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Price Formation in Multiple Simultaneous Continuous
Double Auctions, with Implications for Asset Pricing

Abstract

We propose a Marshallian model for price and allocation adjustments in parallel con-
tinuous double auctions. Agents quote prices that they expect will maximize local utility
improvements. The process generates optimal allocations in the limit. In experiments
designed to induce CAPM equilibrium, price and allocation dynamics are in line with the
model’s predictions. We identify, theoretically and empirically, a portfolio that is closer
to mean-variance optimal throughout equilibration. This portfolio serves as a benchmark
for asset returns even if markets are not in equilibrium, unlike the market portfolio, which
only works at equilibrium. The theory has implications for momentum and liquidity.

Keywords: Continuous Double Auction; Walrasian Equilibrium; Marshallian Equilibration;
Experimental Economics; Asset Pricing

1 Introduction

General equilibrium has become the widely accepted theoretical model for competitive mar-

kets and the benchmark against which those markets are empirically evaluated. A compelling

reason to be interested in equilibrium is the “argument, familiar from Marshall, ... that there

are forces at work in any actual economy that tend to drive an economy toward an equilibrium

if it is not in equilibrium already.”1

While there is wide consensus as to the appropriate equilibrium model, there is little con-

sensus as to the “forces at work.” Many models have been proposed, but none have been

accepted as the appropriate canonical model. How the equilibrium prices and allocations are

attained, and how, if at all, trading occurs out of equilibrium, remains to be discovered. The
1Arrow and Hurwicz (1958), p. 263.
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lack of a consensus model of the forces that drive an economy towards equilibrium is a prob-

lem for applied economics, including policy analyses. If an inappropriate model is used in the

design of economic policy, outcomes will not be as intended.

Until recently, attempts to settle this question have been mostly theoretical in nature2

with no real evidence or philosophical foundation available to help sort the sensible from the

inane. Traditional empirical analyses of markets shed no light on the processes because they do

not have access to the fundamentals. But, with the advent and development of experimental

economics, it is now possible to explore the forces that drive equilibrium.

The market organization we focus on in this paper is the continuous double auction (CDA)

where individuals can submit bids (to buy) or asks (to sell) at any price, and whenever the

highest bid is at a price at or above the lowest ask, a trade takes place immediately. In

modern instances of the double auction, called the open-book system, bids and asks that are

surpassed by more competitive orders (bids at a higher price or asks at a lower price) remain

available, unless cancelled. The open book system is the preferred exchange mechanism of

financial markets around the world, and in particular, of stock exchanges (NYSE, Euronext,

LSE, NASDAQ, etc.). Recent advancements have been proposed where instead of immediate

execution, there is a small interval over which orders accumulate in the book, called Frequent

Batch Auctions (Budish, Cramton, and Shim, 2015). The model we propose also applies to

those mechanisms.

It is well known from the experimental analyses of CDA markets (summarized in Crock-

ett, 2013) that, in the first period of these experiments, (1) competitive equilibrium is not

reached immediately – there is a process of adjustment – and (2) prices follow neither the
2Exceptions that study multiple simultaneous markets include the works of Plott (2001), Anderson, e.a.

(2004) and Gillen e.a. (2021). These works report (price) dynamics that are in line with those reported here,
as discussed later.
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Walrasian tatonnement (whereby prices react to aggregate excess demands, but allocations

are not adjusted) nor any of the various extant non-tatonnement theories (where allocations

can also change). If the fundamentals and markets are repeated for additional periods, then

(3) prices and allocations converge to their general equilibrium values and (4) between-period

price changes follow the Walrasian tatonnement.

In this paper, we present a theory that explains the paths of prices and allocations within

the first few periods of market experiments, before beliefs of likely paths could reasonably have

been formed, and hence, where bets on their nature are pure speculation. It deserves emphasis

that we model the paths of allocations as well as the paths of prices. The extant literature

tends to focus only on price dynamics (Crockett, 2013).

There are three main assumptions underlying the theory. First, in the spirit of Marshall

(1890), quantity moves to those offering the highest surplus to the market. Second, individuals

quote prices that maximize their local utility gains taking the rules of engagement as given.

Third, agents do not speculate, which means that they do not perceive drift in terms of trade

that could improve their eventual allocations by postponing or accelerating transactions. Under

these assumptions, the resulting offers are a convex combination of agents’ marginal valuations

and the prices.

The analysis is not on each bilateral trade separately as traditional CDA would require.

Instead it invokes local market clearing,3 defined as the transaction prices that cause net trades

to sum to zero. In this sense, our model is more appropriate for the recently suggested frequent

batch market mechanism (Budish, Cramton, and Shim, 2015).

Our theory is related to that of Friedman (1979), which itself follows up on the work of

Smale (1976). Friedman identifies a process where allocations move in a Marshallian fashion:
3The local clearing prices are equal to the average of all offers.
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throughout, prices are a weighted average of individuals’ willingness-to-pay. Friedman (1979)

focuses on stability and shows that the process converges to a Pareto-optimal allocation. How-

ever, the model misses detail on how offers are generated and how offers lead to trade. That

is what our theory delivers.

Our theory is also related to that in Smith (1965) (see also Inoua and Smith, 2020). Smith

shows that bids of many agents have an impact on prices and trades, not just those of the

marginal agents, as in neoclassical accounts of Marshallian price adjustment (Samuelson, 1947).

Our theory shares this prediction. In contrast to Smith’s analysis, however, bids in our theory

do not derive from Walrasian demand (or supply) functions. Instead, they result from agents’

attempts to maximize local utility gains from trade.

To show the theory’s power, we apply it to asset markets. It has a particularly intuitive

appeal in the case of quasi-linear utility functions like mean-variance utility functions. Quasi-

linear preferences naturally apply to the finance application of general equilibrium: the Capital

Asset Pricing Model (CAPM) and its multi-factor generalizations (Roll, 1977).

We confront the finance application with data from nine experimental sessions, each with

6 to 8 replications (“periods”) with varying parametrizations. The results provide strong sup-

port for the predictions regarding price and allocation dynamics. We test whether traditional

Walrasian aggregate excess demands explain the remainder. We find that they do not. That

is, Walrasian adjustment theory predicts neither price nor allocation dynamics.

The theory has important implications for empirical asset pricing, where for decades the

concern has been to identify one mean-variance efficient portfolio, or a number of “factor port-

folios” that add up to this efficient portfolio.4 We find that price dynamics push one particular
4See Fama and French (2004). Since the set of mean-variance optimal portfolios is spanned by two portfolios,

one of which necessarily is the risk-free security, it suffices to identify one additional mean-variance optimal
portfolio to describe the entire set. See Roll (1977).
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portfolio towards mean-variance efficiency throughout equilibration. Unlike in CAPM (equi-

librium), it is not the market portfolio, but a risk-aversion weighted endowment portfolio.

We refer to it as the Risk-Aversion Scaled Endowment Portfolio (RASE). In the experiments,

we demonstrate that the RASE portfolio generates significantly higher average reward-to-risk

ratios (Sharpe ratios) than the market portfolio.

The rest of the paper is organized as follows. The model setup and the theoretical results

are presented in Section 2. Experimental methods are discussed in Section 3. Results are

reported in Section 4. Implications for empirical asset pricing are in 5. Section 6 concludes.

2 Two Models of Market Dynamics

2.1 Preliminaries

2.1.1 The Economic Exchange Environment

Our analysis is done within the context of the standard model of pure exchange. There are

I consumers, indexed by i = 1, . . . , I. There are K = 1 + R commodities, where the last R

commodities are indexed by k = 1, . . . , R, and the first is indexed by 0. We reserve this first

commodity as a special one, and will designate it as the numeraire when needed.

Each individual i owns initial endowments ωi = (ωi0, . . . , ω
i
R), ωik > 0 for all i and k.

xi = (si, ri1 . . . , r
i
R) is the allocation of i. si is i’s quantity of the numeraire commodity.

X i = {(si, ri) ∈ <K | ri ≥ 0} is the admissible consumption set for i.5 Each i has a quasi-

concave utility function, ui(x). We assume that ui ∈ C2 (that is, ui has continuous second

derivatives) although many of our results would hold under weaker conditions. We also assume
5There is no lower bound on the numeraire.
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that {x|ui(x) ≥ ui(ωi)} ⊂ Interior(X i) and ui0 = ∂ui(xi)

∂xi0
> 0,∀xi ∈ X i, ∀i.

2.1.2 Time and the Continuous Double Auction

In a CDA experiment, traders begin with an endowment of commodities, ωi. They proceed

to make bids and offers over time. Often these are retained in a public book unless the trader

decides to withdraw their bid or offer. A bid or offer in the book can be accepted by anyone.

If accepted, trade occurs at that price. This goes on until a stopping rule is implemented.

Although the CDA operates in continuous time, the intuition behind the theory is easier

to understand in discrete time. Time is divided into discrete intervals of length ∆. With

slight abuse of notation, the interval t is [t, t + ∆). xit = (sit, r
i
t) denotes i’s holdings at the

beginning of interval t. Trade takes place and the change in i’s holdings during interval t is

∆xit = (∆sit,∆r
i
t) = (sit+∆ − sit, rit+∆ − rit). pt = (1, qt) ∈ <K+ is the vector of K prices at which

trades take place in interval t.

2.2 The Walrasian Model

Here we describe the standard Walrasian model of market dynamics as well as the variants

known as non-tatonnement processes. There is nothing new here. We include this only as a

reminder to the reader.

Given a price vector p ∈ <K+ , the individual excess demand function of i is ei(p, ωi) =

arg maxdi u
i(ωi + di) subject to p · di = 0 and ωi + di ∈ X i. The aggregate excess demand of

the economy is E(p, ω) =
∑

i e
i(p, ωi), where ω = (ω1, ω2, ..., ωI).

Definition 1. A price p∗ and an allocation x∗ = (x∗1, . . . , x∗I) constitute a competitive equi-

librium at ω = (ω1, . . . , ωI) if and only if
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1. Given prices p∗, the allocations x∗i are optimal: x∗i = ei(p∗, ωi) + ωi,∀i, and

2. Markets clear; that is, E(p∗, ω) = 0.

By Walras’ law, we can limit our attention to the excess demands of all but the numeraire

commodity, denoted ei(p, ωi) and E(p, ω), respectively. Also, since the price of the numeraire

is fixed at 1, individual and aggregate excess demands can be written as ei(q, ωi) and E(q, ω),

respectively, where p = (1, q).

In Walrasian adjustment models, the main force driving price changes is the tatonnement.

Prices of goods in excess demand (supply) go up (down). Let B be an R×R diagonal matrix

with positive diagonal elements. The Walrasian tatonnement is:

qt+∆ − qt
∆

= BE(qt, ω) (1)

xit =


ωi if E(qt, ω) 6= 0

ei(qt, ω
i) + ωi if E(qt, ω) = 0

(2)

The tatonnement is really only a model of prices since trades do not occur until prices have

converged to their equilibrium values. (2) is not what is going on in most continuous markets

where trading occurs as prices are changing.6 Recognizing that, researchers have proposed

many alternatives under the heading of Non-Tatonnement (NT) processes.7

An NT process works as follows. At the beginning of each time interval, agents know their

individual holdings, xit. Trade takes place during the interval at prices pt. The holdings at the
6The tatonnement might describe, for example, the “book building” process in a call market if orders can

be withdrawn (Plott and Pogorelskiy, 2017).
7See e.g. Negishi (1962), Uzawa (1962), Hahn and Negishi (1962).
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end of the interval are xit+∆. A new price is computed based on the excess demands at the

price pt and the holdings xt. The Walrasian non-tatonnement dynamics are:

qt+∆ − qt
∆

= BE(qt, xt) (3)

xit+∆ − xit
∆

= gi(qt, x
i
t), (4)

where gi is a vector function,
∑

i g
i(qt, x

i
t) = 0, that also satisfies the Lipshitz condition.

Different NT models impose different additional assumptions on the functions gi, see Negishi

(1962). In the CDA, there is no Walrasian auctioneer to set prices. There, (3) is interpreted

as a predictive theory of prices: it predicts the price changes at t + ∆ based on prices and

allocations at t.

2.2.1 A Problem

In most multi-market CDA experiments, competitive equilibrium does not occur instanta-

neously except, perhaps, with replication in later periods. In addition, neither tatonnement,

nor non-tatonnement dynamics fit the data.8 A better theory is needed.

2.3 ABL Market Dynamics

Here, we describe a model based on Marshall’s intuition but with a consistent micro-

foundation. The model rests on four key hypotheses. The first captures the Marshallian

intuition that quantity moves to those individuals offering higher surplus to the
8See Asparouhova, Bossaerts and Plott (2003), Anderson, e.a. (2004), Asparouhova and Bossaerts (2009),

Gillen e.a. (2021), and Crockett (2013).
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market. Let bit = (bi1,t, ..., b
i
R,t) be i’s bid during the interval t. bik,t is i’s stated willingness to

pay (accept) to buy (sell) a unit of k in terms of the numeraire commodity 0.

Hypothesis 1. Marshallian Trading

∆rit (= rit+∆ − rit) = A(bit − qt), i = 1, ..., I (5)

where A is an R×R positive diagonal matrix and Akk = αk, k = 1, ..., R.

In some markets, aggressive bidding attracts larger volume than in others. In this sense,

αk is a liquidity parameter. It is assumed that it does not vary over time.

The next two hypotheses are almost always requirements of a CDA system.

Hypothesis 2. Instant Settlement (Payment with numeraire occurs at each trade)

∆sit = −qt ·∆rit i = 1, ..., I. (6)

Hypothesis 3. Feasible Trading (Whatever is bought, is sold)

I∑
i=1

∆rit = 0. (7)

The last hypothesis, Hypothesis 4, specifies how individual traders determine their bids in

a continuous double auction. It captures the idea that agents only consider small trades and do

not speculate. Faced with the fact that large orders will move prices unfavorably, intractable

strategic uncertainty, and a lack of futures markets and rational expectations, agents make

only small (local) adjustments to their holdings. This can be motivated using game
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theory, but it is also a fact in field markets.9 Faced with uncertainty about where prices will

go next, agents do not speculate. They take current prices as given.

To motivate Hypothesis 4, assume traders only consider small local adjustments that max-

imize their gain in local utility ∆uit. For very small ∆, ∆uit ≈ ∇ui(xit) · (∆sit,∆rit) where

∇ui(xit) is the gradient of ui at xit. Under Hypotheses 1 and 2, the change in i’s utility that

results from a bid bit at time t will be:

∆uit ≈ ui0(xit)(ρ
i(xit)− qt) ·∆rit = ui0(xit)(ρ

i(xit)− qt) · A(bit − qt),

where ρik(xi) denotes the marginal rate of substitution between commodities 0 and k for k =

1, ..., R if i’s holdings are xi.10 ρik represents i’s marginal willingness to pay (or be paid) for

units of k in units of commodity 0. ρi(xi) = (ρi1(xi), ..., ρiR(xi)) and ∇ui(xit) = ui0(xit)(1, ρ
i(xit)).

