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Abstract

We revisit the optimal use of information under moral hazard while as-
suming that the agent can choose distributions nonparametrically. Under
this assumption, optimal contracts behave as if the principal were mak-
ing inferences about outcomes she values rather than about the agent’s
action. This has significant implications for what measures are included
in contracts and how those measures are used. Most importantly, Holm-
ström’s (1979) informativeness principle changes. A performance measure
is valuable if it improves inferences not about the agent’s action, but about
outcomes the principal values; and if those outcomes are contractible, ad-
ditional measures have no value.
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1 Introduction

Holmström (1979) shows that information is useful for contracting if it improves infer-

ences about an agent’s hidden action. He derives this result using the parameterized

distribution formulation of the agency problem, wherein the agent chooses the param-

eter of a distribution.1 In this paper, we return to Holmström’s moral hazard setting

and invoke the generalized distribution formulation, wherein the agent chooses a dis-

tribution nonparametrically.2 We show that under this formulation of the problem,

information is valuable for contracting if it improves inferences not about the agent’s

action, but about outcomes the principal values.

Assume that a principal values the random variables X and Y according to

some benefit function B(X, Y ), where Y is contractible but X is not. Holmström’s

seminal result shows that if an agent chooses a distribution p(X, Y ; a) from a family

of distributions parameterized by a, the optimal contract is characterized by the

following expression, where U ′(·) is the agent’s marginal utility and λ and µ are

positive constants.

1
U ′(s(y))

= λ+ µ · pa(y;a)
p(y;a)

(1)

The optimal contract s is a transformation of the likelihood ratio pa(y;a)
p(y;a)

, which in-

dicates how likely it is that the agent took the desired action a given the observed

outcome y. Therefore, the contract behaves as if the principal were making infer-

ences about the agent’s action (even though she knows what action the agent takes

in equilibrium), and information is valuable for contracting if and only if it improves

inferences about the agent’s action.

The generalized distribution approach expands the agent’s choice set relative to

1The parameterized distribution formulation was first used by Mirrlees ([1975] 1999).

Its use was widely popularized by Holmström (1979), who made the problem more

tractable by assuming the first-order approach to be valid.
2The terms parameterized distribution formulation and generalized distribution for-

mulation were coined by Hart and Holmström (1987). We discuss the origins of the

generalized approach in section 6.
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the classic parametric approach; rather than selecting a distribution from an exoge-

nously constrained parametric family via the “effort” parameter a, the agent can

implement any distribution p from the probability simplex. There are many ways to

conceptualize how an agent might “choose a distribution,” and all of them involve

giving the agent a rich opportunity set.3 For example, the agent could choose his

action conditional on a large set of private information in a static game (as suggested

by Holmström and Milgrom 1987), could choose effort continuously throughout the

contracting period (a microfoundation provided by Hébert 2018), or could have an

action space that spans the probability simplex in a multi-tasking game (a microfoun-

dation we provide in section 5.2). In all of these cases, the agent’s opportunity set is

sufficiently rich that he can implement any distribution through some action choice

(e.g., a certain private-information-contingent effort strategy or a certain vector of

task allocations), allowing the agent to effectively “choose” any distribution at some

cost.

We assume that there is some distribution q that minimizes the agent’s personal

cost at zero; this zero-cost distribution can be interpreted as the distribution that

arises when the agent shirks, as it is the distribution the agent implements absent

contractual incentives to do something different. When the agent implements some

distribution p ̸= q, he incurs a cost equal to the divergence of p from q. Specifically, we

represent the agent’s cost as an f -divergence, a class of cost functions implied by the

axioms of decomposability (i.e. additive separability in probabilities) and invariance

(Amari 2016).4

These assumptions change Holmström’s iconic characterization (1) in several

ways. First, because the agent chooses the probability of every possible realization,

the likelihood ratio is 1
p(y)

. Second, there is an incentive compatibility (IC) constraint

and an associated multiplier µ(y) for each y, rather than a single IC constraint and

multiplier µ. Moreover, due to the additive separability of the agent’s cost function,

3See section 6.1 for more detailed discussion.
4The f -divergences are a broad class including all α-divergences such as the χ2-

divergence, the Hellinger distance, and the the Kullback Leibler divergence, which

is the benchmark cost function employed by Hébert (2018). We discuss divergences

further in section 6.2.
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the IC constraint for each probability p(y) is independent of all other probabilities,

which allows us to easily solve for µ(y) in closed form. Given the agent’s f -divergence

cost function, this µ(y) absorbs the likelihood ratio such that the optimal contract is

characterized by

1
U ′(s(y))

= λ+ E[B(X,Y )|y]−s(y)−η

f̌(U(s(y)−ν)
, (2)

where f̌(·) is a transformation whose form depends on the particular f function spec-

ified in the divergence, and η and ν are constants. Notice that y enters the expression

only through s(y) and E[B(X, Y )|y]; hence, the optimal contract is a transformation

of the principal’s expected payoff conditional on contractible information y. It fol-

lows that the signal y has contracting value if and only if it is informative about the

principal’s payoff, rather than about the agent’s action.

The same result obtains in a binary setting where the agent chooses a single

probability; we provide this binary example in section 3. In the binary setting, we

need not define the agent’s cost function as a divergence; a single-valued convex cost

function is sufficient for the result. Section 4 is dedicated to deriving equation (2) in

a general setting with many contractible and non-contractible signals. We show in

section 5.1 that our approach is equivalent to a parametric multi-tasking model where

the agent’s action space is rich enough to make every probability distribution in the

simplex accessible; that is, it is not the direct choice of probabilities that matters for

our results, but rather that the agent’s action space is sufficiently rich. In section

5.2 we generalize our results to settings in which some variables are exogenously

distributed, and show that a signal is useful if and only if it is informative about the

portion of value that the agent can control. We discuss our assumptions and their

use in related literature in section 6. Much of this discussion relates our paper to

Hébert (2018), who also pairs the generalized approach with an invariant divergence

cost function in a principal-agent setting.

2 Notation and preliminary assumptions

A risk-neutral principal hires an agent to take hidden actions that stochastically

improve value, which we define as the principal’s payoff gross of compensation paid
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to the agent. We denote value by B(X, Y ), where X = (X1, . . . , XN) and Y =

(Y1, . . . , YM) are vectors of random variables with possible realizations (x,y) ∈ X ×Y
for some finite sets X and Y . We denote a realization of Xi by xi ∈ X i and a

realization of Yj by yj ∈ Yj, so that X ≡ X 1× · · ·×XM and Y ≡ Y1× · · ·×YN . The

distinction between X and Y is that Y is contractible whereas X is not. We denote

a contract s(Y ) by s : Y → R.
Denote the joint probability distribution over X and Y by pXY = pY pX|Y ∈

P(X ,Y), where P(X ,Y) is the probability simplex over X ×Y . Throughout we let

p(x,y), p(x), p(y), p(x |y), and p(y |x) denote the joint, marginal, and conditional

probabilities of a specific outcome (x,y), and we let pXY , pX , pY , pX|Y , and pY |X

denote the joint, marginal, and conditional probability distributions over X ×Y . For

notational ease, we will often refer to pXY as simply p. We let
∑

X ×Y denote summa-

tion over all (x,y) ∈ X ×Y ; likewise,
∑

X and
∑

Y denote summation over all x ∈ X
and y ∈ Y , respectively. We let

∑
Y \yk

denote summation over all y ∈ Y except for

the outcome yk.

We say that Yi is useful if there exist some (y−i, yi), (y−i, y
′
i) ∈ Y such that an

optimal contract necessarily sets s(y−i, yi) ̸= s(y−i, y
′
i). We say that Yi is informative

about value if there exists some (y−i, yi), (y−i, y
′
i) ∈ Y such that E[B(X, Y )|y−i, yi] ̸=

E[B(X, Y )|y−i, y
′
i]. By contrast, we say that Yi is informative about action pXY

if there exist some (x,y−i, yi), (x,y−i, y
′
i) ∈ X ×Y such that the likelihood ratios

1
p(x,y−i,yi)

and 1
p(x,y−i,y

′
i)
are not equal. We define informativeness about action pX , pY ,

pX|Y , and pY |X analogously. In all cases, we say that Y is informative if there exists

at least one Yi that is informative.

Let the agent’s utility from compensation be given by U(·), where U ′(·) > 0 and

U ′′(·) < 0 so that the agent is risk averse, and assume that the agent’s utility is

additively separable in his compensation and personal cost. Let Ū denote the agent’s

utility from outside options.

3 Binary example

Assume that the only contractible performance measure is a binary random vari-

able Y with possible realizations y ∈ {yL, yH}. The agent chooses the probability of
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the high outcome, pH ≡ pY (yH), whereas pX|Y is equal to some exogenous distribu-

tion qX|Y such that the probability of the realization (x, y) is given by pXY (x, y) =

pY (y)qX|Y (x |y). That is, the agent influences X only through the related variable Y ;

in later sections, we allow the agent to directly choose the entire joint distribution

pXY .
5 Let the agent’s cost of choosing pH be given by c(pH), where c : [0, 1] → [0,∞)

is convex. The contract s(Y ) specifies the payments s(yL) and s(yH), depending on

whether the high or low outcome is realized.

Faced with contract s(Y ), the agent chooses pH to maximize his expected utility

from compensation less his cost of effort.

max
a

(U(s(yH))− U(s(yL)))pH + U(s(yL))− c(pH)

s.t. 0 ≤ pH ≤ 1
(3)

Assume that the constraints do not bind.6 Then the agent’s first-order condition

is as follows.

c′(pH) = U(s(yH))− U(s(yL)) (4)

The principal’s aim is to propose a contract and action pair (s(Y ), pH) that

maximizes her net payoff subject to three constraints. First, the proposed pair must

make the agent’s expected utility at least as great as her reservation utility Ū ; this

individual rationality (IR) constraint ensures that the agent is willing to accept the

contract. Second, the proposed pair must be incentive compatible (IC); that is, given

the proposed scheme s(Y ), the agent chooses the proposed probability pH voluntarily.

