.5 is tight. Part (a) of the figure depicts an
SP where the depot is located at the root of the tree, namely
at vertex 1. The numbers on the edges denote their cost. The
basic graph B is presented in part (b) of the figure. This graph
is disconnected and is therefore augmented into B′ which
contains, in addition to the services paths of B, also the two
loaded arcs (1, 3)0 and (3, 1)0, see part (c) of the figure. No
feasible SP solution exists on B′ as none of the objects 1 or 2
is available at vertex 3 when the vehicle enters there the first
time. One can readily check that z(B′) = 4M + 4ξ .

The fully connected components of B′ are C1 containing
the root and vertices 2 and 3, and the unreachable component
C2 containing both vertices 4 and 5. The first iteration of the
Augmentation Algorithm generates the set S̃ = {4, 5}, where
both vertices 4 and 5 belong to the same unreachable compo-
nent. In this case κ4 = κ5 = M, and therefore the algorithm
chooses arbitrarily one of these vertices, say vertex 4 as v∗.
Graph B′ is augmented by adding to it the two loaded arcs
(3, 4)0 and (4, 3)0. The resulting multitype multigraph is the
heuristic solution H that the algorithm generates. According
to this solution, the vehicle loads object 1 at vertex 1 and
carries it to vertex 2, where it unloads it and loads object 2,
which is carried to vertex 1. From there the vehicle travels
empty to vertex 4 through vertex 3 and swaps objects 2 and
1 between vertices 4 and 5. Finally the vehicle travels empty
from vertex 4 to the root. Clearly, z(H) = 6M + 4ξ .

The optimal SP solution to the above example is to start at
the depot by loading object 1, and carry it directly to vertex
4, from there the vehicle loads object 2 which is carried to
vertex 5. At vertex 5 object 1 is loaded and carried to vertex
2. There it is unloaded and object 2 is loaded to be carried to

the root. Thus, z∗ = 4M + 4ξ , implying that limM→∞ z(H)/

z∗ = 1.5. ■
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