To locally optimize, i wants to choose bit so that the direction of change of xit = (sit, r
i
t) is

proportional to the gradient. This means they want A(bit − qt) = ci∆(ρi(xit) − qt), where the

parameter ci is a characteristic of i. It determines the step size and rate of trading. Larger

ci imply a greater urgency to trade. We call this i’s impatience parameter and assume it

does not change over time.

Remark 1. This behavior is incentive compatible in the following sense. If both the quantity

adjustment rule, Hypothesis 1, and the price setting rule, Hypothesis 3, are known and taken

as given, and αk = α, for k = 1, ..., R, then there are (c1, ..., cI) such that the bids derived
9Financial markets have become more competitive, and trade sizes have decreased dramatically. “Splitting

orders” has become an important concern in algorithmic trading. See Avellaneda, Reed and Stoikov (2011).
Further empirical evidence that trade takes place “in smalls” can be found in O’Hara, Yao and Ye (2014). In
a market with continuous order submission and trading, the small-orders assumption can easily be justified
theoretically; see Rostek and Weretka (2015).

10ρik(xi) =
∂ui(xi)/∂xi

k

∂ui(xi)/∂xi
0
.
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above are a local Nash equilibrium.11

The final intuition behind Hypothesis 4 concerns the timing of information and actions.

When an agent computes their bid at the start of interval t, they do not know qt. They only

know the prices and allocations at the end of the t−∆ interval. Because ∆ is assumed to be

very small, it is likely that bids at t are based on the prices and allocations arrived at in the

interval t−∆.

Hypothesis 4. Local Optimization and Lagged Prices

bit = qt−∆ + ci∆A−1(ρi(xit)− qt−∆),∀i, ∀t > 0.

For the curious, Section B.1 of the Appendix contains a discussion of the model and its

implications when qt is used in place of qt−∆ in Hypothesis 4. That model implies that bids

and prices are simultaneously determined in the time ∆. The model is not consistent with the

data, as explained in Appendix B.2.

This leaves the initial price, q0, to be specified. The initial price is likely context-dependent

and can plausibly equal the vector of mean payoffs in an asset pricing setup, be related to

prices in the previous period when applied to replications of the same situation, or be equal

to the average of the values of the initial endowments.

Hypothesis 5. The initial price q0 is some arbitrary positive vector.

In our empirical analysis, the focus will be on price changes, so Hypothesis 5 is never in

play.

Hypotheses 1-5 are the ABL model.
11This is similar to a result of Roberts (1979). A proof is provided in section A.1 of the Appendix.
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Remark 2. We have assumed that agents do not speculate. The beginning of an analysis under

speculation can be found in Appendix C. Speculation becomes an important concern in later

replications in an experiment, when these replications are identical, meaning participants have

the opportunity to form beliefs about likely price dynamics. Here, we focus on early replications,

or replications with varying parametrizations.

The dynamics of the ABL model are straightforward. Entering interval t, consumer i has

an allocation xit = (sit, r
i
t) and knows the price from the previous interval qt−∆. In the interval,

bids are formed based on Hypothesis 4 and trade occurs at new prices based on Hypotheses

1-3. Prices adjust rapidly to ensure that trading, according to Hypothesis 1 and 2, adds up to

zero (Hypothesis 3). Leaving the interval, trader i now owns xit+∆ = (sit+∆, r
i
t+∆) and knows

the prices qt. This process, given the initial price q0, is formalized in equations (8)-(10).12

rit+∆ = rit + ∆
(
−c̄(ρ̄t − qt−∆) + ci(ρit − qt−∆)

)
(8)

sit+∆ = st − qt · (rit+∆ − rit) (9)

qt = qt−∆ + c̄∆A−1(ρ̄t − qt−∆) (10)

where c̄ =
∑

i c
i

I
and ρ̄(xt) =

∑
i c

iρi(xit)∑
i c

i .

The limiting behavior of the dynamics is most easily seen in continuous time.13 Dividing
12See Appendix A.2 for details.
13Convergence in continuous time implies that if step sizes, ci, are not too large, then there will also be

convergence in discrete time.
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(8) and (10) by ∆ and letting ∆→ 0, we get the continuous time version, for t > 0:14

drit
dt

= ci(ρit − qt)− c̄(ρ̄t − qt), ∀t > 0 (11)

dsit
dt

= −qt ·
(
(ci(ρit − qt)− c̄(ρ̄t − qt)

)
, ∀t > 0 (12)

dqt
dt

= −c̄A−1(qt − ρ̄t),∀t > 0 (13)

Remark 3. When taking limits, one important subtlety of the ABL model is lost. The discrete-

time equations specify dynamics over two intervals: [t−∆, t) and [t, t+∆). In continuous-time,

everything collapses effectively to one interval. E.g., in discrete time, price changes over [t−

∆, t) depend on marginal rates of substitution at the end of the interval (i.e., at t); see (10). In

continuous time, it does not matter whether marginal rates of substitution are based on holdings

at the beginning or end of an interval, because adjustment is smooth. To preserve discrete-

time subtleties, one could add random shocks to the adjustment, and appeal to Itô calculus.

Limit (Itô) processes are not smooth (time series are nowhere differentiable with respect to

time). Consequently, timing subtleties from discrete time are retained in continuous time.

As reported in Section 4 below, the discrete-time subtleties matter empirically. Price changes

within observation intervals in our trading sessions are driven by holdings at the end of each

such interval, as predicted by the ABL model. The Walrasian model, in contrast, predicts that

price changes are based on (excess demands computed from) lagged holdings. The Walrasian

model fails if only because of timing issues. Timing is an under-appreciated dimension in which

Marshallian and Walrasian dynamics differ. In Marshallian dynamics, prices are determined

by current willingness to pay; in Walrasian dynamics, prices are determined by past excess

demands. This subtle but important difference in the models will be crucial for our empirical
14See Appendix A.3 for details.
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work.

There is an analogy to the First Welfare Theorem of General Equilibrium Theory: the

allocation at any rest point is a Pareto-optimal allocation. By the Second Welfare Theorem

the rest point is also a competitive equilibrium at that allocation. If there are no income

effects, the continuous process (11)-(13) will converge to a rest point from any initial price and

allocation. This may not be true for the discrete process (8)-(10) if step sizes are too large.

Theorem 1. Convergence to Pareto Optimal Allocations15

If (i) there are no income effects, i.e., ui0(xi) = 1 for all i and all xi ∈ X, and (ii) rit > 0

for all t, then for the dynamics in (11) - (13), (xt, pt) → (x∗, p∗) where x∗ is Pareto-optimal

and (p∗, x∗) is a competitive equilibrium at x∗.

Remark 4. Along the path generated by (11) - (13), it is possible that duit/dt < 0. With the

bidding lag, duit/dt = ui0,t((ρ
i(xit) − qt) · ci(ρi(xit) − qt) −

∑
k(ρ

i
k(x

i
t) − qk,t)αk(dqk,t/dt)) While

the first term is non-negative, the second term is not necessarily so. Traders basing their bids

on lagged prices do not anticipate and cannot protect themselves from “ex post” adverse trades.

For example, if prices are rising fast, slow agents may trade into increasing prices when they

want to buy.

Remark 5. The possibility that duit/dt < 0 (among other differences) distinguishes the ABL

theory from Friedman (1979) and Smale (1976). Specifically, our allocation dynamics do not

satisfy Friedman’s condition (P).
15The proof of this theorem is relegated to Section A.4 of the Appendix.
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2.4 Comparing Walrasian vs. ABL Dynamics

The Walrasian and ABL models can imply significantly different paths of price adjustment.

This can be seen in the simple example in Figure 1. There R = 1 and I = 2, utility functions are

quasi-linear (the inverse demand functions therefore equal the marginal rates of substitution

ρ), and the aggregate endowment is W = r1
t−∆ + r2

t−∆ = r1
t + r2

t . We measure the holding

of trader 2 from right to left starting at W . The competitive equilibrium allocation and the

resting point of the ABL model occur where ρ1 and ρ2 cross, with qe denoting the equilibrium

price.

0

2

4

6

8

10

1       2      3       4       5      6      7       8       9      W
r1

t−Δ

qt-Δ

2

4

6

8

10

qe

9       8      7       6       5      4      3       2       1         
r2

t-Δ

ρt
*

ρ1

Holdings of person 1 = W - holdings of person 2

M
R

S

ρ2

Figure 1: MRS (Marginal Rate of Substitution ρi) in a 2-commodity, 2-person economy, as a function
of holdings of agent 1. Equilibrium price equals qe. Last traded price equals qt−∆. The Walrasian
equilibration model predicts that the price will increase because, at qt−∆, there is excess demand:
agent 2 demands three units and agent 1 demands more than W units, while total supply equals only
W units. In contrast, ABL predicts that the price will decrease, to ρ∗t , which equals the average of
the ρis at current holdings.

In Figure 1, r1
t−∆ denotes 1’s holdings at (t − ∆), while 2 holds r2

t−∆ = W − r1
t−∆. The

most recent price, qt−∆, is below the equilibrium price. At the given holdings, and given the
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most recent price, there is excess demand for the good (at qt−∆, individual 2 demands 3 units,

and 1 demands more than W units) so the Walrasian model requires the price to increase, i.e.,

qt − qt−∆ > 0. To determine the sign of qt − qt−∆, the ABL model uses the allocations at t, r1
t

and r2
t . Given small changes in quantities, these allocations will be close to r1

t−∆ and r2
t−∆, as

depicted by the vertical band. As a result, the average weighted marginal rate of substitution,

ρ∗t = ρ̄(rt), falling in the corresponding horizontal band, is lower than the price qt−∆ meaning

the ABL model predicts that the price would fall, i.e., qt − qt−∆ < 0.

The difference in the implications of the two models when R > 1 is also very stark if we

restrict attention to a very special environment: the Capital Asset Pricing Model (CAPM).

The CAPM is theoretically simple and is of its own interest since it serves as the foundation

of both asset market experiments and empirical analyses on historical data from the field. In

the CAPM, all utility functions are of the form:

ui(xi) = si + µ · ri − (ai/2)(ri) · (Ωri), (14)

where µ is an R-dimensional vector of positive constants, Ω is an R×R positive-definite matrix

of constants, and ai is a positive scalar constant. In asset pricing models, µ is interpreted as

the expected payoff of an asset, Ω is the payoff covariance matrix across the assets, and ai is

a measure of risk aversion. For these utility functions,

ρi(xi) = µ− aiΩri and ei(q, xi) =
1

ai
Ω−1(µ− q)− ri. (15)
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Combining (15) with (10) yields:16

qt − qt−∆

∆
= A−1Ω

∑
ciaiei(qt−∆, x

i
t)

I
(16)

Comparing (16) with (3), we can see three fundamental differences between the price dy-

namics of the ABL model and those of the Walrasian model in the CAPM environment.17

1. Cross-Security Effects Emerge. In the ABL model, changes in the price of commodity

k depend not only on the excess demand for k (as in the Walrasian model) but also on the

excess demand of the other commodities. For example, if the off-diagonal entries of Ω are

negative (indicating the commodities are complements),18 the excess demand for j 6= k

puts upward pressure on the price of k. This means that the price of k could increase,

even though there is an excess supply of it. This cannot happen under Walrasian price

dynamics.

2. Heterogeneity in Risk Aversion, Impatience and Liquidity Matters. In the

ABL model the excess demand functions of traders with higher aici are weighted more

heavily in how they affect the changes in prices. The desires of the more risk averse and

the more impatient thus have a larger impact on price changes. In the Walrasian model

it is the less risk averse who have a larger impact on price changes.

3. Timing Is Different. See Remark 3. In the Walrasian model, prices in interval t are

determined by prices and allocations in period t−∆. In the ABL model, prices in period

t are determined by prices in period t−∆ and by allocations in period t.
16See section D of the Appendix for the details of the derivation.
17The premultiplication by Ω of the excess demands might remind some of the Newton-Raphson algorithm.

We discuss this in section E of the Appendix.
18A similar analysis applies when the commodities are substitutes or when there is a mix of both.
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The three differences are testable in the lab and motivate the design of our experiment.

As to allocation dynamics, using (15), the following system of difference equations describes

agent-level changes in allocations:

rit+∆ − rit
∆

= −Ω

(
ciairit −

∑
ciairit
I

)
+
(
ci − c̄

)
(µ− qt−∆) (17)

In ABL, the changes in an agent’s allocations depend on (i) how far impatience and risk-

aversion scaled holdings are from the average impatience and risk-aversion scaled holdings, plus

(ii) the differences between expected payoffs and lagged market prices, provided the agent’s

impatience is different from the average. The second term disappears if impatience is the

same across agents; the first term remains under equal impatience, as long as risk aversion is

heterogeneous. The covariance matrix pre-multiplies the first term. As a consequence, ABL

predicts cross-security effects in allocation dynamics in the same way it predicts them in price

dynamics. The effects are opposite for prices and allocations however, because of the negative

sign in front of the first term of (17).

Equations (16) and (17) will form the basis of our empirical analysis.

3 Experimental Methods

3.1 Framework

Our experimental design builds on the CAPM. Agents have mean-variance preferences with

fixed risk-to-reward trade-offs, and hence, no wealth effects. Prior experiments have shown

robust convergence to equilibrium; see Asparouhova, Bossaerts and Plott (2003); Bossaerts

and Plott (2004) and Bossaerts, Plott and Zame (2007).
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CAPM predicts that, in equilibrium, one particular portfolio is mean-variance optimal.

This portfolio is the market portfolio. In CAPM, agents’ total demands (holdings plus excess

demands) are the same for all agents, up to a constant of proportionality equal to the inverse

of risk aversion. This is obtained by rewriting (15):

rit + ei(qt, x
i
t) =

1

ai
Ω−1(µ− qt). (18)

The property is known as “portfolio separation.” As a result, in the Walrasian equilibrium,

the right-hand-side must equal to the total supply of assets, i.e., the “market portfolio.” The

market portfolio is defined as the per-capita endowment portfolio of risky assets, with holdings

equal to r = 1
I

∑I
i=1 r

i. Consequently this means that, in equilibrium, the market portfolio must

be mean-variance optimal, for otherwise it would not be proportional to agents’ demands. See

Roll (1977).