Notice that the agent’s expected utility (3) is concave in pH for any s(Y ); then the

agent’s first-order condition (4) is sufficient to ensure incentive compatibility, and we

can thus use (4) as the IC constraint in the principal’s program. Finally, the proposed

pH must be between zero and one to ensure that pY is a probability mass function

5We show in section 4 that when faced with a contract s(Y ), in equilibrium the agent

always sets pX|Y = qX|Y . We abstract away from this choice to simplify the binary

example.
6We will consider boundary cases in the full analysis in section 4.
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(p.m.f.). Then the principal’s program can be written as follows, where we assume

for simplicity that E[B(X, Y )|yL] = 0.

max
s(Y ),pH

(∑
X

B(x, yH)q(x |yH)− s(yH)

)
pH − s(yL)(1− pH) (5)

s.t. (U(s(yH))− U(s(yL)))pH + U(s(yL))− c(pH) ≥ Ū (IR)

U(s(yH))− U(s(yL)) = c′(pH) (IC)

0 ≤ pH ≤ 1 (p.m.f)

Assume that the p.m.f. constraints are nonbinding, and let λ and µ be the

Lagrange multipliers on the IR and IC constraints, respectively. The payment s(yL)

is optimally chosen to bind the IR constraint; we show this formally in section 4. It

remains to characterize the optimal high payment s(yH). Optimizing (5) over s(yH)

and pH gives the following first-order conditions.

1
U ′(s(yH))

= λ+ µ · 1
pH

(6)

µ =
∑

X B(x,yH)q(x |yH)−(s(yH)−s(yL))

c′′(pH)
. (7)

Because c(·) is strictly convex, c′(·) is strictly increasing and therefore has a

strictly increasing inverse. Inverting (4) to obtain pH = c′−1(U(s(yH)) − U(s(yL)))

and substituting (7) into (6) yields the following characterization of s(yH), where

η(yL) ≡ −s(yL), ν(yL) ≡ U(s(yL)), and č(·) ≡ c′−1(·)c′′
(
c′−1(·)

)
.

1
U ′(s(yH))

= λ+ E[B(X,Y )|yH ]−s(yH)−η(yL)
č(U(s(yH))−ν(yL))

(8)

Notice that yH enters the expression only through s(yH) and E[B(X, Y )|yH ];
that is, the signal y is useful for contracting only to the extent that it is informative

about value. In this binary setting where the agent chooses a single probability pH ,

this result holds for any convex cost function. The following section shows that in

nonbinary settings, the result holds for all divergence-based cost functions satisfying

two axioms.
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4 Main analysis

Assume now that the agent chooses the joint probability distribution pXY and that X
and Y are of any finite dimension. While there are many ways to model the agent’s

choice of distribution, we assume that the agent chooses the probability p(x,y) for

each (x,y) ∈ X ×Y , subject to the p.m.f. constraints that 0 ≤ p(x,y) for all (x,y)

and
∑

X ×Y p(x,y) = 1.

4.1 Cost function assumptions

Let C(p) denote the personal cost incurred by the agent when he implements dis-

tribution pXY = p. We assume that C : P(X ,Y) → [0,∞) is strictly convex, twice

differentiable, and that it attains a unique minimum at some q = qXY ∈ P(X ,Y)

that satisfies C(q) = 0. It immediately follows that C(p) is a divergence and can be

written

C(p) = D(p||q). (9)

A divergence is a weakened notion of the distance from one probability distribution to

another. Like a distance, D(p||q) is nonnegative and is equal to zero if and only if p =

q; intuitively, the agent incurs zero cost only when he implements the cost-minimizing

distribution q, and he incurs a positive cost for any p ̸= q. Unlike a distance, a

divergence need not satisfy the triangle inequality, nor need it be symmetric; that is,

D(p||q) ̸= D(q||p) is permitted. This allows the cost of moving from q to p to differ

from the cost of moving from p to q; for example, it may be more costly to increase

the mean of a variable than to decrease it. We now place additional structure on the

set of divergences we will consider, in the form of two axioms.

Axiom 1 (Invariance). Let Z = k(X, Y ) be some transformation of the random

variables (X, Y ), where dim(Z) ≤ dim(X ,Y), and let p̃Z be the corresponding trans-

formation of pXY . Then

D(p̃Z ||q̃Z) ≤ D(pXY ||qXY ), (10)

7
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where the equality holds if and only if Z is a sufficient statistic for (X, Y ).

We adopt the invariance criterion from Amari (2016), who describes it as the

“reasonable criterion” that is “needed for introducing a geometrical structure to a

manifold of probability distributions” (p. 51). In information geometry, invariance

ensures that the divergence between two probability distributions is the same when

a random variable is transformed without losing information. Applied to our setting,

it implies that the cost of implementing pXY is weakly increasing in the number of

variables he controls; giving the agent more variables to control cannot reduce his

cost, ruling out strange cases in which “doing more costs less.” Assume for example

that Z = k(X, Y ) = Y . Then invariance implies that the following relationships must

hold for all p, q ∈ P(X ,Y).

D(pY ||qY ) = D(pY qX|Y ||qXY ) ≤ D(pXY ||qXY ) (11)

These relationships align with the definitions of partial invariance and partial mono-

tonicity (in the X dimension) from Hébert and La’O (2022). Their significance will

become clear when we analyze the agent’s program, as will the usefulness of the

following axiom.

Axiom 2 (Decomposability). The cost of choosing the distribution pXY is addi-

tively separable in the probabilities pXY (x,y).

Additive separability greatly enhances the problem’s tractability and is a common

assumption in information geometry and its applications (Amari 2016, p. 106). While

tractability is our primary motivation for relying on this axiom, it is defensible for

an agent with the flexibility to locally perturb the distribution of signals without

considering the distribution’s non-local properties. For example, decomposability

implies that the cost of shifting mass above a salient threshold (e.g., a bonus target)

does not depend on the distribution’s tail risk.

It is well known that a divergence satisfies the above two axioms if and only if it

8
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is an f -divergence,7 defined as follows.

C(p) = Df (p||q) ≡
∑

X ×Y
q(x,y)f

(
p(x,y)
q(x,y)

)
(12)

We assume that supp(q) = X ×Y to ensure that p(x,y)/q(x,y) < ∞ for all p and

(x,y). This, along with our assumptions on C(p), imply that f : [0,∞) → [0,∞)

is convex, twice-differentiable, and satisfies f(1) = 0. One particular f -divergence

we will refer to occasionally is the Kullback-Leibler divergence, which specifies that

f(0) = 0 and f(t) = t ln(t) for t > 0.

4.2 The agent’s problem

Because the agent’s utility is additively separable in compensation and personal cost,

his net utility is U(s(Y ))−Df (p||q). Faced with a contract s(Y ), the agent chooses

p to maximize the following program.

max
p

∑
X ×Y

U(s(y))p(x,y)−Df (p||q)

s.t. 1 =
∑

X ×Y
p(x,y), p(x,y) ≥ 0 ∀(x,y)

(13)

Suppose for the moment that the non-negativity constraints are non-binding, and

for some arbitrary (x0,y0) ∈ X ×Y rewrite the remaining constraint as p(x0,y0) =

1−
∑

X ×Y \(x0,y0)
p(x,y). Substituting this constraint into the objective function and

taking the first-order condition with respect to p(x,y) yields the following.

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x0,y0)
q(x0,y0)

)
= U(s(y))− U(s(y0)) (14)

Because f(·) is a strictly convex function, f ′(·) is strictly increasing and can therefore

be inverted. We can therefore solve (14) for p(x,y) and express the marginal and

7See for example Amari (2016), Theorem 3.1.
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conditional distributions as follows, where ν(x0,y0) ≡ U(s(y0))− f ′
(

p(x0,y0)
q(x0,y0)

)
.

p(y) = q(y)f ′−1 (U(s(y))− ν(x0,y0))

p(x |y) = q(x |y)
(15)

In particular, the principal is unable to motivate any action for which pX|Y ̸= qX|Y

using a contract written only on Y . This is because the cost-minimizing pX|Y is

qX|Y regardless of the agent’s choice of pY ; it follows from (11) that Df (pXY ||qXY ) =

Df (pY qX|Y ||qXY ) = Df (pY ||qY ). The following lemma extends these incentive com-

patibility conditions to cases in which the non-negativity constraints are permitted

to bind.

Lemma 1 For any contract s(Y ), a solution to program (13) exists. Moreover, for

any (x0,y0) ∈ supp(X ×Y), the solution for (x,y) ̸= (x0,y0) satisfies p(x,y) > 0 if

and only if U(s(y)) − U(s(y0)) > limt→0+ f ′(t) − f ′
(

p(x0,y0)
q(x0,y0)

)
, in which case p(x,y)

satisfies equations (14) and (15) for all (x,y) ̸= (x0,y0).

Permitting the non-negativity constraints to bind simply requires replacing p(x,y)

with zero whenever (14) would imply a negative probability, which only occurs for pay-

ments below a threshold that is increasing in limt→0+ f ′(t). Note that if limt→0+ f ′(t) =

−∞ as with, for example, the Kullback-Leibler divergence, then the agent always

chooses a distribution with full support on X ×Y .

4.3 The principal’s problem

Lemma 1 completely characterizes the agent’s incentive compatible action under the

contract s(Y ). The first-order approach is automatically valid under the generalized

approach; to see this, notice that program (13) maximizes a concave function with

linear constraints. Because Lemma 1 (specifically equation (15)) shows that pX|Y =

qX|Y for any s(Y ), we can write the the principal’s program over the choice variables

s(Y ) and pY . Then if we again for the moment rule out cases in which supp(p) ̸=

10
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X ×Y , the principal’s program can be written as follows.

max
s(Y ),pY

∑
Y

(∑
X

B(x,y)q(x |y)− s(y)

)
p(y) (16)

s.t.
∑
Y

U(s(y))p(y)−
∑
Y

q(y)f

(
p(y)

q(y)

)
≥ Ū (IR)

U(s(y))− U(s(y0)) = f ′
(
p(y)

q(y)

)
− f ′

(
p(y0)

q(y0)

)
∀y ̸= y0 (ICy)

p(y0) = 1−
∑
Y \y0

p(y) (p.m.f)

Notice that because the IC constraints depend only on the wage differentials

U(s(y)) − U(s(y0)), any action that can be induced with a contract that does not

bind the IR constraint can also be induced with one that does: simply reduce all

wages by a constant in utility space until the IR constraint binds. Because this

has no impact on the IC constraints, the two contracts motivate the same action

while decreasing the expected wage, which is an unambiguous improvement from

the principal’s perspective. Thus the IR constraint binds in equilibrium, which we

formalize in the following lemma.

Lemma 2 The individual rationality constraint binds.

Now substitute the p.m.f. constraint into the objective function and other con-

straints, and let λ and µ(y) be the Lagrange multipliers on the IR and the yth IC

constraints. Then the principal’s first-order conditions with respect to p(y) and s(y)

for y ̸= y0 are

0 =E[B(X,Y )|y]− s(y)− µ(y)
1

q(y)
f ′′
(
p(y)

q(y)

)
− η(y0) (17)

0 =− p(y) + λU ′(s(y))p(y) + µ(y)U ′(s(y)), (18)

where η(y0) ≡ E[B(X, Y )|y0]−s(y0)+
1

q(y0)
f ′′
(

p(y0)
q(y0)

)∑
Y \y0

µ(ỹ) does not vary with

y ∈ Y \y0. The following lemma establishes conditions under which these first-order

conditions are necessary and sufficient for an interior solution.

Lemma 3 The principal’s first-order conditions are necessary and sufficient for an

11
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interior solution if U−1 (f ′(t) + ν) t and f(t) − tf ′(t) are convex in t for any ν ∈ R
and t ∈ (0,∞).

The Kullback-Leibler divergence is an example of an f -divergence that satisfies

the conditions in Lemma 3, as we will show at the end of this section. Returning

to the principal’s first-order conditions, we can solve (17) for µ(y) in closed form as

follows.

µ(y) = E[B(X,Y )|y]−s(y)−η(y0)
1

q(y)
f ′′( p(y)

q(y))
(19)

Finally, substituting this expression for µ(y) into (18) yields

1
U ′(s(y))

= λ+ µ(y) 1
p(y)

= λ+ E[B(X,Y )|y]−s(y)−η(y0)
1

q(y)
f ′′( p(y)

q(y))
· 1
p(y)

. (20)

Equation (20) suggests that a signal Yi may be useful if it is informative about

value, if it is informative about the action pY , or if it affects the higher-order properties

of the agent’s cost function through
∂2Df (pY ||qY )

∂p(y)2
= 1

q(y)
f ′′
(

p(y)
q(y)

)
. We now show that

of these three potential criteria for a signal’s usefulness, informativeness about value

is the only one that matters.

4.4 The usefulness of information

Returning to equation (14), define ν(y0) ≡ U(s(y0))− f ′
(

p(y0)
q(y0)

)
so that the agent’s

IC constraint can be written f ′
(

p(y)
q(y)

)
= U(s(y)) − ν(y0). Again relying on the

invertibility of f ′(·), (14) can be rewritten

p(y)
q(y)

= f ′−1 (U(s(y))− ν(y0)) . (21)

Substituting (21) into (20) yields the paper’s main result, given in the following

proposition.

Proposition 1 For any y0 ∈ supp(pY ), the optimal contract is characterized on

supp(pY ) by

1
U ′(s(y))

= λ+ E[B(X,Y )|y]−s(y)−η(y0)

f̌(U(s(y))−ν(y0))
, (22)

12
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where f̌(·) ≡ f ′−1(·)f ′′ (f ′−1(·)
)
. Moreover, this contract is weakly efficient for y /∈

supp(pY ) if
tf ′′′(t)
f ′′(t)

≥ −1 ∀u > 0.

Examining (22) reveals that the general solution takes the same form as the

binary one in equation (8); in particular, y only enters the expression through s(y)

and E[B(X, Y )|y]. Because the equality must be maintained for every y ̸= y0, s(y)

can vary with y only if E[B(X, Y )|y] also varies with y. The implication is that a

signal is useful if and only if it is informative about value, not actions.

Corollary 1 A signal is useful if and only if it is informative about value.

The proof of this corollary shows that the optimal contract characterized by (22)

necessarily varies with a signal Yi if and only if E[B(X, Y )|y] = E[B(X, Y )|y−i, yi]

varies with yi. This is in contrast to the solution under the classic parametric ap-

proach, where a signal Yi is valuable if and only if the likelihood ratio pa(y;a)
p(y;a)

=
pa(y−i,yi;a)

p(y−i,yi;a)
varies with yi. An immediate corollary is that if value is itself contractible,

then additional signals are not useful.

Corollary 2 If B(X, Y ) = Yi is contractible, then Yi is the only useful signal.

The corollary shows that if the principal values a single variable, Yi, and if that

variable is directly contractible, the principal will write the contract on that signal

and will ignore all other available signals. This is in stark contrast to the classic

parametric approach, where the optimal contract will incorporate any contractible

signal that is incrementally informative about the agent’s action.

4.5 Properties of the optimal contract and action

We conclude this section by establishing some additional properties of the optimal

contract and action. First, we provide a sufficient condition on f for s(Y ) and pXY

qXY

to be monotone in the expected value given Y .

Corollary 3 If tf ′′′(t)
f ′′(t)

≥ −1 ∀t > 0, then s(y) and p(y)
q(y)

= p(x,y)
q(x,y)

are increasing in

E[B(X, Y )|y].

When B(X, Y ) = Yi, the monotonicity of p(yi)
q(yi)

in yi implies that pY first-order

stochastically dominates qY . The condition on f requires that the convexity of f not

13
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be decreasing too quickly in u. The following corollary provides an example of a cost

function that satisfies this condition as well as those in Lemma 3 that ensure the

sufficiency of the principal’s first-order conditions for a solution.

Corollary 4 Let f(t) = t ln(t), so that Df (p||q) is the Kullback-Leibler divergence.

Then f satisfies the conditions in Lemma 3 and Corollary 3.

Under a Kullback-Leibler divergence cost function, the optimal contract from

(22) takes the following simple form.

1
U ′(s(y))

= λ+ E[B(X, Y )|y]− s(y)− η(y0) (23)

With a Kullback-Leibler cost function, the denominator of µ(y) and the likelihood

ratio 1
p(y)

cancel exactly. There is a good reason for this based in information geom-

etry: a non-parametric distribution belongs to the family of mixture distributions,

and the Kullback-Leibler divergence is the canonical divergence for this family. All

canonical divergences have the property that ∂2D(p||q)
∂ai∂aj

= gij(p) for coordinate system

(i.e., parameterization) a, where gij(p) is ij
th entry of the Fisher information matrix.

In our non-parametric setup, a canonical divergence satisfies ∂2D(p||q)
∂ai∂aj

= ∂2D(p||q)
∂p(y)∂p(ỹ)

and

gij(pY ) =
1

p(y)
· 1ỹ=y. It follows that for the canonical (Kullback-Leibler) divergence

cost function, the denominator of µ(y) is the likelihood ratio.8

Having established that the second-best contract and action are monotone under

the Kullback-Leibler divergence, we now consider how the second-best solution com-

pares to the first-best. The following lemma characterizes the first-best action; i.e.,

the one the principal would select absent moral hazard.

Lemma 4 For any (x,y) and (x′,y′) in supp(X ×Y), the first-best action satisfies

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x′,y′)
q(x′,y′)

)
= B(x,y)−B(x′,y′). (24)

In particular, p(x,y)
q(x,y)

− p(x′,y′)
q(x′,y′)

is increasing in B(x,y)−B(x′,y′).

There are two sources of departure from first best: the inability to contract on X

and the agent’s risk aversion. To examine how these frictions impact the equilibrium

8See Amari and Nagaoka (2000) for details.
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action, it will be convenient to construct a measure of risk aversion based on secant

approximations of the Arrow-Pratt coefficient of absolute risk aversion. Specifically,

for any (x,y) and (x′,y′) in supp(X ×Y), define u′(y,y′) as the slope of the secant

line connecting the points U(s(y)) and U(s(y′)), and define u′′(y,y′) as the slope of

the secant line connecting the points U ′(s(y)) and U ′(s(y′)). Note that u′(y,y′) and

u′′(y,y′) respectively converge to U ′(s(y)) and U ′′(s(y)) as s(y′) converges to s(y).

Our measure of risk aversion is then

−u′′(y,y′)
u′(y,y′)

≡ − (U ′(s(y))−U ′(s(y′))/(s(y)−s(y′))
(U(s(y))−U(s(y′))/(s(y)−s(y′))

= −U ′(s(y))−U ′(s(y′))
U(s(y))−U(s(y′))

. (25)

Given these definitions, the following proposition characterizes the second-best action.