Equilibrium prices are as follows.19

q∗ = µ− 1
1
I

∑
i

1
ai

Ωr. (19)

In the laboratory, CAPM works well; see, e.g., Bossaerts and Plott (2004); Bossaerts, Plott

and Zame (2007). Here is an example, from a classroom session in an advanced investments

class at the University of Melbourne. Forty-eight students were asked to trade to maximize
19It is straightforward to check that, at these prices, the sum of the individual excess demands (18) equals

zero, and hence, markets equilibrate. When converted to restrictions on returns (payoffs divided by prices),
the equation becomes the well-known requirement that expected returns in excess of the risk-free rate be
proportional to the covariance of returns with those on the market portfolio.
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their payoffs given by (14), with ai = 0.01, for all i,

µ =

[
5 5 5

]
and Ω =


16 −5 −14

−5 16 9

−14 9 16

 .

Notice that mean-variance preferences are induced by asking students to directly optimize the

CAPM payoff function. In the sequel, we will nevertheless refer to µ as the vector of expected

payoffs, and Ω as the covariance matrix.

The three securities had equal expected payoffs and equal variances. But in equilibrium

prices differ because (i) supplies were unequal, with the third security being in the shortest

supply and (ii) the first security had negatively correlated payoffs with the others, while the

other two had positively correlated payoffs. Equilibrium prices were:

q∗ =

[
5.125 1.5 3.5

]
.

The equilibrium price of the third security is not the highest even if it is in the shortest supply.

The intuition is simple: the first security, with the highest equilibrium price, is more valuable

because its payoff is negatively correlated with that of the others. Participants were not told

the per-capita supplies. Hence, even if they knew CAPM, they could not possibly compute

equilibrium prices.20

Trade in this sample laboratory market took place in an online continuous open-book

trading platform (called Flex-E-Markets21). Participants could submit limit orders for any
20The results of a quick poll before trading confirmed that most participants expected prices to be equal.
21See http://www.adhocmarkets.com.

20



of the securities for the duration of the class exercise (about 35 minutes). Participants were

provided with a tool that evaluated the performance of their current portfolios as well as the

net performance of any trades they wished to make.

Figure 2 displays the evolution of trade prices, during the first replication, of the three

risky securities (referred to as Stock A, Stock B and Stock C). Prices convincingly evolved

from expected values to equilibrium levels.22
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Figure 2: Transaction prices (in cents) during a class experiment. Forty-eight participants traded
three risky securities (“Stocks” A, B and C) with known, equal payoff distributions but different,
unknown total supplies. Predicted equilibrium prices, in cents: 513 (A; blue), 150 (B; orange) and
350 (C; grey).

Participants were divided into three groups based on their initial portfolio allocations.

They only knew their own allocation. The first group started with 15 of the first security

and none of the other securities; the second group started with allocations of 9, 20 and 0,

and the third group started with 0, 10, and 18. In equilibrium, they should all end up with

the same allocation, since they all faced the same risk aversion parameter. Final allocations

necessarily equal the market portfolio. Figure 3 plots the evolution of the difference of the
22We were agnostic as to the price levels markets would start from; see Hypothesis 5. In the experiment,

prices started from expected value. That is, q0 = µ.
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per-capita holdings of Group 1 and the market portfolio, over intervals of 5 trades each. The
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Figure 3: Evolution of differences between (i) per-capita holdings of A (blue), B (orange) and C
(grey) of the first group of participants, and (ii) the market portfolio. Initial holdings are 15 units of
A each and 0 of B and C. The market portfolio consisted of (per capita) 8 units of A, 10 of B and 6
of C. Differences converge to zero, implying that per-capita holdings converged to CAPM predictions.
Time is measured in intervals of 5 transactions.

figure shows how per-capita holdings gradually move towards the equilibrium level. Notice

that the evolution is far more gradual than the price evolution.

In the class experiment, we induced mean-variance preferences, by tying performance di-

rectly to the CAPM utility function in (14). There was no explicit uncertainty in the experi-

ment; performance (payoffs) were immediate once allocations were known. We could also have

drawn payoffs from distributions with mean µ and covariance matrix Ω, but then we would

not have controlled the risk aversion parameter, so we could not have unambiguously derived
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equilibrium price levels. In addition, we would have to make the auxiliary assumption that

mean-variance preferences explain choices in the experiment.23

As with the classroom experiment presented above, the experimental sessions we ran to test

the theory of this paper also relied on induction of mean-variance preferences. To simplify the

setup, the experiments had two, not three, risky securities.24 Also, since the theory has pre-

dictions for economies with heterogeneous risk aversion, we varied the risk aversion coefficient

across subjects.

3.2 Hypotheses

The theory makes precise predictions about the evolution of prices as well as allocations.

Allocation changes depend on risk aversion and are therefore analyzed as average changes in

holdings across subjects who belong to homogeneous groups. Groups are defined by initial

allocations and/or risk aversion coefficients. The parameters µ and Ω in the payoff functions

are the same regardless of group.

Prices

For the mean-variance utility functions in (14), individual marginal willingness to pay is

ρi(xi) = µ − aiΩri, while risk-aversion weighted average willingness to pay is ρ̄(x) = µ −

Ω
∑

i a
iciri∑
i c

i . Hence, the price dynamics implied by our model ABL, in discrete time, are given

by the equation qt− qt−∆ = c̄∆A−1

(
µ−Ω

∑
i a

icirit∑
i c

i − qt−∆

)
. See Online Appendix D, Equation

OA.18. In the sequel, we set ∆ = 1.
23When introducing uncertainty explicitly, Bossaerts and Plott (2004) and Bossaerts, Plott and Zame (2007)

show that mean-variance preferences provide only a crude approximation of individual choices, even if CAPM
accurately predicts prices.

24Online Appendix F.2 reports results from earlier sessions with three risky securities, but where mean-
variance preferences were not induced.
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Since we would like to compare this to the Walrasian model (3), we want to write it in

terms of excess demand functions, as in (16):25

qt+1 − qt =
1

I
A−1Ω

(∑
i

aiciei(qt, x
i
t+1)

)
. (20)

The equations summarize the price dynamics under ABL. They constitute the key hypothesis

which we test on the data. They link changes in prices to Walrasian excess demands. As

discussed in the theory section, there are three unusual aspects compared to the traditional

Walrasian adjustment model. We repeat them here for convenience.

1. The covariance matrix Ω pre-multiplies the vector of risk-aversion weighted excess de-

mands. This means that the excess demand of one security determines price changes of

all other securities, and the effect is proportional to the corresponding payoff covariances.

2. Excess demands are weighted by risk aversion, liquidity and impatience parameters. In

our experiments, the liquidity and impatience parameters will not be controlled, so we

will assume that they are the same for everyone.26

3. Excess demands are evaluated at end-of-period holdings, unlike in the Walrasian model

(3). We already emphasized this subtle difference in timing between the two models; see

Remark 3.

In the empirical tests, we will pay close attention to these three features. To directly test

the first feature, we pre-multiply the vector of risk-aversion weighted excess demands by the

covariance matrix, so that cross-security effects are no longer present. That is, we run the
25Equation (16) specifies price changes over period t−∆ while Equation (20) does the same over period t.
26There is evidence that impatience relates to risk aversion, however: see Asparouhova and Bossaerts (2009).

We will return to the issue in the Results section; see the discussion concerning Figure 7.
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following multi-equation regression:

qt+1 − qt = B WE(qt, {xit+1, all i}) + εt, (21)

where WE
(
qt, {xit+1, all i}

)
= Ω

(
1
I

∑
i a

iei(qt, x
i
t+1)
)
.

The main restriction is that the coefficient matrix B is diagonal. We cannot say much

about the magnitude of the diagonal coefficients except that they should be strictly positive.

In (21), an error term εt is added, to reflect noise in the dynamics. In the empirical analysis

constant terms will also be added. These will be period-specific if the data straddle multiple

periods.27

Let us illustrate the regressions in (21) using the class experiment. Figure 4 displays scatter

plots of price changes and the regressors. Price changes were computed over intervals of five

transactions. The vertical axes in the figure reproduce the price changes from Figure 2, over

intervals of five trades. The horizontal axes display the regressors in (21), also calculated every

five trades. The prediction is that there is a positive relationship between price changes of a

security i (= A, B, C) only for regressors WE(i). That is, the relation is (strictly) positive

only for the plots on the diagonal, where observations are plotted in red. No relationship

should exist in plots off the diagonal, where observations are plotted in blue. Visual inspection

suggests that this is indeed the case. A formal test of the hypothesis is provided above each

of the plots. Displayed is the magnitude of the estimated slope coefficient, as well as the

corresponding z-statistic. z-statistics beyond 2 can be considered “significant” (p = 0.02).
27The constant term plays no role in the theory, but may be needed empirically to avoid model mis-

specification. If our model does not explain everything in the data (as one should expect), imposing zero
intercepts can lead to serious biases in the estimation of slope coefficients, and hence, mis-interpretation of the
findings.
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Figure 4: Scatter plots of price changes over intervals of five (5) trades against regressors
in (21). Estimates of regression slopes (using Huber’s robust regression) and corresponding
z-statistics are indicated on top of each plot. The ABL model predicts that the plots with red
observations should generate a strictly positive slope, while the remaining plots should have
zero slopes. The results are consistent with the ABL model (using p = 0.02). Number of
observations per plot: 101.

Slope coefficients are estimated using Huber’s robust regression with δ = 2.0.28 Consistent

with the theoretical predictions, slope coefficients on the diagonal are all significant, while

none in the off-diagonal plots are.

Walrasian dynamics are different. From (3), the price-change regressions for the Walrasian
28Huber’s robust regression uses a loss function that treats outliers differently compared to least squares.

With parameter δ, the loss function is defined as: L(ε) = ε2/2 if |ε| ≤ δ, and L(ε) = δ(|ε| − δ/2) otherwise. In
Figure 4, δ = 2.
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model are as follows:

qt+1 − qt = BW E(qt, {xit, all i}) + εt, (22)

where E(qt, {xit, all i}) = 1
I

∑
i e
i(qt, x

i
t).

Notice the absence of weighting in computing the total excess demands, and the difference

in timing of holdings when evaluating excess demands. Also, under Walrasian dynamics, the

matrix BW should be diagonal with strictly positive diagonal coefficients.

Rather than running two separate regressions, we test whether the Walrasian model pro-

vides additional explanatory power beyond the ABL model. We do so by including a security’s

own excess demand E(qt, {rit, all i}) as a regressor in the corresponding equation of the ABL

model (21). To avoid issues of multicolinearity, we orthogonalize the regressors of the Wal-

rasian model with respect to the ABL regressors.29 We then test whether the coefficients of

the orthogonalized Walrasian excess demands are significant and positive. If so, the Walrasian

model is deemed to provide explanatory power for price changes beyond the ABL model. If

the coefficients are insignificant or negative, we conclude that the Walrasian model either does

not provide explanatory power beyond the ABL model or makes the wrong predictions.

Allocations

The equations in (17) specify the evolution of holdings of risky assets under the ABL model.

We set ∆ = 1, as for price dynamics, and assume equal impatience parameters (ci = c̄). The
29Orthogonalization is implemented by taking the difference between E and WE. Inspection of the resulting

regressors reveals that the orthogonalized regressors equals the differences between the risk-aversion weighted
per-capita holdings of a security and the unweighted per-capita holdings. The latter equals the number of units
of the security in the market portfolio, i.e., the corresponding element in r̄. Orthogonalization has at least one
important effect. While Walrasian aggregate excess demands are not affected by the distribution of holdings
across participants with different risk aversion, the orthogonalized Walrasian aggregate excess demands are,
since the regressors in the orthogonalization, the ABL regressors, change with the distribution of holdings.
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latter implies that the second term drops out. We are left with:

rit+1 − rit =− c̄Ω
(
airit −

∑
i a

irit
I

)
. (23)

To interpret these equations, remember that i’s willingness to pay is ρi(xi) = µ − aiΩri.

Therefore, (23) states that agents’ allocations change in proportion to their willingness to pay

relative to that of the average agent. This translates into the following predictions.

1. Allocations, scaled for risk aversion, change depending on how far an agent’s current

holdings deviate from per-capita holdings, scaled for risk aversion.

2. Cross-security effects : if holdings in one security deviate from risk-aversion scaled per-

capita holdings, then this affects subsequent changes in holdings of other securities. The

effects depend on payoff covariances.

As to the second point, if an agent holds too much of a security (scaled for risk aversion)

relative to the risk-aversion weighted average holdings, and another security has payoffs with

positive correlation, the agent will reduce holdings of the other security as well.

The scaling of an agent’s holdings by risk aversion has its origin in the fact that a risk averse

agent (an agent with high ai) will always invest less in risky securities. Portfolio separation

predicts how much less: the ratio of investments in a risky security of an agent relative to

the average agent is described entirely by the ratio of the agent’s risk aversion coefficient and

the average risk aversion coefficient.30 As such, portfolio separation is the crucial driver of

allocation dynamics in the ABL model.

Risk-aversion scaled per-capita holdings provide a crucial benchmark in ABL allocation
30This can readily be derived from Equation (18).
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dynamics. Because of its importance we shall refer to them with an acronym: RASE, for Risk-

Aversion Scaled Endowment portfolio. The number of units RASE invests in each security are

collected in the vector
∑

i a
iri

I
. Compare this to the market portfolio, which in general features

different investments:
∑

i r
i

I
. We discuss later that the RASE portfolio provides predictions for

the cross-section of prices of risky securities that are analogous to those of the market portfolio.

The difference is that the predictions of the RASE portfolio hold off equilibrium as well. The

market portfolio makes valid predictions only in equilibrium.

By adding error terms to (23), we translate the equations into regressions that we can bring

to the data:

rit+1 − rit = B WDeltaRASE(t) + εt, (24)

where WDeltaRASE(t) = Ω
(
airit −

∑
i a

iri

I

)
.

Tests focus on the elements of the coefficient matrix B. The matrix should be diagonal,

with strictly negative diagonal elements. From an econometric point of view, however, the

regression in (24) is problematic. Figure 3 displayed the evolution of deviations of average

holdings of a group of participants from a benchmark (the market portfolio). The figure

shows that the deviations are highly persistent. We expect this persistence to emerge in the

regressors in (24) as well. Specifically, we expect the dynamics of the regressors to be close to

unit-root. This induces huge autocorrelation in the error terms, which then causes significant

biases in coefficient estimation, and mis-specification of standard errors. To avoid these issues,

we therefore take first-differences. Investigation of the autocorrelation of error terms indicates

that this was the right strategy.

We do not run allocation regressions on each participant separately. Instead, as we did for

Figure 3, we average holdings across a homogeneous group of participants. A group is defined
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by (i) the risk aversion parameter of its members, and (ii) their initial allocations.

Setting ∆

We have set ∆ = 1. What does this mean practically? Is one (time) tick equal to one

trade? Or, in calendar time, one second? The theory only assumes that ∆ is long enough for

everyone to trade, no matter how little. In practice, some participants trade only occasionally,

and others trade a lot. Indivisibility makes it unprofitable for many to trade over very short

intervals. As compromise, we measure time in terms of trades, not seconds, and take one time

step to be equal to five trades. That is, ∆ = 5 trades. This is rather arbitrary, but reflects our

intent to minimize bias while retaining power.31

3.3 Experimental Design

We report results from nine sessions with two risky securities and one risk-free security.