Proposition 2 Let Df (p||q) be the Kullback-Leibler divergence. Then for any (x,y)

and (x′,y′) in supp(X ×Y), the second-best action satisfies

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x′,y′)
q(x′,y′)

)
= E[B(X,Y )|y]−E[B(X,Y )|y′]

U′(s(y))U′(s(y′))
u′(y,y′) −u′′(y,y′)

u′(y,y′)

· U ′(s(y))U ′(s(y′)). (26)

In particular,
∣∣∣p(x,y)q(x,y)

− p(x′,y′)
q(x′,y′)

∣∣∣ is increasing in |E[B(X, Y )|y]− E[B(X, Y )|y′]| and

is decreasing in −u′′(y,y′)
u′(y,y′)

.

Intuitively, risk-aversion causes a reduction in |U(s(y)) − U(s(y′))|, and there-

fore in
∣∣∣p(x,y)q(x,y)

− p(x′,y′)
q(x′,y′)

∣∣∣, relative to the first-best, thereby reducing the risk borne by

the agent. However, risk neutrality is not sufficient to restore first-best production.

Specifically, setting U(s) = s causes (26) to reduce to

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x′,y′)
q(x′,y′)

)
= E[B(X, Y )|y]− E[B(X, Y )|y′], (27)

which is equivalent to (24) if and only if E[B(X, Y )|y]− E[B(X, Y )|y′] = B(x,y)−
B(x′,y′). This is true for all (x,y) ∈ X ×Y if and only if Y perfectly reveals B(X, Y );

i.e., if value or a perfect measure of value is contractible.
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5 Extensions

5.1 Equivalence to a rich multi-tasking model

The generalized distribution approach expands the agent’s action space relative to

the classic approach; in Holmström (1979), the agent has a one-dimensional action,

a, whereas in the generalized approach, the agent’s action has the same dimensionality

as X × Y . It is therefore useful to relate the generalized approach to multi-tasking

models, which also expand the dimensionality of the agent’s control space by allowing

the agent to choose a vector rather than a scalar.

In classic multi-tasking models (e.g., Holmström and Milgrom 1991), the agent

chooses a vector of parameters, a = (a1, ..., am) at some cost V (a). We can interpret

the generalized approach as a particular parameterization of a multi-tasking model

in which a = {p(x,y)}X ×Y at cost Df (a||q); that is, the choice of each probability is

a “task.” However, it turns out that setting a = {p(x,y)}X ×Y is not necessary for

our results. As we show in this section, the generalized approach is equivalent to any

parameterization of a multitasking model in which the agent’s action space is rich

enough to span the entire simplex P(X ,Y).

Let a = (a1, . . . , am) ∈ A ⊂ Rm be a vector of hidden actions chosen by the agent.

Let a parameterize the distribution p(a), and let p(x,y; a) denote the probability of

(x,y) under the distribution p(a). Assume that for each p ∈ P(X ,Y), there exists at

least one action a ∈ A such that p(a) = p; that is, the action space A is rich enough

to make every distribution accessible at some cost. Let V (a) ≡ Df (p(a)||q) be the

agent’s personal cost of taking action a. Then faced with a contract s(Y ), the agent

chooses a to maximize the following program.

max
a

∑
X ×Y

U(s(y))p(x,y; a)−Df (p(a)||q) (28)

The first-order condition with respect to ai is as follows, where pi(x,y; a) denotes

the partial derivative of p(x,y; a) with respect to ai and ν ∈ R is an arbitrary real
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number.9

0 =
∑
X

∑
Y

[
U(s(y))− ν − f ′

(
p(x,y;a)
q(x,y)

)]
pi(x,y; a) (29)

Note that (14) implies (29) for ν = U(s(y0)) − f ′
(

p(x0,y0)
q(x0,y0)

)
; that is, the gener-

alized approach yields a first-order condition in which (29) holds term-by-term. It is

straightforward to show that this solution to (29) is globally optimal.

Lemma 5 The solution to the agent’s nonparametric program (13) characterized by

Lemma 1 also solves the agent’s parametric program (28).

Given Lemma 5, we can replace the first-order conditions (29) with (14) and (15),

which allows the principal’s program to be written analogously to (16).

max
s(Y ),a

∑
Y

(∑
X

B(x,y)q(x |y)− s(y)

)
p(y;a) (30)

s.t.
∑
Y

U(s(y))p(y;a)−
∑
Y

q(y)f

(
p(y;a)

q(y)

)
≥ Ū (IR)

U(s(y))− U(s(y0)) = f ′
(
p(y;a)

q(y)

)
− f ′

(
p(y0;a)

q(y0)

)
∀y ̸= y0 (ICy)

p(y0;a) = 1−
∑
Y \y0

p(y;a) (p.m.f)

Because a enters this program only through p(a), the optimal distribution p and

contract s(Y ) must be independent of the parameterization, and therefore identical

to the nonparametric solution. More formally, after substituting (p.m.f) into the

objective function and other constraints, the principal’s first-order conditions with

respect to ai and s(y) for y ̸= y0 are

0 =
∑
Y

[
E[B(X,Y )|y]− s(y)− µ(y)

1

q(y)
f ′′
(
p(y;a)

q(y)

)
− η(y0;a)

]
pi(y;a) (31)

0 =− p(y;a) + λU ′(s(y))p(y;a) + µ(y)U ′(s(y)), (32)

9Note that the right-hand side of (29) is identical for every real number ν because∑
X ×Y p(x,y; a) = 1 implies that

∑
X ×Y pi(x,y; a) = 0.
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where η(y0; a) ≡ E[B(X, Y )|y0]−s(y0)+
1

q(y0)
f ′′
(

p(y0;a)
q(y0)

)∑
Y \y0

µ(ỹ). In particular,

(18) and (32) are identical whereas (17) implies (31); that is, the generalized approach

yields a first-order condition in which (31) holds term-by-term. It is straightforward

to show that this solution to (31) is globally optimal.

Proposition 3 The solution to the principal’s nonparametric program (16) charac-

terized by Proposition 1 also solves the principal’s parametric program (30).

In sum, we can interpret the generalized approach as a reduced-form version of

any parametric multi-tasking model in which the entire simplex P(X ,Y) is accessible

to the agent. Thus, it is not the agent’s ability to directly choose probabilities that

matters for our results, but rather that the agent’s action space is sufficiently rich.

In the following extension, we consider the robustness of our results when the agent’s

action space is constrained.

5.2 Exogenously-distributed signals

Up to this point, we have allowed the agent to choose the joint distribution over all

contractible and non-contractible signals. In this section we investigate the robustness

of our results to cases in which some signals are exogenously distributed.

Assume that there are two vectors of exogenously-distributed variables that may

be valuable to the principal; W ∈ W that is not contractible and Z ∈ Z that

is contractible. Let qWZ|XY be an exogenous conditional distribution over (W,Z)

conditional on (X, Y ); that is, the agent still chooses pXY ∈ P(X ,Y), but he is limited

by qWZ|XY to a subset of the simplex P(W ,X ,Y ,Z). We assume that qWZ|XY has full

support, and we restrict our attention to cases in which an interior pXY is optimal.

The derivation of the optimal contract and action closely follows the analysis in

Section 4. For an arbitrary (w0,x0,y0, z0), the optimal contract is characterized by

the following proposition.

Proposition 4 For all (y, z) ̸= (y0, z0), the optimal contract satisfies

1
U ′(s(y,z))

= λ+
∑

W ×X

EWZ [B(W,X,Y,Z)−s(Y,Z)|x,y]−η0

f̌(
∑

Z U(s(y,z̃))q(z̃|x,y)−ν0)
· p(w,x |y, z), (33)

where λ, ν0, and η0 are constant in (y, z) and f̌(·) ≡ f ′−1(·)f ′′ (f ′−1(·)
)
.
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Define controllable residual value as EWZ [B(W,X, Y, Z) − s(Y, Z)|X, Y ], which

is the expected residual value conditional on the variables under the agent’s control.

We say that a signal Yi or Zi is informative about controllable residual value if

EWX [EWZ [B(W,X, Y, Z)|X, Y ]|Y, Z] ̸= EWX [EWZ [B(W,X, Y, Z)|X, Y ]|Y−i, Z]

or EWX [EWZ [B(W,X, Y, Z)|X, Y ]|Y, Z] ̸= EWX [EWZ [B(W,X, Y, Z)|X, Y ]|Y, Z−i],

respectively. The optimal contract in Proposition 4 is an expectation of weighted

controllable residual values, where the weights are the reciprocal of the term in the

denominator, f̌ (
∑

Z U(s(y, z̃))q(z̃|x,y)− ν0). If this term is constant in x, then the

weights are all equal and the optimal contract is a function of the expected controllable

residual value conditional on the observable signals. A sufficient condition for this to

be the case is that Df (p||q) is the Kullback-Leibler divergence.

Corollary 5 If Df (p||q) is the Kullback-Leibler divergence, then a signal Yi or Zi is

useful if and only if it is informative about controllable residual value.

When Df (p||q) is the Kullback-Leibler divergence, the denominator on the right-

hand side of (33) is equal to one, and we are left with the nested expectation

EWX [EWZ [B(W,X, Y, Z)|X, Y ]|y, z] minus a constant. The inner expectation gives

the principal’s expected residual conditioned on a particular realization of the con-

trollable variables X and Y ; it prevents noise in the uncontrollable variables W and Z

from entering the contract, filtering out fluctuations in the principal’s residual value

that the agent cannot control. The outer expectation is required because X and W

are not observed; it uses the observable variables Y and Z to give an estimate of the

controllable residual value.