Like cash in the experiments, the risk-free security did not earn interest. Because it could be

sold short, it allowed participants to borrow money, at an interest set by the market.32

The first four sessions entailed two sets of four periods (for a total of eight). Treatments

were distinguished by the sign of the covariances between the payoffs of the risky securities.

Within a treatment, the four (4) periods were identical and independent replications, starting

with the same initial endowments and the same mean-variance payoff functions. There were

three groups of participants: one with a high coefficient of risk aversion, the other two with

low coefficients of risk aversion. Table 1 lists the parameters of the four sessions. The table
31Shorter time intervals lead to biases towards finding no effect from the regressors, and longer time intervals

cause lack of power because of reduced data points. We ran robustness tests and found the inference to be
unchanged when ∆ was set to 10 trades; power was reduced, however.

32For readers unfamiliar with markets experiments, Online Appendix F.1 briefly explains how they are run.
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also reports CAPM equilibrium price predictions.

In the last five sessions, the sign and magnitude of payoff covariances were fixed for three

periods. Hence, there were two treatments of three periods each. In contrast to the earlier

sessions, initial endowments varied across the three periods within a treatment. As a result,

CAPM equilibrium price predictions changed across all periods. Participants were divided

into two groups depending on their coefficient of risk aversion (high; low).

Table 1 lists the parameters for the first four sessions.33 Corresponding CAPM equilibrium

price predictions are included as well.34 Trade took place in online, anonymous, continuous

open book systems. These systems are an expanded version of the traditional CDA whereby

inferior limit orders are kept in an open book, until executed, or until canceled. In the first

four sessions, the online system was Marketscape, developed by Charles Plott at Caltech.35 In

the subsequent five sessions, the online trading system was Flex-E-Markets, the same system

used for the class experiment discussed earlier. Flex-E-Markets was originally developed by

Peter Bossaerts and Elena Asparouhova, and now augmented by Jan Nielsen. Flex-E-Markets

is available for use as a Software as a Service (Saas) through adhocmarkets.com.36

Participants were given a color-coded look-up table that, for every combination of holdings

of the two securities (A and B) indicated their performance (utility) excluding payoffs from

holdings of risk-free securities (“Notes”) and cash. See Online Appendix H for a full set of

instructions.

Participants were not informed of performance schedules or initial holdings of others. This
33The parameters for the sessions 5-9 can be found in Online Appendix G Table OA.3.
34In some of the periods in the sessions listed in Table OA.3, exchange took place with a one-shot call market.

We exclude those periods since our theory does not apply to this exchange mechanism.
35Marketscape was also used in, e.g., Asparouhova, Bossaerts and Plott (2003); Bossaerts, Plott and Zame

(2007).
36Flex-E-Markets provided the trading interface for the experiments reported in, e.g., Asparouhova and

Bossaerts (2017); Asparouhova e.a. (2016).
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way, those with knowledge of general equilibrium theory could not possibly derive equilibrium

prices. This also means that participants could not form reasonable expectations about where

prices would tend to, rendering credibility to the assumption of Local Optimization (Hypothesis

4). The number of participants fluctuated between 18 and 41, which is high relative to other

market experiments. Earlier studies have suggested that, with multiple simultaneous markets,

more than the usual number of participants (8-10) are needed in order for general equilibrium

to emerge convincingly (Bossaerts and Plott, 2004).

In Sessions 1-4, accounting was done in an experimental currency converted to dollars at the

end of a session at a pre-announced exchange rate. In the remaining sessions, all accounting

was done in U.S. cents. Sessions lasted approximately three hours and the average payoff

was $45 (with range between $5 and $150). The experiments were approved by the Caltech

and University of Utah Institutional Review Boards (ethics committees). Instructions with

snapshots of the MarketScape and Flex-E-Markets trading interfaces can be found in Online

Appendix H.

3.4 Statistical Analysis

We perform regression analysis based on equations (21), (22) and (24). To study the slope

coefficients, we report z-statistics based on robust regressions using Huber’s method, with

outlier parameter (δ) equal to 2.0 throughout, as explained before.37

Our data consist of price and allocation records for 2 securities in 9 experimental sessions

and 2 treatments within each session, for a total of 36 samples/time series. Rather than

reporting 36 z-statistics separately for each sample,38 we report the distribution of the 36
37We implement Huber’s robust regression using the method “robustfit” of the Matlab statistics package.
38Example: there are 36 z-statistics that test whether the diagonals in the coefficient matrix of (21) equal

zero. Another example: there are 36 z-statistics that test whether the slopes on the orthogonalized Walrasian
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Session Securities Risk Av.
011128 A B (ai)
Subjects (#):
Type 0 (14) 8 2 0.028
Type 1 (14) 2 8 0.015
Type 2 (13) 2 8 0.23

Securities:
Market (Units) 4.05 5.95
Exp Payoff ($) 2.30 2.00
Pay Variance 1.0 0.14

Periods 1-4:
Pay Covariance -0.3
CAPM Price 2.24 2.01

Periods 5-8:
Pay Covariance 0.3
CAPM Price 2.14 1.94

Session Securities Risk Av.
020320 A B (ai)
Subjects (#):
Type 0 (10) 8 2 0.028
Type 1 (10) 2 8 0.015
Type 2 (10) 2 8 0.23

Securities:
Market (Units) 3 4
Exp Payoff ($) 2.30 2.00
Pay Variance 1.0 0.14

Periods 1-4:
Pay Covariance 0.3
CAPM Price 2.14 1.94

Periods 5-8:
Pay Covariance -0.3
CAPM Price 2.24 2.01

Session Securities Risk Av.
020424 A B (ai)
Subjects (#):
Type 0 (13) 8 2 0.028
Type 1 (13) 2 8 0.015
Type 2 (14) 2 8 0.23

Securities:
Market (Units) 3.95 6.05
Exp Payoff ($) 2.30 2.00
Pay Variance 1.0 0.14

Periods 1-4:
Pay Covariance 0.3
CAPM Price 2.13 1.94

Periods 5-8:
Pay Covariance -0.3
CAPM Price 2.24 2.01

Session Securities Risk Av.
020528 A B (ai)
Subjects (#):
Type 0 (13) 8 2 0.028
Type 1 (13) 2 8 0.015
Type 2 (14) 2 8 0.23

Securities:
Market (Units) 3.95 6.05
Exp Payoff ($) 2.30 2.00
Pay Variance 1.0 0.14

Periods 1-4:
Pay Covariance 0.3
CAPM Price 2.13 1.94

Periods 5-8:
Pay Covariance -0.3
CAPM Price 2.24 2.01

Table 1: Parameters: Session 1-4. An experimental currency was used, converted to U.S.
dollars at a pre-announced exchange rates. All parameters are expressed for 100 units of
experimental currency. Type 0, Type 1 , and Type 2 subjects all had initial allocation of 0
Notes and 4.0 of Cash.
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z estimates. Under the null hypothesis that the corresponding parameter equals zero, the

distribution should be N(0, 1) (standard normal). The ability to use the entire empirical

distribution of statistics across multiple samples is a luxury that experimental replications

afford. For an earlier implementation of this approach, see Bossaerts, Plott and Zame (2007).

Under the alternative hypothesis (when the slope is non-zero), the z-statistics should con-

tinue to be Gaussian with unit variance, but with non-zero mean. The sizes of the effects

under the alternative hypothesis could vary from one outcome to another, being governed by

cohort-specific parameters such as the impatience and liquidity parameters. Hence, under the

alternative hypothesis, we expect that, across sessions/treatments, the z-statistics behave as a

Gaussian random variable with a random mean. That is, the z-statistic is a mixing Gaussian

random variable with mixing on the mean. This implies that the distribution will still be

Gaussian, but with variance larger than 1. See Figure 5, Left Panel.
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Figure 5: Left Panel: Under the ABL model, the true diagonal elements of the regression matrix B in
(21) depend on parameters that are cohort and/or security specific, such as impatience and liquidity.
As a result, while the corresponding z-statistics will still have unit variance (asymptotically), their
mean changes randomly across the 36 time series. The unconditional distribution, shown to the right,
will still be Gaussian, however. Right Panel: If z-statistics are computed using the wrong standard
errors, and the standard errors are random across the 36 time series, the resulting unconditional
distribution of z-statistics will be more peaked and exhibit heavier tails than the Gaussian distribution.
Leptokurtosis therefore reveals model mis-specification.

excess demands [see (22)] provide no additional explanatory power for price changes beyond the regressors
in (21).

34



The approach facilitates diagnostics on the correctness of the standard errors with which

the z-statistics are constructed. If the standard errors are computed incorrectly, one could

reasonably expect the z-statistics to be Gaussian with a standard deviation different from 1.

The standard deviation may even depend on the sample (outcome) at hand. Consequently, the

resulting distribution of z-statistics becomes a mixture-of-normals, with mixing on the standard

deviation. This is well known to generate leptokurtosis: a density with excessive peaks and tails

relative to the Gaussian distribution. See Figure 5, Right Panel. Consequently, leptokurtosis

in the estimated density of the z-statistics will reveal mis-specification of the model with which

standard errors are computed.

We estimate the density of the z-statistics using standard kernel smoothing techniques.39

4 Results

4.1 Prices

Diagonal Elements of B in (21). Figure 6a plots the 36 estimated z-statistics for the

diagonal elements of the coefficient matrix in projections of price changes onto risk-aversion

weighted excess demands pre-multiplied by the payoff covariance matrix. These are the di-

agonal elements of B in (21). There are 36 observations since there are 36 samples (time

series), one for each of 2 assets per session-treatment, and for each of 18 session-treatments.40

The 36 observations are depicted by stems on the horizontal axis of the plot. Under the null

that the ABL model does not predict price changes, and provided the usual assumption for

(asymptotic) gaussianity of the z-statistics is satisfied, the density of the z-statistics is N(0, 1),
39We use the ksdensity method in the statistics package of Matlab.
40As mentioned before, a treatment consists of replications (periods) within a session with the same payoff

covariance matrix but not necessarily the same initial allocations.
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Figure 6: Plot of 36 estimated z-statistics (stems) corresponding to diagonal (left) and off-
diagonal (right) elements of the coefficient matrix B in (21). All transaction price changes
over intervals of five (5) trades for a security in one session-treatment constitute a sample from
which a single z-statistic is estimated. Solid red curve depicts kernel-estimated density of the
z-statistics. Dotted red curve depicts Gaussian curve centered at the mean z-statistic and
assuming unit variance; this is the theoretical curve under the alternative of a non-zero coeffi-
cient, centered at the observed mean, and assuming equal impatience and liquidity parameters
across securities/sessions/treatments. Solid black curve depicts N(0, 1), the theoretical density
under the null that the coefficients are zero.

as indicated by the solid black curve. According to our theory, however, the diagonal elements

of B should be strictly positive. As is clear from the figure, all 36 estimated z-statistics are

positive. Their mean is indicated by the value of z where the red-dotted line reaches its peak.

At more than 5, this mean is in the tails of the density of the z-statistics under the null, with

a p value that is less than 10−6. On these two accounts, we find strong confirmation of the

theory.

The solid red line in Figure 6a displays the estimated density of the z-statistics. It is

to be compared to the red dotted line, which represents the density centered at the mean

z-statistic, and with variance equal to 1. This means that the red dotted line represents the

distribution of the z-statistic under an alternative hypothesis whereby the true value of the

diagonal coefficient is constant. The fact that the estimated density is flatter reveals that the
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true value of the diagonal coefficients varies across outcomes. This is not surprising since the

true value depends on liquidity and impatience parameters which can be expected to vary

across subject cohorts and securities. As a result, and if the standard errors were correctly

specified, the true distribution of the z-statistic is Gaussian, with strictly positive mean. That

is, the density should look like the red curve in Figure 5 of the Methods Section. Notice also

that the estimated density (the solid red line) displays the typical bell shape of a Gaussian

distribution. Disregarding slight positive skewness, the red curve in Figure 6a looks Gaussian.

Off-Diagonal Elements of B in (21). According to our theory, the off-diagonal elements

of the coefficient matrix B in (21) should be zero. This reflects the fact that, once risk-

aversion weighted excess demands are adjusted for the covariance matrix, cross-security effects

should disappear. Figure 6b presents the evidence. The 36 estimated z-statistics of the off-

diagonal coefficients are clearly clustered around zero, though there are a few large, negative

outliers. The estimated density of the z-statistics (solid red line) overlaps substantially with

the theoretical density under the null hypothesis (solid black line). The peak (mode) of the

estimated density is close to zero (though negative). The mean estimated z-statistic, indicated

by the peak of the dotted red density, is much further to the left, but still comfortably above

-2 (the chance of observing an outcome of -2 or less under the null is approximately 2%).

The outliers cause left-skewness in the density of the estimated z-statistics, which pushes the

mean downward. With the exception of the negative skewness, the estimated density of the

z-statistics (red curve) appears to be bell-shaped, suggesting that the z-statistics are well-

specified.

Walrasian Dynamics: Diagonal Elements of BW . We now turn to Walrasian influence

on price dynamics. We determine to what extent price changes that are not captured by the
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ABL model can be explained by traditional Walrasian excess demands. That is, we compute

z-statistics for the diagonal elements of the coefficient matrix BW in (22), after orthogonalizing

the regressors with respect to the regressors in the ABL model (i.e., the regressors in (21)).

Figure 7 displays the resulting 36 estimated z-statistics. They are mostly clustered around

zero, consistent with the hypothesis that Walrasian dynamics cannot explain anything beyond

Marshallian dynamics. There is one big (negative) outlier, beyond -5. The estimated density

of the z-statistics (solid red curve) mostly coincides with the density under the null (solid

black curve), though the left tail is a bit larger because of the outlier. The former has a

mode close to 0, consistent with the null. If we look at the theoretical density centered at

the sample mean z-statistic (dotted red curve), we observe that it is displaced to the left,

which is again the influence of the outlier. We conclude that the preponderance of evidence

points towards inability of Walrasian excess demands to provide explanatory power that is not

already captured by the ABL model.

We emphasize that the negative outlier, and indeed all significantly negative outcomes,

are inconsistent with Walrasian dynamics. If Walrasian dynamics truly explained some of the

variance of price changes left unexplained by our theory, the test statistics should be positive.

The vast majority are negative instead.

To better understand the meaning of the – often negative – z-statistics for the Walrasian

excess demands, we plot them against (i) the estimated z-statistics corresponding to the diago-

nal elements of the coefficient matrix in the ABL model (the matrix B), and (ii) the estimated

z-statistics corresponding to the off-diagonal elements of the same matrix.