Proposition 4 is a generalization of our main result. WhenW and Z are the empty

set, we are back to the setting in which the principal’s objective is B(X, Y ); in that

case, the controllable residual value is E[E[B(X, Y )− s(Y )|X, Y ]|y] = E[B(X, Y )−
s(Y )|y] = E[B(X, Y )|y]−s(y), which is what appears on the right-hand side of (22).

That is, E[B(X, Y )|y] − s(y) is an expectation over the controllable residual value,

but where all variables are controlled.
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6 Discussion and related literature

6.1 The generalized distribution approach

In a review of the early agency literature, Hart and Holmström (1987) identified three

approaches to modeling the moral hazard problem. The first is the state space formu-

lation of early agency work (e.g. Wilson 1968), where output is jointly determined by

the agent’s action and a random state of nature. The second is the parameterized dis-

tribution formulation of the agency problem, wherein the agent’s action is represented

as a parameter in the distribution over one or more random variables; this approach

has dominated the literature since the seminal work of Holmström (1979). Finally,

Hart and Holmström describe the generalized distribution approach as follows.

The third, most abstract formulation is the following. Since the agent
in effect chooses among alternative distributions, one is naturally led to
take the distributions themselves as the actions, dropping the reference
to a . . . Of course, the economic interpretation of the agent’s action and
the incurred cost is obscured in this generalized distribution formulation,
but in return one gets a very streamlined model of particular use in un-
derstanding the formal structure of the problem. (Hart and Holmström
1987, pp.78-79.)

When Hart and Holmström (1987) wrote their review, the only paper to have

used the generalized distribution approach was Holmström and Milgrom (1987), who

provide two examples to motivate the assumption that the agent can choose distri-

butions directly. First, imagine that an agent chooses a single action conditional

on a rich set of private information in a static game; then the space of contingent

effort strategies maps to the space of nonparametric unconditional distributions at

the outset, before any private information is revealed. Second, imagine that an agent

acts continuously throughout the contracting period, conditioning his action on a

continuously observed state variable; Holmström and Milgrom (1987) argue that this

setting can be represented in reduced form as the agent choosing the unconditional

distribution at the outset.10 Notice that both of these motivations involve giving

10Hébert (2018) shows this formally; he microfounds the generalized approach by
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the agent more options, and that the generalized approach does greatly expand the

dimensionality of the agent’s action space relative to the classic approach.

Not many papers have employed the generalized approach since Holmström and

Milgrom (1987), but there have been a few in recent years. Most closely related to

ours is Hébert (2018), who studies a setting in which a seller (the agent) chooses the

distribution over an asset and designs a security that gives a buyer (the principal)

some claim on the asset’s value realization. (In our paper it is the principal who

designs the contract, but this does not change the fundamental nature of the agency

problem.) Like us, Hébert (2018) uses divergences to model the agent’s cost function.

Our paper differs from Hébert (2018) in two important respects. First, we model a

risk-averse agent with unlimited liability, whereas Hébert assumes a risk-neutral agent

with limited liability. Second, the focus of our paper is different, and consequently,

the set of cost functions under which our main result holds is different, as we discuss

further in section 6.2.

Another recent paper, Bonham (2020), uses the generalized approach to study

how measurement and contracts shape productive incentives. In that paper, an agent

with limited liability has distributional control only over value, which is assumed to

be non-contractible, and the relationship between value and the contractible signals is

completely exogenous to the agent’s choice; this is akin to letting B(W,X, Y, Z) = Xi

in our extended model in section 5.2, but where only the exogenous signal Zi is

contractible. Bonham (2020) focuses on how the exogenous mapping from Xi to Zi

(i.e. the measurement of value) shapes the equilibrium distribution and the optimal

contract.

A concurrent paper, Georgiadis, Ravid, and Szentes (2022), also studies optimal

contracting under the generalized approach. The premise of their paper is similar

to ours – to study optimal contracting under moral hazard when the agent has a

flexible action space – and they give a binary example with an IC constraint that

showing that a continuous time model in which an agent with quadratic cost controls

the drift of a Brownian motion is equivalent to a static model wherein an agent

with a Kullback Leibler divergence cost function chooses a probability distribution

nonparametrically.
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is virtually identical to ours.11 The two papers diverge significantly in focus and

in the specification of the general model. Georgiadis, Ravid, and Szentes (2022)

assume a single contractible variable, and they are largely focused on the existence of

contracts that implement each distribution as well as the monotonicity of the agent’s

wage. On the other hand, our paper is focused on the value of information, and we

therefore study a multivariate setting in which value cannot be directly observed. To

make this setting tractable, we model the agent’s cost function as an f -divergence,

whereas Georgiadis, Ravid, and Szentes (2022) do not restrict the agent’s cost function

to take a particular form, but instead impose the assumptions of smoothness and

monotonicity.

Garrett, Georgiadis, Smolin, and Szentes (2022) also model the agent as choosing

a distribution, but allow the agent to choose his cost function ex ante. In our model,

this would be akin to the agent choosing the exogenous distribution q before interact-

ing with the principal, except that Garrett et al. (2022) do not impose a functional

form on the cost function. They show that the optimal cost function is one that

makes all non-binary distributions infinitely costly.

In addition to the papers mentioned above, we know of a few others that use

the generalized distribution approach. Hellwig (2007) uses it to extend Holmström

and Milgrom (1987) to include boundary solutions. Bertomeu (2008) uses it to study

risk management. Hemmer (2017) studies relative performance evaluation using a

binary version of the generalized approach in which the agent directly chooses the

probability of the principal’s preferred outcome. Diamond (1998) takes a related but

more restrictive approach in which the agent exerts costly effort to generate a set of

distributions with equal means and then costlessly selects an element from that set.

Carroll (2015) models actions as distribution-cost pairs to study robust contracts, i.e.

those that give the best worst-case guarantee when the principal does not know what

distribution-cost pairs are available to the agent; by contrast, we assign the agent’s

cost of choosing distributions a functional form (that of an f -divergence), and we

assume that this cost function is common knowledge.

11See equation (4) of our paper and equation (1) in Georgiadis, Ravid, and Szentes

(2022).
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6.2 Divergence-based cost functions

The rational inattention literature uses divergences to model the cost of processing

or paying attention to information. Much of the literature has followed Sims (1998,

2003) by modeling information costs as the expected reduction in Shannon mutual

information, which is the Kullback-Leibler (KL) divergence of a joint distribution from

the product of its marginals. However, many behavioral implications of the Shannon

model were found to be inconsistent with experimental evidence (for example, see

Dean and Neligh 2019), and consequently, recent papers have generalized to broader

classes of cost functions. Variations of decomposability and invariance are prevalent in

these generalizations. For example, Caplin, Dean, and Leahy (2022) study uniformly

posterior-separable cost functions that are additively separable in both the prior and

the posterior, and invariant posterior-separable cost functions, which specify that the

least costly way to learn about an event is to learn nothing additional about the

relative probabilities about the states that make up the event.

Like Hébert (2018), we use divergences to model the cost of an agent’s hidden

action in a moral hazard model. Hébert (2018) is primarily interested in the shape of

the contract – specifically, the optimality of debt. He shows that debt contracts are

exactly optimal when the agent’s cost function is proportional to KL-divergence, and

that debt is approximately optimal for all invariant divergences. By contrast, we focus

on the contracting value of information. Our main result – that the contract only

varies with information about the principal’s expected payoff – exactly holds for all f -

divergences, which are invariant divergences that are also additively separable. Thus,

our main result exactly holds for a broader set of cost functions than Hébert’s (the

f -divergences rather than the KL), but Hébert’s main result approximately holds

for a broader class than we can show (all invariant divergences rather than the f -

divergences).12

12It is possible that our main result holds for all invariant divergences; however, the

analysis is intractable without the additional axiom of Decomposability. Under

this axiom, the agent’s cost of choosing the probability pXY (x,y) is independent of

pXY (x
′,y′) for all (x,y) and (x′,y′). Note that this is consistent with the notion of

giving the agent a rich action space, as it allows the agent the flexibility to change
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Some papers employing the generalized approach also use divergence-based cost

functions, but the authors do not explicitly identify them as such. Bonham (2020)

assumes a χ2-divergence cost function, which is a special case of an f -divergence in

which the separable cost of choosing each probability is quadratic. Bertomeu (2008)

measures the distance between two distributions as the integrated squared error,

which is a divergence but is not invariant.

7 Concluding remarks

Holmström’s informativeness principle says that a signal is valuable for contracting if

it is informative about the agent’s action, and it is considered one of the most robust

results in agency theory (Bolton and Dewatripont 2005). We return to the setting

in Holmström’s seminal 1979 paper and apply an assumption pioneered in his 1987

paper—the generalized distribution approach. Under this approach, a signal is useful

for contracting if it changes inferences about outcomes the principal values, rather

than about the agent’s action.

This finding may help to explain executive compensation practice. The informa-

tiveness principle—derived in a model where the agent chooses a single parameter

that is often interpreted as effort—predicts that all signals that are incrementally

informative about a CEO’s effort should be included in his compensation contract.