Figure 8a plots the former. We observe a mild (p = 0.05) negative relationship. This means

that, if we find a stronger positive influence of “driver” of a security’s price according to the
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Figure 7: Plot of 36 estimated z-statistics (stems) corresponding to diagonal elements of the coefficient
matrix BW in (22); regressors are orthogonalized with respect to regressors in (21). See caption of
Figure 6a for further information.

ABL model, we tend to find it offset by a negative influence of the security’s own Walrasian

excess demand.

But the latter has been orthogonalized with respect to the former. As mentioned before, the

orthogonalized regressor equals to the difference between the risk-aversion weighted holdings

of the security and the unweighted holdings (total supply). If risk averse subjects hold more

of the security than others, the orthogonalized regressor is positive. Since its coefficient is

negative, the induced price change is negative. It is intuitive what this is telling: risk averse

agents pull down prices if they are holding too much of a risky security. Effectively, the ABL

model under-estimates how much risk averse agents are willing to pull down prices. While we

have been assuming that impatience is the same across agents, risk averse participants appear

to be more impatient. This is consistent with subject-level data reported in Asparouhova and
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Figure 8: Plot of relation of 36 estimated z-statistics corresponding to diagonal elements of
the coefficient matrix BW in (22) (regressors are orthogonalized with respect to regressors
in (21)) and 36 estimated z-statistics corresponding to diagonal (left panel) and off-diagonal
(right panel) elements of the coefficient matrix B in (21). All transaction price changes over
intervals of five (5) trades for a security in one session-treatment constitute a sample from
which a single z-statistic is estimated. The left panel’s slope of the linear regression (yellow
line) is significant at p = 0.05. It is insignificant (p > 0.10) on the right panel.

Bossaerts (2009).

No such relationship can be discerned when plotting estimated z-statistics for the orthog-

onalized Walrasian excess demands against the estimated z-statistics corresponding to the

off-diagonal elements of B (point (ii) above). See Figure 8b.

By transforming the ABL regressors using Ω, we obtain an elegant way to compare data

across treatments. Lost in this transformation is the difference in dynamics between the

treatments: cross-security impact of excess demands on price changes are significant and of

opposite sign. By merely changing the signs of the payoff covariances, we managed to induce

fundamentally different price dynamics. See Asparouhova, Bossaerts and Plott (2003) for

direct evidence, including experiments with three (rather than two) risky securities.
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Figure 9: Plot of 36 estimated z-statistics (stems) corresponding to diagonal (left panel) and
off-diagononal (right panel) elements of the coefficient matrix B in (24). All allocation changes
over intervals of five (5) trades for a security in one session-treatment constitute a sample from
which a single z-statistic is estimated. Only allocation changes of the subject group with the
highest risk aversion coefficient are included. Regressand is the average allocation change in
that group. See the caption of Figure 6a for further information.

4.2 Allocations

Diagonal Elements of B in (24). Figure 9a displays the z-statistics pertaining to the

diagonal elements of the coefficient matrix B in (24). These are z-statistics for the 36 security-

session-treatment regressions of changes in per-capita holdings of the most risk averse subject

group onto the difference in risk-aversion scaled holdings of the two securities and the per-capita

risk-aversion scaled holdings, pre-multiplied by the payoff covariance matrix. The ABL model

predicts negative coefficients. Figure 9a shows that, with a few exceptions, the z-statistics are

indeed negative. The vast majority have values beyond the critical bound -2 (corresponding to

p = 0.02). As before, the theoretical density of the z-statistics under the null that the regressor

does not correlate with allocation changes is depicted with a solid black curve.

The solid red line depicts the estimated density of the z-statistics. Most of the mass is

outside the interval of z-statistics where, under the null of no effect, 96% of the outcomes
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live, namely [−2, 2]. The dotted red line indicates the theoretical density of the z-statistics

under the alternative that the effect is the same as that for the average z-statistic. This

density hardly overlaps with that under the null hypothesis. The estimated density of the

z-statistics is far more spread out, however, suggesting that the diagonal coefficients differ

across session-treatments and securities. We presume that the heterogeneity emerges because

of differing impatience and/or liquidity parameters. Ignoring the outlier, the estimated density

is bell-shaped, suggesting that the standard errors are well-specified.

Overall, these statistical results provide strong support for our theory.

Off-Diagonal Elements of B in 24. Off-Diagonal elements of the regression coefficient

matrix B should be zero in (24). Figure 9b shows that the z-statistics straddle zero, and

that the theoretical density centered around the mean estimate (dotted red line) overlaps

largely with the theoretical density under the null hypothesis of no effect (solid black line).

However, the estimated density of the z-statistics (solid red line) is far more spread out than

that under the null. This suggests that the true coefficients could be random, with a mean

indistinguishable from zero. That is, our theory works on average, but there are deviations

that the theory cannot explain. Evidently, these deviations can go either way.

We have defined a “treatment” as a sequence of periods in a session where the payoff covari-

ance matrix is kept positive. In Sessions 5–9, initial allocations, and hence, equilibrium prices,

changed across periods in a treatment. However, in Sessions 1–4, everything else remained

the same across the periods of a treatment. As a result, the within-treatment periods were

identical replications. Because of this, there is a possibility that participants started building

expectations of price changes. Our theory assumes that agents cannot reasonably build expec-

tations, and hence, behave in a myopic way (Hypothesis 4). We also tested the ABL model on
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a subset of unique periods within each treatment. Qualitatively, the inference is the same.41

5 Implications for Finance

5.1 Asset Pricing

Financial economists are interested in models that relate asset prices to covariances of their

payoffs with some measure of aggregate risk. The CAPM provided the first example of this

type of model. There, the price of an asset decreases in the covariance between its payoff and

the payoff on the market portfolio. The market portfolio contains all risky securities, with units

assigned to each security equal to the per-capita endowments. Roll has shown that CAPM

obtains because, in equilibrium, the market portfolio is mean-variance optimal (Roll, 1977).

Here, we identify a portfolio with which to price all risky securities even off-equilibrium.

We search for a benchmark portfolio that is mean-variance optimal throughout equilibration.

Roll (1977) has shown that such a portfolio always exists (barring arbitrage opportunities),

and that it prices all assets as follows. For a mean-variance efficient portfolio with composition

(vector of units of each of the assets) v, there exists a scalar β > 0 so that:

q = µ− βΩv. (25)

Recall that, at any moment during the ABL equilibration process, prices follow a system

of difference equations that depend on the weighted averages of agents’ marginal rates of sub-

stitution. See (10). This system of difference equations pushes prices towards levels where
41Results are available upon request, and will be posted online together with the dataset and the statistical

programs.
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they are equal to those averages: q → ρ̄. Translated to our economy with quasi-linear pref-

erences, and assuming that impatience parameters are equal across agents, this implies that

prices exponentially converge to q∗ = ρ̄(x) = µ−Ω1
I

∑
airi. The interpretation of this system

of equations becomes clearer if we re-write it as follows:

q∗ = µ− βΩ
I∑
i=1

ai∑
j a

j
ri,where β =

∑
j a

j

I
. (26)

With reference to (25), this means that prices tend to make a particular portfolio mean-variance

optimal. The portfolio is the one constructed from weighing holdings (ri) with risk aversion

(ai). We referred to this portfolio before as the Risk-Aversion Weighted Endowment Portfolio

(RASE). Mathematically, the weights equal ai∑
j a

j .

We thus have obtained the remarkable result that, throughout equilibration, prices tend to-

wards levels that make the RASE portfolio mean-variance optimal. Even if the market portfolio

is off the mean-variance frontier throughout, RASE will tend towards it. Of course, as agents

trade, their portfolios of risky assets will gradually converge (weights will become the same),

while they will generally end up with different holdings of the numeraire. The RASE portfolio

eventually converges to the market portfolio.

Because the result is only a tendency,42 we cannot claim that the RASE portfolio is mean-

variance optimal throughout equilibration. Instead, we make a weaker prediction, which is

that the Sharpe ratio of the RASE portfolio is continuously higher than that of the market

portfolio. The Sharpe ratio of a portfolio is the ratio of expected return in excess of the risk

free rate and the return volatility. The return is defined as the end-of period payoff of the
42We qualified the result as a tendency. (26) is the steady-state point of a dynamic set of equations for prices.

If allocations change before reaching the steady state, the dynamic set changes. The nature of the steady-state
point does not change, however: it remains the risk-aversion weighted endowment portfolio. Still, the weights
change, however, as holdings shift through trade.
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Figure 10: Panel (a) plots of 62 estimated z-statistics (stems) testing whether the average
Sharpe ratio of the RASE portfolio is higher than that of the market portfolio. Sharpe ratios
are re-computed every 5 trades. Each period in the experiment generates one sample for which
a z-statistic is estimated. Solid red curve depicts kernel-estimated density of the z-statistics.
Dotted red curve depicts Gaussian curve centered at the mean z-statistic and assuming unit
variance. Solid black curve depicts N(0, 1), the theoretical density under the null that the
Sharpe ratio differences are zero. Panel (b) plots the 62 average Sharpe ratios of the RASE
portfolio against those of the market portfolio. Red line denotes 45 degree line. Orange line
depicts best linear fit (slope is significantly larger than 45 degrees at p = 0.09).

portfolio divided by the value of the portfolio at most recent transaction prices. The Sharpe

ratio is maximal for a mean-variance optimal portfolio. We test whether RASE has a higher

Sharpe ratio than the market portfolio.

There are 62 periods across all 9 sessions.43 We test whether the Sharpe ratio of RASE is

higher than that of the market in these 62 periods. At intervals of 5 trades, we compute the

RASE portfolio and evaluate its Sharpe ratio. We do the same for the market portfolio, and

compute the difference between the Sharpe ratio of RASE and the market portfolio. We then

calculate the average of this difference for the period, and the corresponding z-statistic. We

thus obtain 62 z-statistics. Figure 10a plots them as (blue) stems.

The vast majority of the z-statistics are positive, and 46 out of 62 reach a value above
43Four (4) sessions with 8 periods and five (5) sessions with 6 periods.
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2 (p << 0.001), confirming that the RASE portfolio tends to dominate the market portfolio

in mean-variance space. However, there are quite a few negative observations as well, some

of them way in the left tail of the theoretical density under the null that the two portfolios

generate the same Sharpe ratio (black solid line). A comparison of the theoretical density under

the alternative that the expected z-statistic equals the sample average44 (dotted red line), and

the estimated density of the z-statistics (solid red line) reveals substantial heterogeneity across

periods. The former hardly overlaps with the theoretical density under the null, but the latter

has a significant overlap in the left tail.

Sharpe ratios were re-evaluated every five (5) trades. It may be that intervals of five trades

are insufficiently long for the hypothesized effect to emerge. But the tendency is apparent: there

is a portfolio that most likely will generate a higher Sharpe ratio than the market portfolio.

In historical data from field stock markets, the Sharpe ratios of proxies of the market

portfolio have been found to be lower than those of portfolios that put more weight on, say,

high-value stock and smaller firms. See Fama and French (2004). It would be interesting to

determine to which extent the weight adjustments needed to beat market proxies in the field

reflect differences in holdings of component securities across investors with varying levels of risk

aversion. These adjustments make up the differences between RASE and the market portfolio.

Of course, the lower performance of the market proxies in historical data from the field may

also reflect that these are only proxies, and not the true market. In our experiments, we know

what the true market portfolio is. Regardless, the finding that RASE tends to dominate in

terms of Sharpe ratio even off-equilibrium provides a sensible alternative explanation for the

poor historical performance of the market portfolio. We leave these and related issues for

future work.
44Sample average of z-statistics = 9.114.
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Further analysis of our data reveals that the RASE portfolio tends to perform better (in

terms of Sharpe ratio) when the market Sharpe ratio is higher. Figure 10b plots the 62 average

Sharpe ratios of RASE against those of the market portfolio. The solid red line depicts the 45

degree line. If an observation lies above this line, it implies that RASE performs better than

the market portfolio. The dotted red line depicts a linear (OLS) fit (slope: 1.0416, p = 0.09 for

null hypothesis that slope equals 45 degrees). The difference between the linear fit and the 45

degree line increases as the Sharpe ratio of the market increases: RASE tends to outperform

more when the market portfolio generates a higher Sharpe ratio.

5.2 Momentum, Volume and Liquidity

Momentum.

In the ABL model, prices change in reaction to average marginal rates of substitution, see

(10). Agents’ marginal rates of substitution change in response to changes in holdings due

to trade. As a result, a rich pattern of price dynamics is possible. In particular, it generates

interesting cross-autocorrelations that, like the cross-security effects of risk-aversion weighted

excess demands on price changes, depend on payoff covariances. Cross-autocorrelation inten-

sities depend crucially on adjustment parameters, such as the liquidity parameters αk and

the impatience parameters ci. This means that cross-autocorrelation patterns could provide

statistical input to infer those adjustment parameters.

Interestingly, cross-autocorrelations have been recorded in historical field data. Impor-

tantly, they are thought to be the key factor behind the momentum effect, i.e., the finding

that recent winners outperform recent losers, even after adjusting for risk (Lewellen, 2002).

Momentum has always been considered to be puzzling. Here, momentum emerges as a feature
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of off-equilibrium dynamics, through cross-autocorrelations tied to adjustment dynamics. In-

deed, prices of some securities adjust faster than others, because trade in those securities leads

to larger utility increases, or because agents with higher risk aversion or trading impatience

are disproportionately invested in them.

When analyzing the experimental data, however, we uncovered little evidence of momen-

tum. Presumably, this is because, with only 2 risky securities, the power to discover momentum

is reduced. We leave exploration of momentum in experiments with larger cross-sections for

future work.

Remark 6. Absent knowledge of economy-wide parameters, agents cannot exploit the features

of price dynamics reported in the Results section. For instance, agents lack the information

needed to form estimates of risk-aversion weighted excess demands, which are needed to predict

price changes. Momentum, however, is a portfolio that can be constructed in the absence of

structural knowledge of the economy. Since momentum should be profitable in our setting, some

agents may want to exploit it. An interesting issue for future research is to determine to what

extent this would cause equilibrium convergence to fail.

Volume and Liquidity.

Our allocation dynamics have immediate consequences for volume, and hence, liquidity. To

see how, remember individual allocation dynamics (23):

rit+1 − rit = − c̄Ω
(
airit −

∑
i a

irit
I

)
.

Now consider the following cases.

• Case 1. Everyone starts from the same initial allocations, meaning that all agents hold
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the market portfolio: ri0 = r̄. Risk aversion coefficients (ai) are different, however. In

this case, the initial adjustment is as follows:

ri1 − ri0 = − c̄
(
ai −

∑
i a

i

I

)
Ωr̄.