There are many readily available signals that firms could use to measure effort (such

as hours worked, meetings held, or emails sent), but in reality executive contracts

tend to instead include measures that are informative about firm value.13 Perhaps

this is because CEO actions are better described as choosing distributions than as

supplying a one-dimensional input like effort.

one probability without affecting the cost of the others.
13For example, De Angelis and Grinstein (2015) document that 92 percent of

performance-based awards are contingent on accounting metrics or stock perfor-

mance.
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A Proofs

Proof of Lemma 1. Substitute the constraint p(x0,y0) = 1 −
∑

X \x0

∑
Y \y0

p(x,y)

into the objective function and other constraints in (13) to obtain the following pro-

gram.

max
p

∑
X ×Y \(x0,y0)

(
U(s(y))p(x,y)− q(x,y)f

(
p(x,y)
q(x,y)

))
+U(s(y0))

(
1−

∑
X ×Y \(x0,y0)

p(x,y)

)
−q(x0,y0)f

(
1−

∑
X ×Y \(x0,y0)

p(x,y)

q(x0,y0)

)
s.t. p(x,y) ≥ 0 ∀(x,y) ̸= (x0,y0)

1−
∑

X \x0

∑
Y \y0

p(x,y) ≥ 0

(34)

Because Df (p||q) is convex whereas the other terms in this program are linear in p, it

follows that the Lagrangian is concave and, therefore, that the first-order conditions

are necessary and sufficient for a solution. Let δ(x,y) and δ(x0,y0) denote the La-

grange multipliers on the constraints. Then the first-order condition with respect to

p(x,y) is

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x0,y0)
q(x0,y0)

)
= U(s(y))− U(s(y0)) + δ(x,y)− δ(x0,y0). (35)

Because (x0,y0) is selected from the set {X ×Y |p(x0,y0) > 0}, it follows that

δ(x0,y0) = 0. There are then two remaining possibilities: either p(x,y) = 0 or

p(x,y) > 0. If p(x,y) = 0, then (35) reduces to f ′(0) − f ′
(

p(x0,y0)
q(x0,y0)

)
− U(s(y)) +

U(s(y0)) = δ(x,y) ≥ 0, where f ′(0) ≡ limu→0+ f ′(u). Adding U(s(y))− U(s(y0)) to

both sides of this inequality implies that p(x,y) = 0 ⇐⇒ U(s(y)) − U(s(y0)) ≤
f ′(0)− f ′

(
p(x0,y0)
q(x0,y0)

)
.

On the other hand, if p(x,y) > 0 then δ(x,y) = 0 and (35) reduces to f ′
(

p(x,y)
q(x,y)

)
−

f ′
(

p(x0,y0)
q(x0,y0)

)
= U(s(y))− U(s(y0)).
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Proof of Lemma 2. Let s∗(Y ) be an optimal contract and suppose by way of contra-

diction that IR does not bind. Then there exists some ϵ > 0 sufficiently small that

U(s∗(Y )) − ϵ is also individually rational. Moreover, because U is strictly increas-

ing, it is invertible in a neighborhood of s∗(Y ). Taking ϵ small enough to remain in

this neighborhood and not violate the IR constraint, define an alternative contract

s(y; ϵ) ≡ U−1(U(s∗(y)) − ϵ). By construction, this contract pays the agent less for

every realization of Y . Furthermore, this contract satisfies

U(s(y; ϵ))− U(s(y0; ϵ)) = U(s∗(y))− ϵ− U(s∗(y0)) + ϵ

= U(s∗(y))− U(s∗(y0)),
(36)

which implies that s(Y ; ϵ) implements the same p as does s∗(Y ). Because s(Y )

maintains individual rationality and incentive compatibility at a strictly lower cost to

the principal, s∗(Y ) is strictly dominated by s(Y ; ϵ). But then s∗(Y ) was not optimal

in the first place, a contradiction. It follows that IR must bind.

28



Bonham & Riggs-Cragun Appendix A: Proofs

Proof of Lemma 3. Because U(·) is strictly increasing it can be inverted in a neigh-

borhood of the (pY , s(Y )) satisfying (17) and (18). Rewrite IC

s(y) = U−1
(
f ′
(

p(y)
q(y)

)
− f ′

(
p(y0)
q(y0)

)
+ U(s(y0))

)
= U−1

(
f ′
(

p(y)
q(y)

)
+ ν
)

(37)

for ν ≡ U(s(y0)) − f ′
(

p(y0)
q(y0)

)
, and substitute this into the objective function and

other constraints. Then the principal’s program can be rewritten as a maximization

problem over (s(y0), pY ):

max
s(y0),pY

∑
Y

(∑
X
B(x,y)q(x |y)− U−1

(
f ′
(

p(y)
q(y)

)
+ ν
))

p(y)

s.t. ν +
∑
Y
f ′
(

p(y)
q(y)

)
p(y)−

∑
Y
q(y)f

(
p(y)
q(y)

)
≥ Ū

p(y0) = 1−
∑

Y \y0

p(y)

ν = U(s(y0))− f ′
(

p(y0)
q(y0)

)
(38)

The second-order conditions are difficult to sign, but sufficient conditions on U and

f can be derived to ensure that the Lagrangian is globally concave. First, note that

because U−1 is an increasing function, the principal prefers that ν be as small as

possible and therefore chooses U(s(y0)) to bind IR (see Lemma 2).

Second, note that this maximization program is additively separable in pY , so

concavity in p(y) for each y ̸= y0 implies global concavity. The objective function is

clearly concave in p(y) if U−1
(
f ′
(

p(y)
q(y)

)
+ ν
)
p(y) is convex in p(y) for any ν ∈ R

and q(y) ∈ (0, 1). Dividing this condition through by q(y) allows it to be expressed

as convexity of U−1(f ′(t) + ν)t in t ∈ (0,∞). Moreover, the left-hand side of IR

is clearly concave in p(y) if f ′
(

p(y)
q(y)

)
p(y) − q(y)f

(
p(y)
q(y)

)
is concave in p(y) for all

q(y) ∈ (0, 1), which again dividing through by q(y) is equivalent to the convexity of

f(t)−tf ′(t) in t. Finally, the equality constraints are linear in p(y). It follows that the

stated conditions are sufficient to ensure that the Lagrangian is globally concave and,

therefore, that the first-order conditions are necessary and sufficient for an interior

solution to (38), which is equivalent to (16).
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Proof of Proposition 1. Define f ′(0) ≡ limu→0+ f ′(u). Choose some arbitrary y0 and

assume without loss of generality that p(y0) > 0 is efficient (if it is not, choose a

different y0 ∈ Y for which p(y0) > 0 is efficient). Restricting p(y0) = 1−
∑

Y \y0
p(y)

allows the principal’s program to be written as follows.

max
s(Y ),pY

∑
Y \y0

(∑
X

B(x,y)q(x |y)− s(y)

)
p(y)

+

(∑
X

B(x,y0)q(x |y0)− s(y0)

)1−
∑
Y \y0

p(y)

 (39)

s.t.
∑
Y \y0

(
U(s(y))p(y)− q(y)f

(
p(y)

q(y)

))
(IR)

+ U(s(y0))

1−
∑
Y \y0

p(y)

− q(y0)f

(
1−

∑
Y \y0

p(y)

q(y0)

)
≥ Ū

U(s(y))− U(s(y0)) = f ′
(
p(y)

q(y)

)
− f ′

(
1−

∑
Y \y0

p(ỹ)

q(y0)

)
∀p(y) > 0 (IC+

y )

U(s(y))− U(s(y0)) ≤ f ′(0)− f ′

(
1−

∑
Y \y0

p(ỹ)

q(y0)

)
∀p(y) = 0 (IC−

y )

p(y) ≥ 0 ∀y ̸= y0 (NNy)

1−
∑
Y \y0

p(y) ≥ 0 (NNy0
)

By our selection of y0, (NNy0
) does not bind. Moreover, notice that (IC+

y ) and

(IC−
y ) take the same form, except that (IC−

y ) has an inequality rather than an equality.

Without loss of generality, we can use the contract that satisfies (IC−
y ) with equality.

To see why this is without loss of generality, note that when p(y) = 0 the principal

pays s(y) with zero probability, and s(y) disappears from the objective function and
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other constraints. Therefore, the principal gets the same utility for all s(y) satisfying

(IC−
y ), so she may as well choose the s(y) that satisfies (IC−

y ) with equality. Under

these conditions, we can combine (IC+
y ) and (IC−

y ) into a single constraint set (ICy):

U(s(y)) − U(s(y0)) = f ′
(

p(y)
q(y)

)
− f ′

(
1−

∑
Y \y0

p(ỹ)

q(y0)

)
for all y ̸= y0. Let λ, µ(y),

and δ(y) be the Lagrange multipliers on (IR), (ICy), and (NNy), respectively. The

Lagrangian is given by the following equation.

L =
∑

Y \y0

(∑
X
B(x,y)q(x |y)− s(y)

)
p(y)

+

(∑
X
B(x,y0)q(x |y0)− s(y0)

)(
1−

∑
Y \y0

p(y)

)

+λ

[ ∑
Y \y0

(
U(s(y))p(y)− q(y)f

(
p(y)
q(y)

))
+U(s(y0))

(
1−

∑
Y \y0

p(y)

)
− q(y0)f

(
1−

∑
Y \y0

p(y)

q(y0)

)
− Ū

]
+
∑

Y \y0

µ(y)
[
U(s(y))− U(s(y0))− f ′

(
p(y)
q(y)

)
+ f ′

(
1−

∑
Y \y0

p(ỹ)

q(y0)

)]
+
∑

Y \y0

δ(y)p(y)

(40)

First-order condition with respect to p(y): Taking the first-order condition of

(40) with respect to p(y) for some y ̸= y0 yields

0 = E[B(X, Y )|y]− s(y)− (E[B(X, Y )|y0]− s(y0))

+λ
[
U(s(y))− f ′

(
p(y)
q(y)

)
− U(s(y0)) + f ′

(
1−

∑
Y \y0

p(ỹ)

q(y0)

)]
−µ(y) 1

q(y)
f ′′
(

p(y)
q(y)

)
+
∑

Y \y0

µ(ỹ) 1
q(y0)

f ′′
(

1−
∑

Y \y0
p(ŷ)

q(y0)

)
+ δ(y).

(41)

The bracketed term that is pre-multiplied by λ is equal to zero by (ICy). Substi-

tuting p(y0) = 1 −
∑

Y \y0
p(ỹ) back into the above expression, defining η(y0) ≡

E[B(X, Y )|y0]− s(y0)− 1
q(y0)

f ′′
(

p(y0)
q(y0)

) ∑
Y \y0

µ(ỹ), and solving for µ(y) yields

µ(y) = E[B(X,Y )|y]−s(y)−η(y0)+δ(y)
1

q(y)
f ′′( p(y)

q(y))
. (42)
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First-order condition with respect to s(y): Taking the first-order condition of

(40) with respect to s(y) for some y ̸= y0 yields

0 = −p(y) + λU ′(s(y))p(y) + µ(y)U ′(s(y)) (43)

Substituting (42) into (43) and rearranging terms yields(
1

U ′(s(y))
− λ
)

p(y)
q(y)

f ′′
(

p(y)
q(y)

)
= E[B(X, Y )|y]− s(y)− η(y0) + δ(y) (44)

Now, define ν(y0) ≡ U(s(y0))− f ′
(

p(y0)
q(y0)

)
and write (ICy) as f

′
(

p(y)
q(y)

)
= U(s(y))−

ν(y0). Because f(·) is twice differentiable and strictly convex, f ′(·) is strictly in-

creasing and can therefore be inverted. It follows that p(y)
q(y)

= f ′−1(U(s(y))− ν(y0)).

Substituting this into (44) yields

1
U ′(s(y))

= λ+ E[B(X,Y )|y]−s(y)−η(y0)+δ(y)

f ′−1(U(s(y))−ν(y0))f
′′(f ′−1(U(s(y))−ν(y0)))

(45)

Efficiency of a contract that ignores δ(y): It remains only to deal with δ(y),

which is the Lagrange multiplier on the constraint that p(y) ≥ 0. If p(y) > 0, then

δ(y) = 0 by construction. Suppose then that p(y) = 0 so that δ(y) ≥ 0.

We begin by showing that s(y) is increasing in δ(y). First, notice that because

U ′′(s) < 0, U ′(s) is decreasing in s and, therefore, the left-hand side of (45) is in-

creasing in s. Moreover, partially differentiating the denominator on the right-hand

side with respect to s yields

∂(f ′−1(U(s(y))−ν(y0))f
′′(f ′−1(U(s(y))−ν(y0))))

∂s(y)
= U ′(s(y))

(
1 +

p(y)
q(y)

f ′′′( p(y)
q(y))

f ′′( p(y)
q(y))

)
, (46)

where
(
f ′−1

)′
= 1

f ′′(f ′−1)
follows from the inverse function theorem applied to f ′.

Therefore, if tf ′′′(t)
f ′′(t)

≥ −1 for all t ∈ (0,∞), the denominator of (45) is weakly in-

creasing in s. Because the numerator is decreasing in s, this implies that the entire

right-hand side of (45) is decreasing in s.

Now consider a positive variation in δ(y), which causes the right-hand side of

(45) to increase. In order to maintain the equality, s(y) must be adjusted to increase
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the left-hand side and/or decrease the right-hand side of (45). Because we have just

established that the left-hand (right-hand) side of (45) is increasing (decreasing) in s,

it immediately follows that s(y) must be adjusted upward in response to the positive

variation in δ(y) in order to maintain the equality. Therefore, s(y) is increasing in

δ(y).

To complete the proof, recall that we chose s such that (IC−
y ) holds with equality;

however, we also established that the principal is indifferent among the set of contracts

satisfying (IC−
y ). Therefore, any contract s̄ satisfying s̄(y) ≤ s(y) for all y /∈ supp(pY )

is also efficient. Consider, then, the contract s̄(Y ) satisfying (22). Because s(y) is

increasing in δ(y) ≥ 0 and is equal to s̄(Y ) when δ(y) = 0, it follows that s̄(y) ≤ s(y)

and is therefore efficient for all y /∈ supp(pY ). Because s̄(Y ) is identical to s(Y ) for

y ∈ supp(pY ), (22) characterizes an efficient contract over Y .
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Proof of Corollary 1. We prove that for some y′i ̸= yi, s(y−i, y
′
i) ̸= s(y−i, yi) is neces-

sary (i.e., Yi is useful) if and only if E[B(X, Y )|y−i, y
′
i] ̸= E[B(X, Y )|y−i, yi] (i.e., Yi

is informative about value). Let ν ≡ ν(y0) and η ≡ η(y0), and define a function W

as follows.

W (s) ≡
(

1
U ′(s)

− λ
)
f ′−1(U(s)− ν)f ′′ (f ′−1(U(s)− ν)

)
+ s+ η (47)

It follows that (22) can be rewritten

E[B(X, Y )|y] = W (s(y)). (48)

First, suppose that E[B(X, Y )|y−i, y
′
i] ̸= E[B(X, Y )|y−i, yi]. Then (48) requires

that W (s(y−i, y
′
i)) ̸= W (s(y−i, yi)), which is only possible if s(y−i, y

′
i) ̸= s(y−i, yi).

Therefore informativeness implies usefulness.

Conversely, suppose that E[B(X, Y )|y−i, y
′
i] = E[B(X, Y )|y−i, yi]. Then (48) re-

quires that W (s(y−i, y
′
i)) = W (s(y−i, yi)), which is trivially satisfied for s(y−i, y

′
i) =

s(y−i, yi); that is, s(y−i, yi) ̸= s(y−i, yi) is not necessary for optimality. Therefore

uninformativeness implies uselessness, or equivalently, usefulness implies informative-

ness. Taken together, a signal is useful if and only if it is informative about value.
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Proof of Corollary 2. Note that if B(X, Y ) = Yi then

E[B(X, Y )|y−j, yj] = yi = E[B(X, Y )|y−j, y
′
j] (49)

for all y−i. Therefore, Yj is not informative about value. It follows immediately from

Corollary 1 that Yj is not useful.
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Proof of Corollary 3. We begin by showing that (22) implies that s(y) is increas-

ing in E[B(X, Y )|y]. First, notice that because U ′′(s) < 0, U ′(s) is decreasing in

s and, therefore, the left-hand side of (22) is increasing in s. Moreover, partially

differentiating the denominator on the right-hand side with respect to s yields

∂(f ′−1(U(s(y))−ν(y0))f
′′(f ′−1(U(s(y))−ν(y0))))

∂s(y)
= U ′(s(y))

(
1 +

p(y)
q(y)

f ′′′( p(y)
q(y))

f ′′( p(y)
q(y))

)
, (50)

where
(
f ′−1

)′
= 1

f ′′(f ′−1)
follows from the inverse function theorem applied to f ′.

Therefore, if tf ′′′(t)
f ′′(t)

≥ −1 for all t ∈ (0,∞), the denominator of (22) is weakly in-

creasing in s. Because the numerator is decreasing in s, this implies that the entire

right-hand side of (22) is decreasing in s.

Now consider a positive variation in E[B(X, Y )|y], which causes the right-hand

side of (22) to increase. In order to maintain the equality, s(y) must be adjusted to

increase the left-hand side and/or decrease the right-hand side of (22). Because we

have just established that the left-hand (right-hand) side of (22) is increasing (de-

creasing) in s, it immediately follows that s(y) must be adjusted upward in response

to the positive variation in E[B(X, Y )|y] in order to maintain the equality. Therefore,

s(y) is increasing in E[B(X, Y )|y].
Turning to p(x,y)

q(x,y)
, because s(y) is increasing in E[B(X, Y )|y], the function W (s)

from equations (47) and (48) is invertible. Therefore, we can write

s(y) = W−1(E[B(X, Y )|y]), (51)

where W−1(·) is also an increasing function. By Lemmas ?? and ??, we have

p(x |y) = q(x |y) and p(y) = q(y)f ′−1 (U(s(y))− ν(y0)) . (52)

Multiplying these equalities, dividing by q(x,y), and substituting in (51) yields

p(x,y)
q(x,y)

= p(y)
q(y)

= f ′−1 (U (W−1 (E[B(X, Y )|y]))− ν(y0)) . (53)

Because f ′−1, U , andW−1 are all increasing functions, the right-hand side is increasing

in E[B(X, Y )|y], which completes the proof.
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Proof of Corollary 4. We must show that U−1(f ′(t)+ν)t and f(t)− tf ′(t) are convex

in t ∈ (0,∞) for any ν ∈ R and that tf ′′′(t)
f ′′(t)

≥ −1. Differentiating f(t) = t ln(t) yields

f(t) = t ln(t)

f ′(t) = 1 + ln(t)

f ′′(t) = 1
t

f ′′′(t) = − 1
t2
,

(54)

which implies that

U−1(f ′(t) + ν)t = U−1(ln(t) + 1 + ν)t

f(t)− tf ′(t) = −t
tf ′′′(t)
f ′′(t)

= −1.