The changes in holdings are a linear transformation of the market portfolio. Except in the

unlikely event that the market portfolio is an eigenvector of Ω, agents must initially trade

away from the market portfolio. That is, they start from CAPM equilibrium holdings,

only to immediately deviate. The more extreme one’s risk aversion (ai) is relative to

the average, the farther away the initial movement is. Ignoring off-diagonal terms of

Ω, the more risk averse agents sell securities, focusing on the most risky ones (highest

variance). Likewise, less risk averse agents do what is locally optimal: increase risk

exposure by prioritizing purchases of the most risky securities.

The effect of the off-diagonal elements of Ω, the payoff covariances, merits separate

discussion. When the covariances are negative, agents’ portfolios remain closer to the

market portfolio than in the scenario when payoff covariances are zero or positive. The

intuition is simple: when payoff covariances are negative, assets are natural hedges for one

another. Increasing one’s risk exposure by buying the most risky securities leads to a less

diversified portfolio, i.e., to utility losses. Maximum local gains in utility are obtained by

trading combinations of securities that are closer to the per-capita average endowment,

i.e., the market portfolio. As a consequence, throughout equilibration, agents stay closer

to the market portfolio than in the scenario where payoff covariances are zero or positive.

• Case 2. Agents start with different endowments but have the same risk aversion ai = ā.
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Then:

ri1 − ri0 = − c̄ā Ω
(
ri0 − r̄

)
.

Here, agents adjust smoothly towards the market portfolio. Since the covariance matrix

Ω multiplies the deviations of initial holdings from the market portfolio, adjustment will

again be faster in the high-variance securities. As in Case 1, this effect will be attenuated

if the off-diagonal elements of Ω (covariances) are negative.

The two cases reveal that adjustment will be faster in the high-variance assets. This means

that liquidity will initially be highest in the high-variance assets. Negative off-diagonal terms

(negative covariances) may partially offset this tendency.

But this only concerns liquidity when allocations are far from equilibrium. Closer to equi-

librium, all efforts are concentrated on trading towards the market portfolio. In Case 1 above,

individual holdings moved away from the market portfolio. Because the low-variance asset

holdings have not been adjusted commensurate with the high-variance asset holdings, final

adjustments are needed in the former, and hence, liquidity moves towards the low-variance

assets when the economy is closer to reaching equilibrium allocations.

This is a novel prediction of our theory, worthy of further exploration, both in follow-up

experiments with more than 2 risky assets, and in historical data from field markets.

A recent explanation of volume and liquidity has focused on optimal attention, see Galai

and Sade (2006), followed by Karlsson, Loewenstein, and Seppi (2009) and Andries and Haddad

(2020). There is a relationship between the explanations provided by these papers and ours.

Agents’ trade intensities are determined by the gradient of their utilities: agents trade faster

in assets that provide a higher increase in utility. In optimal attention models, trade is also

determined by assets that generate the highest potential change in utility.
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Another recent theory of volume and liquidity has focused on portfolio separation; see Lo

and Wang (2000). The reasoning is as follows. Since optimal portfolios can be described in

terms of a limited number of benchmark portfolios, agents merely need to trade those portfolios.

Absent direct access to the benchmark portfolios, trade in individual assets should only take

place in proportion to the weights of the assets in the benchmark portfolios. Consequently,

turnover (volume divided by total supply) is predicted to be constant across assets. As an

example, take Case 1 above: all agents have the same endowment (hence, all endowments are

a fixed combination of the riskfree asset and the market portfolio), but exhibit differing risk

preferences. In the world of Lo and Wang (2000), more risk averse agents reduce their exposure

to risk by trading the market portfolio with less risk averse agents, or, absent direct trade in

the market portfolio, they trade the component assets in proportion to their weights in the

market portfolio. As a result, volume will be proportional to weights in the market portfolio,

and turnover will be constant.

Our predictions are markedly different : agents initially trade the asset with the highest

variance (ignoring payoff covariances, which may attenuate the variance effect). Volume will

therefore be proportional to (payoff) variance. As the economy approaches its equilibrium

allocations, however, more trade will take place in the low-variance assets. Consequently, the

relation between volume and variance is obscured by how far the economy is off equilibrium.

One could turn this around: the relation between volume and variance is an indication of how

far the economy is from equilibrium.

Interestingly, Lo and Wang (2000) show that, historically, volume on the NYSE and AMEX

tends to increase when idiosyncratic risk is higher. Since idiosyncratic risk is a large proportion

of total risk, this suggests that volume increases in (total) variance, consistent with an economy
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that is far from equilibrium.

6 Concluding Comments

Previous research has shown that standard global tatonnement and non-tatonnement are

not consistent with within-period price dynamics in continuous double auctions (CDAs). Build-

ing on earlier experimental evidence from single CDAs (Friedman, 1991; Plott, 2000), we de-

scribe a Marshallian theory of the forces driving the economy to equilibrium. The theory

is applicable to multiple, simultaneous CDAs and consistent with experimental findings with

continuous double auction markets. Our theory was built from the level of the agents up, to

obtain implications for market-wide price and allocation dynamics. Our theory is based on

three main assumptions. One, agents in CDAs only submit (small) orders that maximize local

gains from trade. Two, quantity moves to agents who offer the higher surplus to the market.

Three, agents’ bids are benchmarked against lagged prices.

In our experiments, we induced quasi-linear, mean-variance preferences in a way that makes

the economy isomorphic to a CAPM one. The findings are in line with the theoretical pre-

dictions. Price changes correlated not only with own risk-aversion weighted excess demand,

but also with risk-aversion weighted excess demands in other assets, in ways that related to

the payoff covariance matrix. Traditional Walrasian excess demands either did not provide

additional explanatory power or predicted price changes in a direction that is opposite to that

expected. Our model correctly captured dynamics of the average allocation of participants

stratified by risk aversion. Cross-equation effects emerged here as well, again determined by

the covariance matrix (Hessian of the utility function).

Beyond price and allocation dynamics, we discovered that prices tend in a direction that
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makes one portfolio mean-variance optimal throughout equilibration. This portfolio, the risk-

aversion scaled endowment portfolio (RASE), re-assigns weights in the market portfolio de-

pending on the risk aversion of the agents holding the component assets.

Our results are not isolated to the experiments reported here. In Appendix F.2, we cor-

roborate the findings in about 3200 observations from three sessions of four-asset experiments.

The sessions differ from the ones reported on in the paper, in that: (i) mean-variance prefer-

ences are not induced; instead states are actually realized, though mean-variance preferences

appear to capture price behavior well; (ii) there is no deliberate attempt to control the relation

between excess demands and transaction price changes through changes in payoff covariances.

In addition, Asparouhova, Bossaerts and Plott (2003) reports an analogous link between pay-

off covariances, on the one hand, and the relation between excess demands and price changes,

on the other hand, in over 11,000 transaction price changes from eight sessions with three

assets. Finally, Gillen e.a. (2021) also reports cross-security effects in price changes and excess

demands in an unrelated, three-commodity experiment. Our theory generically predicts such

cross-effects.

Much remains to be done. We have not allowed for speculation, and information (about

final payoffs) was homogeneous. As to historical analysis of field markets, however, our findings

should invite empiricists to re-assess prices, momentum, volume and liquidity, using our theory

as guidance. One interesting question, for instance, is whether there is a relationship between

our RASE portfolio and the factor portfolios that have historically out-performed buying and

holding the market portfolio (in terms of Sharpe ratios).
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ONLINE APPENDIX

A Proofs

A.1 Incentive Compatibility of Optimal Bidding Strategy

About Remark 1: We prove here that, if both the quantity adjustment and the price

setting rules are known, if αk = α, ∀k, and if bids are a local Nash equilibrium, then Hypothesis

4 is satisfied.

Proof: Suppose all i believe Hypothesis 1; that is, ∆rit = A(bit − qt). Further suppose they

believe, as implied by Hypotheses 1 and 3, that qt = (1/I)
∑
bit. Further suppose they choose

bit to be a local Nash Equilibrium. That is, for every i,

bit ∈ argmax ∆uit = (ρit − qt)A(bit − qt) (OA.1)

= (ρit −
∑

j b
j
t

I
)A(bit −

∑
j b

j
t

I
) (OA.2)

Letting b̄t =
∑
bjt
I

, the first order conditions for this are: −1
I

(bik,t− b̄k,t)αk+ I−1
I

(ρik,t− b̄k,t)αk = 0

or bit = b̄t+ (I−1)(ρit− b̄t). Summing over i gives b̄t = ρ̂t =
∑
ρit
I
. So the local Nash equilibrium

has bit = ρ̂t + (I − 1)(ρit − ρ̂t). Since qt = b̄t = ρ̂t this means bit = qt + (I − 1)(ρit − qt). Let

ci = α I−1
∆

.
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A.2 Derivation of ABL Dynamics

From Hypotheses 1-4 , we have

rit+∆ − rit = ∆A(bit − qt) (OA.3)

sit+∆ − sit = −qt · (rit+∆ − rit) (OA.4)∑
i

(rit+∆ − rit) = 0 (OA.5)

bit − qt−∆ = ciA−1(ρit − qt−∆) (OA.6)

Substitute bt from (OA.6) into (OA.3) to get

rit+∆ − rit = ∆A(qt−∆ − qt) + ∆ci(ρit − qt−∆) (OA.7)

Sum (OA.7) over all i to get

qt − qt−∆ = ∆A−1c̄(ρ̄t − qt−∆) (OA.8)

Substitute (OA.8) into (OA.7) to get

rit+∆ − rit = ∆
(
−c̄(ρ̄t − qt−∆) + ci(ρit − qt−∆)

)
(OA.9)
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A.3 Proof of (11)-(13)

The dynamics of our model are

qk,t = qk,t−∆ + ∆
c̄

αk
(ρ̄k,t − qk,t−∆)

q0 = ρ̄0

rik,t+∆ = rik,t + αk∆(qk,t−∆ − qk,t) + ci∆(ρik,t − qk,t−∆)

sit+∆ = sit − qt · (rit − rit−∆).

(The third equation uses (OA.7)).These contain a subtlety that must be dealt with if we want

to let ∆ → 0 to get the continuous version. This is a set of second-order difference equations

since they specify dynamics over two intervals: [t − ∆, t) and [t, t + ∆). To get them into a

standard set of first-order difference equations, let zt = qt−∆ and then, with a little algebra,

rewrite the equations as:

zt+∆ − zt = ∆A−1c̄(ρ̄− zt)

rit+∆ − rit = ∆
(
ci(ρit − zt)− c̄(ρ̄t − zt)

)
sit+∆ − sit = ∆ (−zt+∆) ·

(
ci(ρit − zt)− c̄(ρ̄t − zt)

)

As ∆→ 0, everything is well-behaved, and we end up with

dz

dt
= A−1c̄(ρ̄t − zt)

dri

dt
=
(
ci(ρit − zt)− c̄(ρ̄t − zt)

)
dsi

dt
= −zt ·

(
ci(ρit − zt)− c̄(ρ̄t − zt)

)
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Now, note that as ∆→ 0, zt = qt−∆t → qt. Substituting this, gives (11) - (13).

A.4 Proof of Theorem 1

Theorem 1: (Convergence to Pareto Optimality)

Let xt = (st, rt). If (i) there are no income effects, i.e., ui0(xi) = 1 (wlog) for all i and all

xi ∈ X, and (ii) xit > 0 for all t, then for the dynamics in (8) and (10), (xt, pt) → (x∗, p∗)

where x∗ is Pareto-optimal and e(p∗, x∗) = 0.

Proof: We use
∑
ciui as a Lyapunov function. Let κi = ci(ρi − q). Then we can write

d(
∑

i c
iui)/dt =

∑
i c
i dui

dt
=
∑
ci(ρi − q)

drit
dt

=
∑

i c
i(ρiq)[c

i(ρi − q) − c̄(ρ̄ − q)] = [(
∑
κiκi) −

(1/I)
∑

k(
∑
κik)(

∑
κik). By the triangle inequality,

∑
||κi||2 ≥ ||

∑
κi||2. Therefore

∑
||κi||2 >

(1/I)||
∑
κik||2 if κi 6= 0 for some i. Therefore, d(

∑
ciui)/dt > 0 unless κi = 0 for all i which

is true iff ρi = q for all i. That is, convergence ends at a Pareto-optimal allocation.

Remark 7. Condition (i) is included because we do not have a proof of convergence for utilities

with income effects. We also do not have a counter example where such convergence will not

occur. One could, of course, revise the model and impose a no-regret condition on trades that

would ensure duit/dt ≥ 0. This would guarantee convergence. We do not do that here because,

as we will see below, the model as it now stands is consistent with the data. If it is the right

model of behavior in the CDA experiments, then a lack of convergence would be a feature and

not a bug.

Remark 8. Condition (ii) is included above for technical reasons. If duit/dt ≥ 0 along the

path for all i, then (ii) would not be necessary. But when duit/dt < 0 is possible for some i, we

need to worry about xi hitting the boundary of the feasible consumption set. There are standard
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ways to modify (11)-(13) to deal with this. We do not pursue them here.

B Local Marshallian Equilibrium (LME)

B.1 Theory

In the ABL model of individual behavior, Hypothesis 4, we assumed that bids at t are based

on the prices and allocations arrived at in the interval t − ∆. But another hypothesis might

be that bids and prices are simultaneously determined within the time ∆. It is interesting to

consider what the dynamics of price formation would then look like. We begin with

Hypothesis 6. Local Optimization

bit = qt + ci∆A−1(ρi(xit)− qt),∀i,∀t > 0.

It is easy to compute the local equilibrium in the interval [t, t+ ∆).

Lemma 1. Local Marshallian Equilibrium (LME). Under Hypotheses 1-3, and 6,

qt =

∑
i b
i
t

I
= b̄t =

∑
i c
iρi(xit)∑
i c
i

= ρ̄(xt).

Proof. Hypotheses 1-3 imply qt =
∑

i b
i
t

I
. Then summing bit from Hypothesis 6 gives the desired

result.

qt is the local Marshallian equilibrium price, at which individuals will not want to change

their bids and at which Marshallian trading is feasible.
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The dynamics of the LME model are:45

rit+∆ = rit + ci∆(ρi(xit)− qt),∀i, (OA.10)

sit+∆ = sit − qt · (rit+∆ − rit), ∀i, (OA.11)

qt = ρ̄(xt). (OA.12)

Dividing (OA.10) and (OA.11) by ∆ and letting ∆→ 0 leads to a continuous-time theory:46

drit
dt

= ci(ρi(xit)− qt), ∀i, (OA.13)

dsit
dt

= −qt ·
drit
dt
, ∀i, (OA.14)

qt = ρ̄(xt). (OA.15)

In continuous time, the process (OA.13)-(OA.15) will converge to a rest point from any initial

price and allocation, even if there are income effects. This may not be true for (OA.10)-(OA.12)

in discrete time if step sizes are too large.

Theorem 2. (Convergence to Pareto Optimality)

For the dynamics in (OA.13)-(OA.15), (xt, pt) → (x∗, p∗) where x∗ is Pareto-optimal and

(p∗, x∗) is a competitive equilibrium at x∗.

Proof. For each i, du
i
t

dt
= ui0,t(ρ

i
t− qt) ·

drit
dt

= ui0,t(ρ
i
t− qt) · ci(ρit− qt) > 0 unless ρit = qt. Therefore

d(
∑
uit)/dt > 0 unless ρit = qt for all i. This, and the continuity of the differential equation

system allows us to use
∑
ui as a Lyapunov function and apply the standard asymptotic

45There is a close correspondence between these dynamics and those found in Champsaur and Cornet (1990).
Their agents also choose locally to maximize gains. However, at each point in time a local Walrasian equilibrium
is attained.

46This is essentially the model in Ledyard (1974). In that paper, however, the model was ad hoc. Here we
have provided a micro-foundation for it.

6



convergence theorems.

B.2 LME vs ABL

To see how the ABL model differs from the LME model, consider the following. Hypotheses

1-3 imply that qt =
∑

i b
i
t

I
in both the ABL and LME models. In both models, prices always

equal the average of the bids in the market. But the two models differ in how average bids

relate to the underlying utility functions. Under Hypothesis 6 of the LME model,
∑

i b
i
t

I
= ρ̄(xt).

Under Hypothesis 4 of the ABL model,
∑

i b
i
t

I
= qt−∆ + c̄∆A−1(ρ̄(xt)− qt−∆). That is, in LME

prices immediately change to the weighted average of the willingness to pay (at new holdings).

In ABL prices adjust exponentially toward the weighted average of the willingness to pay. As

such, in the ABL model, prices react more slowly to changes in allocations.

The difference between LME and ABL is even starker in the CAPM environment. For the

ABL model, the price dynamic in the CAPM environment is, from (16):

qt − qt−∆

∆
= A−1Ω

∑
ciaiei(qt−∆, x

i
t)

I
(OA.16)

For the LME model in the CAPM environment,47

qt − qt−∆

∆
= − 1∑

ci
Ω2
∑

ci(ai)2ei(qt−∆, x
i
t−∆). (OA.17)

Two striking differences with respect to dynamics emerge under ABL. First, analogous to
47To obtain the result, (i) take first differences of (OA.12) after lagging (qt − qt−∆), then (ii) replace ρi(xi)

with µ− aiΩri in order to re-express the equations in terms of rit − rit−∆ and (iii) finally use (OA.10) and the
formula for CAPM excess demands, namely, ei(qt−∆, x

i
t−∆) = 1

ai Ω−1(µ− qt−∆)− rit−∆.
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Walrasian dynamics, price changes depend on excess demands evaluated at past allocations.

Second, a minus sign features in front of the equations. This implies, among others, that a

commodity’s price change is opposite to its own (weighted) excess demand. If (weighted) excess

demand is positive, the price drops. Neither prediction is upheld in the data.48

C Speculation

To see what happens if agents were to speculate, consider the continuous-time problem of

optimally adjusting the flow of trade zit = drit subject to a bound on the flow size |zit|2 ≤ γ

and assuming that the agent believes prices follow an Itô process. Let J denote the Hamilton-

Jacobi-Bellman value function (expected utility of final consumption of the commodities, as

a function of the current state, consisting of current prices and current holdings). Let Jr

denote the vector of partial derivatives of J with respect to the holdings rik,t, and J0 the partial

derivative of J with respect to sit. It can be shown that the optimal trade flows satisfy the

following equations:

zik,t ∼ ui0,t(ρ
i
k(x

i
t)− qk,t) + (Jr,k − J0qk,t) .

The first term represents local optimization: desired trade flow is proportional to the gradient of

the utility function, subject to the budget constraint. The second term represents speculation.

Since J denotes the expected utility of the stock (holdings) of commodities at the end of trading,
48It may not be immediately obvious how the results are inconsistent with the second prediction, since we

transformed the regressors using Ω. The price dynamics in (OA.17) imply that the regression coefficient matrix
is proportional to −Ω, which has negative diagonal elements. The data reject this. Note that the off-diagonal
elements of the coefficient matrix are nonzero. But their sign changes depending on the treatment; on average
(across treatments), they equal zero. In the regressions, we did not distinguish between treatments. This was
not necessary under ABL after transformation of the regressors using Ω. ABL and LME therefore make similar
but not identical predictions about the off-diagonal elements of the coefficient matrix: under ABL, the true
coefficients are identically zero; under LME, they are zero on average, across treatments. If the latter had been
true, then the distribution of the corresponding z-statistics would have been affected by mixing of means, and
hence, flatter than observed (compare Figures 6b and 5 [Left Panel]).
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Jr,k denotes the expected marginal utility of consumption of commodity k. If, at current prices,

expected marginal utility of (eventual) consumption is proportional to the price, the second

term is zero, and optimal trade flow is solely determined by local utility maximization. If

marginal utility of a commodity is expected to eventually be higher than the current price

(modulo J0), the second term is positive, and the agent trades more than is needed for local

maximization. Eventually, marginal utilities of consumption need to be aligned with prices: at

the end of trading, i.e., at some distant T , Jr,k = J0qk,T . If at current prices, Jr,k > J0qk,t, the

agent must expect future prices (qk,T ) to be higher than today’s (qk,t; again, we are ignoring

changes in J0). Our agent therefore speculates: she trades to a higher quantity (stock) of the

commodity than she expects to eventually want; she will later reduce holdings and profit from

the expected price increase.49

D ABL in CAPM

The price dynamics implied by our model in discrete time, see (10), are:

qt − qt−∆ = c̄∆A−1

(
µ− Ω

∑
i a

icirit∑
i c
i
− qt−∆

)
(OA.18)

Since we want to compare this to the Walrasian model (3), we write it in terms of excess

demand functions. To find the Walrasian excess demand functions, maximize µ · ri − ai

2
ri ·

49See Sundaresan (1989) or Constantinides (1990) for analogous applications of Itô calculus to deriving
optimal trade flow when utility depends on the cumulative stock (holdings).
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(Ωri)− q · ri. At lagged prices, the individual Walrasian excess demand functions are

ei(qt−∆, x
i
t) =

1

ai
Ω−1(µ− qt−∆)− rit. (OA.19)

From (OA.19), ciaiΩrit = ci(µ − qt−∆) − ciaiΩei(qt−∆, x
i
t). Substituting this into (OA.18),

and dividing by ∆, yields:50

qt − qt−∆

∆
= A−1Ω

∑
ciaiei(qt−∆, x

i
t)

I
(OA.20)

E Newton-Raphson Algorithm vs ABL

It has often been said that the CDA is a computational device for finding the competitive

equilibrium prices and allocations (Bossaerts and Plott, 2008). This is because prices in CDA

experiments, without income effects and with one commodity plus numeraire, sometimes seem

to mimic the Newton-Raphson (NR) algorithm which computes the zeros of a set of equations.

To compute the p∗ = (1, q∗) that satisfies E(q∗, ω) = 0 (i.e., to compute equilibrium prices),

the NR algorithm does the following sequential computation:

qt − qt−∆ =

[
∂E(qt−∆, ω)

∂q

]−1

E(qt−∆, ω) (OA.21)

For the CAPM model, ∂E(qt−∆,ω)

∂q
=
∑

i
1
ai

Ω−1. Therefore, qt− qt−∆ = âΩ
∑

i e
i(qt−∆, ω), where

â =
[∑

i

(
1
ai

)]−1. The similarity of this to (16) is interesting. The Hessian of the utility

50(16) does not imply causation. That is, prices are not “responding to excess demands”. It is simply a
feature of the quadratic preferences of the CAPM model that let us write price changes for the ABL model
this way. The theory merely says that the path of prices will satisfy (16).
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functions plays a key role in both. However, the two are different. In ABL the weighted excess

demand curves are important while in NR they are not. ABL follows a different path from

NR.

F Experiments: Setup and Additional Evidence

F.1 The Structure of Market Experiments

For those unfamiliar with market experiments, a brief introduction follows. Participants are

solicited, usually via email invitations, to come and participate in an experimental session at a

given location (or, in some instances, access the experiment online) and at a given time. Each

experimental session starts with an instructional period, where the rules of engagement are

explained, participants are given the opportunity to ask questions, familiarize themselves with

the trading software and participate in a practice trading session. An experiment proceeds in a

series of replications, called periods. At the beginning of a period each participant i is given an

initial endowment of commodities (or financial assets), wi. Markets open and participants are

free to trade subject to the usual budget constraints. Trading occurs via a market institution

of the experimenter’s choice. At the end of a period, participant i will have traded di and

will have final holdings of xi = wi + di. Participants receive payments according to a payoff

function ui(xi), specified by the experimenter and presented to the participants during the

instructional period. In some sessions all periods are payoff-relevant. In others, participants

go through several periods and only some are chosen at random to be payoff-relevant.

Two standard trading institutions used in experiments are the Continuous Double Auction

(CDA) and the Call Market (CM). The CDA is a trading process in which participants post

11



limit buy and sell offers by specifying quantity and price (for example, a limit buy offer is

an offer the buy a specified quantity at or below the offer price; offers are usually valid until

canceled or executed, i.e., there is usually no option to have the offers lapse). In most cases the

offers are displayed in an open book, i.e, they are visible to all participants. When someone

submits a buy offer (bid) with a limit price above that of the best sell offer (ask) in the book,

a trade takes place, at the standing offer limit price. Conversely, when someone submits a sell

offer (ask) with a limit price below that of the best buy offer (bid) in the book, a trade takes

place, at the bid limit price. When accepted an offer becomes part of a transaction and it is

withdrawn from the order book. The CDA can be thought as an example of a system that

facilitates non-tatonnement dynamics.

In a call market, participants also post buy and sell offers by specifying quantity and price

but, contrary to the CDA, no transaction occurs or is accepted until the market is “called." If

the book is closed (i,e, subjects cannot see each others’ bids), this is just a sealed bid auction.

If the book is open (i.e., participants can see each others’ bids) and subjects can withdraw their

bids and submit new ones, the call market becomes an example of a system that facilitates

tatonnement dynamics.

In the paper we report on periods in the experiment when trade took place using the CDA.

In Sessions 5–9, trade in some periods took place using a call mechanism. We do not include

those periods in the analysis.

F.2 Additional Experimental Evidence

We here provide further demonstration that the cross-asset effects of excess demand on price

changes replicates in four-asset experiments and even if CAPM preferences are not induced,
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but risk is actually realized. This means that participants come with home-grown preferences.

From a pricing point of view, this does not matter: standard asset pricing results such as CAPM

emerge even if uncertainty is explicit rather than induced through a nonlinear payoff function

(for background literature, see Biais, e.a. (2017); Bossaerts and Plott (2004); Bossaerts, Plott

and Zame (2007); Crockett, Friedman and Oprea (2017)).

The experiment was designed as follows. Three sessions were run at Caltech using the

Marketscape interface (same interface as for Sessions 1–4 in the paper). There were four

assets. Three of them, called A, B and C, had a random payoff depending on the drawing of

one of four states. The fourth asset, the Note, was risk-free. In addition, cash was available,

which was to be used in buying and selling shares in the assets. The relation between states

and asset payoffs was as follows. States were equally likely to be drawn at the end of a period.51

State X Y Z W
A 30 190 500 200
B 100 270 300 130
C 200 210 90 180
Note 100 100 100 100

The realization of the state was unknown to participants for the duration of the period but

the payoff distribution from which it was drawn (i.e., the table above) was public information.

The number of participants per experiment ranged from 29 to 70.

One can readily deduce expected payoffs. They were 230, 200 and 170, for A, B and C

respectively. The payoff covariance matrix can also be derived. Notice that, unlike in the

example market experiment discussed in Section 3, payoff variances are unequal.
51Notional currency, called “francs,” was used in all experiments. At the end of each experiment each

participant’s cumulative earnings from all periods were converted to US dollars at a pre-specified exchange rate
($0.04 per franc).
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Ω A B C
A 28850 11575 -7375
B 11575 7450 -2225
C -7375 -2225 2250

Each session was organized as six to eight replications of the same situation. The Notes

could be held in positive or negative amounts, i.e. short selling of Notes was allowed.52 In

contrast, the risky securities A, B, and C could only be held in non-negative amounts, i.e.

they could not be sold short. In the beginning of each period the assets were allocated across

subjects as shown in Table OA.1. Cash was allocated against a loan. This leverages their

position and increases the risk of the endowments to the participants. As a result, trade takes

place because of risk aversion.

Table OA.1: Experimental design data

Experiment Participant Signup Endowments Cash Loan Exchange
Category Reward A B C Notes Repayment Rate
Number (franc) (franc) (franc) $/franc

991026 13 0 4 0 5 0 400 2075 0.04
16 0 0 6 5 0 400 2350 0.04

001030 46 0 4 0 5 0 400 2075 0.04
22 0 0 6 5 0 400 2350 0.04

001106 47 0 4 0 5 0 400 2075 0.04
23 0 0 6 5 0 400 2350 0.04

No participant was given information regarding the asset allocations of the other partici-

pants. In each period the markets were open for a pre-set amount of time, usually ranging from

15 to 25 minutes. During open markets, the subjects had the opportunity to trade securities

for cash, and thus re-balance their initial portfolios, through an online, continuous, anonymous
52When selling short a Note, the seller promises to pay the face value of the Note to the buyer when the Note

expires. Effectively, the seller borrows the purchase price; the face value of the Note acts as a loan amount,
inclusive of interest.
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open-book system (Marketscape). At the end of each period each subject had his/her final

portfolio of risky assets, Notes, and cash. Notice that Notes and cash were perfect substitutes

in the end of a period. However, because assets could only be traded for cash, cash also had

transaction value during the trading. When a period closed the state was announced and earn-

ings recorded, to be paid out at the end of the experiment in real cash. New allocations of the

assets were distributed and a fresh period opened (earnings from previous periods were NOT

available as cash in subsequent periods). Subjects whose earnings were sufficiently low were

declared bankrupt and were prevented from participating in subsequent periods.53 Earnings

ranged from nothing (the bankrupt participants) to over two hundred dollars.

Table OA.2: Evidence of cross-security effects in three sessions of a four-asset CAPM exper-
iment where uncertainty was explicit rather than induced through CAPM quasi-linear payoff
functions.