(55)

The second and third expressions satisfy the conditions. Twice differentiating the

first condition yields

− U ′′(U−1(ln(t)+ν))
tU ′(U−1(ln(t)+ν))3

+ 1
tU ′(U−1(ln(t)+ν))

> 0, (56)

where the inequality follows from U ′′ < 0, U ′ > 0, and t ∈ (0,∞). It follows that

U−1(ln(t) + 1 + ν)t is convex for any increasing concave utility function U , which

completes the proof.
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Proof of Lemma 4. Suppose the principal chooses pXY at cost Df (p||q), and let some

(x0,y0) be arbitrary. Define χ0 ≡ X ×Y \(x0,y0) Then the principal’s maximization

program is as follows.

max
pXY

∑
χ0

(
B(x,y)p(x,y)− q(x,y)f

(
p(x,y)
q(x,y)

))
+B(x0,y0)

(
1−

∑
χ0

p(x,y)

)
− q(x0,y0)f

(
1−

∑
χ0

p(x,y)

q(x0,y0)

)
s.t. p(x,y) ≥ 0 ∀(x,y) ̸= (x0,y0)

1−
∑
χ0

p(x,y) ≥ 0

(57)

Let δ(x,y) and δ(x0,y0) be the Lagrange multipliers on the constraints. Because

−Df (p||q) is concave and all other terms in this program are linear, the following

first-order conditions with respect to p at (x,y) ∈ χ0 are necessary and sufficient for

a solution.

0 = B(x,y)−B(x0,y0)− f ′
(

p(x,y)
q(x,y)

)
+ f ′

(
p(x0,y0)
q(x0,y0)

)
+ δ(x,y)− δ(x0,y0) (58)

Because this equality must hold for every (x,y) ∈ X ×Y (note that if (x,y) =

(x0,y0) then the equality holds trivially), take any two (x,y), (x′,y′) ∈ supp(X ×Y)

so that δ(x,y) = δ(x′,y′) = 0. Subtracting the (x′,y′)th from the (x,y)th first-order

condition yields

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x′,y′)
q(x′,y′)

)
= B(x,y)−B(x′,y′). (59)

Finally, an increase in B(x,y)−B(x′,y′) causes the right-hand side to increase, which

requires that the left-hand side also increase to maintain the equality. Because f(·)
is convex, f ′(·) is an increasing function; therefore p(x,y)

q(x,y)
− p(x′,y′)

q(x′,y′)
must be increasing

in B(x,y)−B(x′,y′).
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Proof of Proposition 2. We approximate U ′(·) by the slope of the secant line connect-

ing the points U(s(y)) and U(s(y′)). We denote this slope by u′(y,y′) ≡ U(s(y))−U(s(y′))
s(y)−s(y′)

.

Analogously, we denote u′′(y,y′) ≡ U ′(s(y))−U ′(s(y′))
s(y)−s(y′)

. Then−u′′(y,y′)
u′(y,y′)

= −U ′(s(y))−U ′(s(y′))
U(s(y))−U(s(y′))

is our measure of absolute risk aversion.

Differencing the (y′)th from the yth expression for the optimal contract in (23),

dividing through by U(s(y))− U(s(y′)), and rearranging terms yields

U(s(y))− U(s(y′)) = E[B(X,Y )|y]−E[B(X,Y )|y]
U′(s(y))U′(s(y′))

u′(y,y′) − u′′(s(y)
u′(y,y′)

· U ′(s(y))U ′(s(y′)). (60)

Substituting the IC constraint into the left-hand side yields

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x′,y′)
q(x′,y′)

)
= E[B(X,Y )|y]−E[B(X,Y )|y′]

U′(s(y))U′(s(y′))
u′(y,y′) −u′′(y,y′)

u′(y,y′)

· U ′(s(y))U ′(s(y′)). (61)

Without loss of generality, assume that E[B(X, Y )|y] ≥ E[B(X, Y )|y′]. By Corollary

3, it follows that p(x,y)
q(x,y)

≥ p(x′,y′)
q(x′,y′)

, so the left- and right-hand sides of the above equation

are positive because f ′(·) is an increasing function.

It also follows from the convexity of f that the left-hand side is increasing

in p(x,y)
q(x,y)

− p(x′,y′)
q(x′,y′)

. Moreover, the right-hand side is increasing in E[B(X, Y )|y] −
E[B(X, Y )|y′] and is decreasing in −u′′(y,y′)

u′(y,y′)
. In other words, the variation in p

q
is

increasing in the informativeness of Y about value and is decreasing in the agent’s

risk aversion, which completes the proof.
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Proof of Lemma 5. Faced with an arbitrary contract s(Y ), let a′ be the action that

implements the distribution characterized by Lemma 1. Suppose to the contrary that

a′ is not a global solution to (28); that is, there exists some action a′′ that awards the

agent strictly greater expected net utility than a′. Because a only enters (28) through

p(a), it is immediate that p(a′) ̸= p(a′′). Moreover, because p(a′′) ∈ P(X ,Y), p(a′′) is

in the agent’s action opportunity set in the nonparametric problem. But then Lemma

1 does not characterize a solution to the nonparametric problem, a contradiction.

Thus a′ is a global solution to (28).
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Proof of Proposition 3. Let a′ be the action that implements the distribution char-

acterized by Proposition 1. Suppose to the contrary that a′ is not a global solution

to (30); that is, there exists some action a′′ that awards the principal strictly greater

expected net utility than a′. Because a only enters (30) through pY (a), it is immedi-

ate that pY (a
′) ̸= pY (a

′′). Moreover, because pY (a
′′) ∈ P(Y), pY (a

′′) is in the agent’s

action opportunity set in the nonparametric problem and can be implemented with

the same contract s(Y ) as in the parametric problem. But then Proposition 1 does

not characterize a solution to the nonparametric problem, a contradiction. Thus a′

is a global solution to (30).
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Proof of Proposition 4. Faced with a contract s(Y, Z), the agent chooses pXY to

solve the following program, where (w0,x0,y0, z0) ∈ W ×X ×Y ×Z is arbitrary

and we denote χ0 ≡ X ×Y \(x0,y0), Γ0 ≡ W×X ×Y ×Z \(w0,x0,y0, z0), and

s0 ≡ s(y0, z0).

max
pXY

U(s0) +
∑
Γ0

(U(s(y, z))− U(s0))q(w, z |x,y)p(x,y)

−
∑
χ0

q(x,y)f
(

p(x,y)
q(x,y)

)
− q(x0,y0)f

(
1−

∑
χ0

p(x,y)

q(x0,y0)

) (62)

Taking the first-order condition with respect to p(x,y) for (x,y) ̸= (x0,y0) yields

f ′
(

p(x,y)
q(x,y)

)
− f ′

(
p(x0,y0)
q(x0,y0)

)
=

∑
W ×Z

U(s(y, z))q(w, z |x,y)− U(s0) (63)

Denoting B0 ≡ B(w0,x0,y0, z0), the principal’s program is given below.

max
s(Y,Z),pXY

B0 − s0 +
∑
Γ0

(B(w,x,y, z)− s(y, z)−B0 + s0) q(w, z |x,y)p(x,y) (64)

s.t. U(s0) +
∑
Γ0

(U(s(y, z))− U(s0))q(w, z |x,y)p(x,y)

−
∑
χ0

q(x,y)f

(
p(x,y)

q(x,y)

)
− q(x0,y0)f

(
1−

∑
χ0

p(x,y)

q(x0,y0)

)
≥ Ū (IR)

∑
W ×Z

U(s(y, z))q(w, z |x,y)− U(s0)

= f ′
(
p(x,y)

q(x,y)

)
− f ′

(
1−

∑
χ0

p(x̃, ỹ)

q(x0,y0)

)
∀(x,y) ∈ χ0 (ICxy)

Let λ and µ(x,y) be the Lagrange multipliers on the IR and the (x,y)th IC

constraints. Then the principal’s first-order conditions with respect to p(x,y) and

s(y, z) for (x,y) ̸= (x0,y0) and (y, z) ̸= (y0, z0) are

0 =EWZ [B(W,X, Y, Z)− s(Y,Z)|x,y]− µ(x,y)
1

q(x,y)
f ′′
(
p(x,y)

q(x,y)

)
− η0 (65)

0 =− p(y, z) + λU ′(s(y, z))p(y, z) + U ′(s(y, z))
∑
X

µ(x,y)q(z |x,y), (66)

where η0 ≡ B0 − s0 +
1

q(x0,y0)
f ′
(

p(x0,y0)
q(x0,y0)

)∑
χ0

µ(x̃, ỹ). We can solve (65) for µ(x,y) in
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closed form as follows.

µ(x,y) = EWZ [B(W,X,Y,Z)−s(Y,Z)|x,y]−η0
1

q(x,y)
f ′′( p(x,y)

q(x,y))
(67)

Finally, substituting this expression for µ(x,y) as well as IC into (66) yields

1
U ′(s(y,z))

= λ+
∑

W ×X

EWZ [B(W,X,Y,Z)−s(Y,Z)|x,y]−η0

f̌(
∑

Z U(s(y,z̃))q(z̃|x,y)−ν0)
· p(w,x |y, z), (68)

where ν0 ≡ U(s0)− f ′
(

p(x0,y0)
q(x0,y0)

)
and f̌(t) ≡ f ′−1(t)f ′′ (f ′−1(t)

)
.
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Proof of Corollary 5. Suppose that Df (p||q) is the Kullback-Liebler divergence, so

that

f(t) = t ln(t) =⇒ f ′(t) = 1 + ln(t) =⇒ f ′′(t) = 1
t

=⇒ tf ′′(t) = 1. (69)

Setting t = f ′−1(u) implies that f̌(u) = 1 for all s(Y, Z). Substituting f̌(t) = 1 into

(33) yields

1
U ′(s(y,z))

= λ+ EWX [EWZ [B(W,X, Y, Z)− s(Y, Z)|X, Y ]|y, z]− η0 (70)

Because y and z only enter this expression through s(y, z) and the expected control-

lable residual value EWX [EWZ [B(W,X, Y, Z)− s(Y, Z)|X, Y ]|y, z], it follows that Yi

or Zi is useful if and only if it is informative about controllable residual value.
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