Exp. Asset Coefficients54 R2 F -stat.55
Constant Excess Demand56

A B C

991026 A 3.767∗ 1.918∗ 0.838∗ -0.473∗ 0.024 5.89
(N = 710) (1.814) (0.898) (0.408) (0.220)

B 1.784∗ 0.639 0.425∗ -0.123 0.031 7.64
(0.997) (0.480) (0.231) (0.115)

C -2.039∗∗ -0.914∗ -0.467∗∗ 0.214∗ 0.019 4.51
(0.878) (0.406) (0.204) (0.096)

001030 A 2.556∗∗ 2.933∗∗ 1.085∗∗ -0.775∗∗ 0.062 21.63
(N = 982) (0.789) (0.921) (0.358) (0.240)

B 0.466∗ 0.026 0.115 0.020 0.020 6.70
(0.249) (0.239) (0.091) (0.065)

C -0.336 -0.223 -0.032 0.076 0.008 2.75
(0.763) (0.746) (0.300) (0.192)

001106 A 0.687∗ 0.492∗∗ 0.205∗∗ -0.122∗∗ 0.012 6.22
(N = 1556) (0.416) (0.198) (0.091) (0.049)

B 0.692∗ 0.174 0.168∗ -0.018 0.019 10.11
(0.370) (0.143) (0.083) (0.032)

C -1.031∗∗ -0.376∗∗ -0.152∗∗ 0.100∗∗ 0.009 4.84
(0.282) (0.110) (0.051) (0.028)

Table OA.2 shows the results from OLS projections of price changes on excess demands

after each trade. Many cross-asset slope coefficients are significant. When significant, the slope
53For a participant to be declared bankrupt he/she had to have negative cumulative earnings for two con-

secutive periods. See also Bossaerts and Plott (2004).
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coefficients have the same sign as the corresponding element in the covariance matrix. E.g.,

the excess demand of B for instance, correlates positively with subsequent transaction price

changes in A, which reflects the negative covariance between the payoffs of A and B. With one

exception, the insignificant coefficients also have the right sign. This corroborates the findings

in the paper for an experiment where quasi-linear preferences were not induced, but effectively

obtained through uncertainty and risk aversion, and where there were four assets, not three.

16



G Experimental Parameters for Sessions 5-9

Session Securities Risk Av.
100726 A B (ai)
Subjects (#):
Type 1 (9) Varying Across 0.06
Type 2 (9) Periods 0.1

Securities:
Exp Payoff ($) 0.75 0.75
Pay Variance 1.0 0.5

Period 1:
Pay Covariance -0.25
Market (Units) 4 3
CAPM Price 0.51 0.71

Period 2:
Pay Covariance -0.25
Market (Units) 4 3
CAPM Price 0.51 0.71

Period 3:
Pay Covariance -0.25
Market (Units) 4 3
CAPM Price 0.51 0.71

Period 4:
Pay Covariance 0.2
Market (Units) 4 3
CAPM Price 0.41 0.58

Period 5:
Pay Covariance 0.2
Market (Units) 4 3
CAPM Price 0.41 0.58

Period 6
Pay Covariance 0.2
Market (Units) 4 3
CAPM Price 0.41 0.58

Session Securities Risk Av.
100816 A B (ai)
Subjects (#):
Type 1 (10) Varying Across 0.06
Type 2 (9) Periods 0.1

Securities:
Exp Payoff ($) 0.75 0.75
Pay Variance 1.0 0.5

Period 1:
Pay Covariance 0.2
Market (Units) 3.79 3.16
CAPM Price 0.42 0.58

Period 2:
Pay Covariance 0.2
Market (Units) 3.79 3.16
CAPM Price 0.42 0.58

Period 3:
Pay Covariance 0.2
Market (Units) 4 3
CAPM Price 0.41 0.58

Period 4:
Pay Covariance -0.25
Market (Units) 4.21 2.84
CAPM Price 0.49 0.72

Period 5:
Pay Covariance -0.25
Market (Units) 4.21 2.84
CAPM Price 0.49 0.72

Period 6
Pay Covariance -0.25
Market (Units) 4 3
CAPM Price 0.51 0.71

Table OA.3: Parameters: Sessions 5-6. All accounting was done in U.S. dollars.
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Session Securities Risk Av.
101118 A B (ai)
Subjects (#):
Type 1 (10) Varying Across 0.06
Type 2 (8) Periods 0.1

Securities:
Exp Payoff ($) 0.75 0.75
Pay Variance 1.0 0.5

Period 1:
Pay Covariance -0.4
Market (Units) 4 3
CAPM Price 0.55 0.76

Period 2:
Pay Covariance -0.4
Market (Units) 4.44 2.67
CAPM Price 0.50 0.78

Period 3:
Pay Covariance -0.4
Market (Units) 4.44 2.67
CAPM Price 0.50 0.78

Period 4:
Pay Covariance 0.4
Market (Units) 4 3
CAPM Price 0.37 0.52

Period 5:
Pay Covariance 0.4
Market (Units) 3.56 3.33
CAPM Price 0.39 0.52

Period 6
Pay Covariance 0.4
Market (Units) 3.56 3.33
CAPM Price 0.39 0.52

Sessions Securities Risk Av.
110608, 110609 A B (ai)
Subjects (#):
Type 1 (17) Varying Across 0.06
Type 2 (17) Periods 0.1

Securities:
Exp Payoff ($) 0.75 0.75
Pay Variance 1.0 0.5

Period 1:
Pay Covariance -0.4
Market (Units) 4 3
CAPM Price 0.54 0.76

Period 2:
Pay Covariance -0.4
Market (Units) 4 3
CAPM Price 0.54 0.76

Period 3:
Pay Covariance -0.4
Market (Units) 4 3
CAPM Price 0.54 0.76

Period 4:
Pay Covariance 0.4
Market (Units) 4 3
CAPM Price 0.36 0.52

Period 5:
Pay Covariance 0.4
Market (Units) 4 3
CAPM Price 0.36 0.52

Period 6
Pay Covariance 0.4
Market (Units) 4 3
CAPM Price 0.36 0.52

Table OA.4: Parameters: Sessions 7-9. All accounting was done in U.S. dollars.
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H Experiments: Sample Instructions

H.1 Instructions: Session 110609 (Type 2 Subject)

 

Page 1 of 4 

Instructions 
 

Contents: 
 The Experiment 
 The Markets Interface, Flex-E-Markets 

 

 
 

I. The Experiment 
 
1. Situation 
 
The experiment consists of a number of replications of the same situation, referred to as 
periods. At the beginning of each period, you will be given securities and cash. Markets 
will open and you will be free to trade your securities. You buy securities with cash and 
you get cash if you sell securities. At the end of the period, the securities expire. They 
will pay dividends, which depend on how many securities you are holding at market 
close, and in which combination, as specified below.  
 
Your period earnings has two components: the dividends on the securities you are 
holding after markets close, plus your cash balance. 
 
Period earnings are cumulative across periods. There will be 12 periods in this 
experiment and each period lasts 5 minutes. You will be paid for twice of what you earn 
in 5 randomly pre-selected periods, which will be announced at the end of the 
experiment. The cumulative earnings are yours to keep, in addition to a standard $5 
sign-up reward. 
 
During the experiment, accounting is done in fake dollars. One fake dollar is worth 1 
U.S. cent. So, 100 fake dollars is worth 1 U.S. dollar. The symbol $ is used throughout 
to denominate fake dollars. 
 
2. The Securities 
 
You will be given two types of securities, stocks and bonds. Bonds pay a fixed dividend 
at the end of a period, namely, $100. Stocks pay dividends that depend on the number 
of units of each you are holding and in which combination.  
 
There are two stocks, A and B. At the beginning of each period, you will be given a look-
up dividend table that allows you to determine the dividends that are promised for each 
possible combination of holdings of A and B. An example of such a look-up table is 
reproduced here. 
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For instance, if you are holding 2 units of A and 3 units of B at market close, the 
dividends on this combination of A and B will amount to $357. Or if you’re holding none 
of A and 3 of B, the dividends will equal $203. If you’re finishing with 7 units of A and 4 
units of B, you’ll receive $652. 
 
Each period, the dividend table will be different. So, it is important that you pay careful 
attention to it before you start trading. 
 
Although this may be of little relevance to you, you may want to know that dividend 
tables will generally differ across market participants.  
 
 
 
II. The Markets Interface, Flex-E-Markets 
 
You trade through an electronic market interface called Flex-E-Markets. Navigate to 
http://filagora.caltech.edu/fm/ and enter the login ID and password you have been given 
at the beginning of the experiment. Then go to “Marketplace Access” and pick the 
appropriate Marketplace. You can enter marketplace “practice” and play with various 
functions of Flex-E-Markets while the instruction is read. 
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Once you enter a marketplace, you will see slide bars for each market (Stocks A and B, 
and Bonds). The number of units of each security you have is displayed next to the 
market name. When choosing a bar, the order form will be populated. The price 
changes as you slide the ring on the bar. Use the order form to submit orders to buy, to 
sell, or to cancel previously entered orders. You can submit multiple orders at a 
particular price by changing the quantities in the order form. Submitted orders will show 
as red (if a sell order) or blue (if a buy order) tag on the slide bar. Along with your own 
orders, you will be able to see other participants’ orders, but you will not be told who 
submitted those.  
 
The orders you submit are limit orders. This means that, if they can be executed (i.e., if 
the system can find a counter party), you will be able to trade at the price you indicated, 
or at a better price. 
 
How you may be able to get a better price depends on the trading mechanism. During 
the experiment, we will alternate across periods between two trading mechanisms: the 
continuous markets and the call market. 
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• In the continuous market, Flex-E-Markets constantly tries to match incoming buy and 
sell orders. If a buy order arrives with a price at or above the highest possible price of 
a standing (i.e., previously entered) sell order, then the buy order trades with this best 
sell order, at the price of the sell order. Conversely, if a sell order arrives with a price 
at or below the highest possible price of a standing buy order, then the sell order 
trades with this best buy order, at the price of the buy order. If there are many “best” 
standing orders against which an arriving order can be executed, then Flex-E-Markets 
will choose the oldest standing order.  

• In the call market, limit orders are accumulated over time without Flex-E-Markets 
trying to match. Only at the end of the period will Flex-E-Markets execute orders. It 
does so by ranking orders by price and matching high price buy orders with low price 
sell orders until there are no more matches for which the buy price is at least as high 
as the sell price. All orders execute at the sell price of the last match or the buy price 
of the next (unexecuted) match, whichever is higher.  During order submission, flex-e-
markets will periodically compute provisional clearing prices and post them. The 
provisional clearing prices provide an indication of the level of prices at which trade 
would take place if flex-e-markets were to try to clear all standing orders.  

 
Your holding of a security is displayed above the corresponding slide bar. Your cash 
holding is displayed in the upper right hand corner.  
 
If you submit an offer to buy, you need to have enough cash.  
 
When you submit an offer to sell, you need to have enough securities.  
 
Still, we allow you to sell bonds (but not stock) that you don't own. This is called short 
selling. In that case, if the sale goes through, you end up with a negative position in the 
bonds, and, per unit, the dividend of the bond ($100) will be subtracted from your total 
pay at the end of the period. 
 
Because you need to have enough cash to buy, we generally start you out with lots of 
cash. Be careful: this cash is really “on loan,” because it will be offset with a short 
(negative) position in the bond.   
 
The Flex-E-Markets interface contains more functionality than described above (such as 
display of the list of orders or “books” in table format, or graphical display of incoming 
orders and past trades, etc.). Participants are invited to explore this functionality during 
the practice periods. None of it is crucial to successfully trade.   
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H.2 Snapshot of Online Trading Interface and Payoff Table: Session

020528 (Type 1 Subject)

MARKET SUMMARY ID: 123 Wed Sep 10 17:08:25 2003 Period 9 -Closed- RELOAD
CURRENT DATA

Market
Your
Units

Best Buy
Offer

Best Sell
Offer

Last
Trade

My
Offers

My
Trades Graph History

Notes 0 -@- -@- - -/-
SecurityA 2 -@- -@- - -/-
SecurityB 8 -@- -@- - -/-

Order Form
Buy Sell   Market: 

Units:    Price: 
Time to Expire:   0
(e.g. 1h6m5s; 0=never expire)
   Order       Clear

Your cash on hand is:
400 Home Instructions and

Help Inventory Graph of All
Markets

Payoff
Summary Announcements LOGOUT

Payoff From a and b
Payoff Summary

B Payoff
20 3958 4196 4433 4668 4902 5134 5365 5594 5822 6048 6273 6496 6718 6938 7157 7374 7590 7804 8017 8228 8438
19 3762 4000 4236 4471 4704 4936 5166 5395 5622 5848 6073 6295 6517 6736 6955 7172 7387 7601 7813 8024 8233
18 3566 3803 4039 4274 4506 4738 4968 5196 5423 5648 5872 6094 6315 6535 6752 6969 7184 7397 7609 7819 8028
17 3370 3607 3842 4076 4308 4539 4769 4996 5223 5448 5671 5893 6113 6332 6550 6766 6980 7193 7404 7614 7823
16 3173 3410 3645 3878 4110 4340 4569 4797 5023 5247 5470 5692 5912 6130 6347 6562 6776 6989 7200 7409 7617
15 2976 3212 3447 3680 3911 4141 4370 4597 4822 5046 5269 5490 5709 5927 6144 6359 6572 6784 6995 7204 7411
14 2779 3015 3249 3482 3713 3942 4170 4397 4622 4845 5067 5288 5507 5725 5941 6155 6368 6580 6790 6998 7205
13 2582 2817 3051 3283 3514 3743 3970 4196 4421 4644 4866 5086 5304 5522 5737 5951 6164 6375 6585 6793 6999
12 2385 2620 2853 3084 3314 3543 3770 3996 4220 4443 4664 4884 5102 5318 5533 5747 5959 6170 6379 6587 6793
11 2187 2421 2654 2885 3115 3343 3570 3795 4019 4241 4462 4681 4899 5115 5330 5543 5754 5965 6173 6381 6586
10 1990 2223 2456 2686 2916 3143 3370 3594 3818 4039 4260 4478 4696 4911 5126 5338 5550 5759 5968 6174 6380
9 1791 2025 2257 2487 2716 2943 3169 3393 3616 3837 4057 4275 4492 4707 4921 5133 5344 5554 5761 5968 6172
8 1593 1826 2057 2287 2516 2743 2968 3192 3414 3635 3854 4072 4288 4503 4717 4929 5139 5348 5555 5761 5965
7 1395 1627 1858 2088 2315 2542 2767 2990 3212 3432 3651 3869 4085 4299 4512 4723 4933 5142 5349 5554 5758
6 1196 1428 1659 1888 2115 2341 2565 2788 3010 3230 3448 3665 3881 4095 4307 4518 4727 4935 5142 5347 5550
5 997 1229 1459 1687 1914 2140 2364 2586 2807 3027 3245 3461 3676 3890 4102 4312 4521 4729 4935 5139 5342
4 798 1029 1259 1487 1714 1939 2162 2384 2605 2824 3041 3257 3472 3685 3897 4107 4315 4522 4728 4932 5134
3 599 830 1059 1286 1512 1737 1960 2182 2402 2620 2838 3053 3267 3480 3691 3901 4109 4315 4520 4724 4926
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