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Abstract

We study strategic trading by a blockholder who can intervene over time to influence the

firm’s cash flows. We consider the impact of asymmetric information on the incentives of the

blockholder to trade, and study when information asymmetry increases blockholder ownership

and leads to greater firm value. Asymmetric information reduces the speed of blockholder

trading if private information is sufficiently persistent, but can increase it otherwise. We study

how the presence of liquidity shocks, leading to a noisy equilibrium, creates Rachet effects

whereby the blockholder’s (endogenous) trading plans induce him to distort the firm cash flows

to manipulate the stock price.

Keywords: Strategic Trading, Blockholder, Managerial Ownership, Reputation, Activism.

JEL Classification: D72, D82, D83, G20.

∗Previously circulated as “The Asset Pricing Implications of Strategic Trading and Activism.” We thank Peter
DeMarzo, Jeremy Bertomeu, Ilan Guttman, Yiwei Dou, Borja Larrain, Chandra Kanodia (discussant), Seung Lee,
and seminar participants at NYU, Michigan U., Stanford, Columbia, Baruch College, Berkeley and Washington
University for comments and suggestions.

1



1 Introduction

Blockholders play a prominent role in capital markets. They can be institutional investors (e.g.,

hedge funds, pensions funds, venture capitalists) or wealthy individuals (e.g., firm founders or

senior management). They monitor firms and promote changes through various channels (e.g.,

negotiations with management, proxy fights, etc). These activities are personally costly to the

blockholder, and small shareholders free ride on their effort. A blockholder thus faces a trade-off:

he can mitigate free riding and enhance his incentive to monitor the firm by owning a large stake,

but, by doing so, he compromises his portfolio diversification needs.1

DeMarzo and Urošević (2006) study the dynamics of this trade-off under symmetric information,

and prove that a blockholder’s stake shrinks over time towards a fully diversified portfolio. In the

long-run, a blockholder holds a small stake, thus facing weak incentives to monitor the firm, as if

he did not a play any governance role. Under symmetric information — one might conclude —

blockholders are bound to play a very limited governance role.

We study strategic trading when a blockholder has access to private information and can affect

the firm’s cash flows. Specifically, we investigate the impact of asymmetric information on the

dynamics of blockholder stakes, firm productivity, and stock prices. We show that, under informa-

tion asymmetry, a risk-averse blockholder tends to hold a relatively large stake, effectively holding

an undiversified portfolio, in contrast with the results arising under symmetric information. We

demonstrate that under plausible conditions, stock prices are higher in the presence of asymmetric

information.

Figure 1 exhibits four real world examples of the problem we investigate here. The top panels

show ownership dynamics for two founders — e.g., Jeff Bezos and Warren Buffet – where we

see that founders typically divest their stakes over time, but tend to do it slowly. The bottom

panels show ownership dynamics for two large funds — e.g., Berkshire Hathaway and Trian. These

examples capture situations whereby an activist fund, such as Trian, learns about an opportunity

to create value in a target firm, such as Wendy’s, and increases its stake over time to profit from the

opportunity, and proceeds to unwind it afterwards. To be effective, Trian needs to enter (and exit)

the firm carefully to avoid triggering large price reactions that could threaten its profit opportunity.

Our baseline model builds on DeMarzo and Urošević (2006) but allows for time-varying block-

holder ability and asymmetric information. Specifically, we consider a dynamic model of trading

between a large investor (or blockholder) and a competitive fringe of small investors (henceforth,

the market). In each period, the blockholder can trade and make costly decisions to influence the

1These trade-offs have been long identified by corporate governance scholars and practitioners at least going back
to the work by Berle and Means (1932), Alchian and Demsetz (1972), and Jensen and Meckling (1976).
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(a) Jeffyrey Bezoz’s stake in Amazon.
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(b) Warren Buffett’s stake in Berkshire
Hathaway.
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(c) Berkshire Hathaway’s stake in
American Airlines.
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(d) Trian Fund Management’s stake in
Wendy’s.

Figure 1: Examples of Blockholder Ownership Dynamics. Source: S&P Capital IQ.

firm’s cash flows. Crucially, the blockholder cannot commit to holding a large stake, and trades

continuously based on his private information and hedging needs. The main source of private in-

formation is the blockholder’s ability to influence the firm’s cash flows, which varies over time. In

other words, there is information asymmetry regarding the blockholder’s ability to add (or extract)

value to the firm.

In our baseline model, trading is fully revealing and the blockholder’s trading choices are affected

by signaling incentives similar to those in Leland and Pyle (1977) (thus, our model also contributes

to the literature on signaling by considering a dynamic model of ownership). The market does not

observe blockholder ability, but assesses it based on the blockholder’s trading history (and the firm

cash flows). In equilibrium, the blockholder faces a relatively illiquid market because his trading is

3



informative and, thus, has a price impact. In effect, when the market observes that the blockholder

is buying shares, it anticipates stronger and more effective monitoring, hence higher future cash

flows. This, naturally boosts the stock price. On the other hand, the blockholder, anticipating his

price impact, may trade slowly to benefit from the value that he will create via stronger monitoring.

We start off by considering, as a benchmark, trading under symmetric information. In this

case, a positive ability shock triggers an immediate jump in the stock price, as the market antici-

pates more effective and intense monitoring. However, the blockholder responds by selling shares,

for diversification reasons. By reducing his stake, the blockholder weakens his own incentive to

“work.” Under symmetric information, the blockholder’s trading is characterized by Coasian dy-

namicsbecause the blockholder is unable to exploit his market power due to lack of commitment ,

as in DeMarzo and Urošević (2006).2 Hence, the blockholder sells shares towards a more diversified

portfolio. As his stake shrinks, the blockholder is less able to internalize the cash flow impact

of weaker monitoring, and this process continues over time until the blockholder portfolio is fully

diversified.

The introduction of asymmetric information qualitatively changes the dynamics of trading and

asset prices. In response to a positive ability shock, the blockholder now buys shares (given the

initial underpricing of the stock) and holds them while the shock persists. The Coase conjecture

no longer holds: due to signaling effects, the blockholder’s trading has a price impact; when the

blockholder buys shares, the market updates its beliefs about firm profitability upwards leading

to a stock price increase. In turn, this illiquidity introduces a wedge between the blockholder’s

marginal valuation and that of the market.

We find that under asymmetric information, the blockholder’s portfolio adjustments can be

quicker than under symmetric information. When private information is sufficiently persistent,

the anticipated price impact moderates the blockholder’s trading speed, thus providing an implicit

commitment device that induces the blockholder to retain his shares for longer. Surprisingly, when

ability shocks are transitory, the blockholder trades faster under asymmetric information, despite

the illiquidity he faces.

The presence of information asymmetry can have long-run consequences on the firm’s owner-

ship structure and its productivity. In particular, when there is a risk premium associated with the

blockholder’s private information, the higher cost of having the market absorb the (private informa-

2This lack of commitment was first studied by Coase (1972). The paradox asserts that a monopolist selling
durable goods (e.g., houses) effectively competes against his future sales. Anticipating this form of competition, the
monopolist would choose to charge a competitive price in the first place. The monopolist’s inability to commit to not
selling all his inventory, so to exploit his market power, would eliminate his monopoly rents, in a dynamic context. In
addition to the work by DeMarzo and Urošević (2006), such a commitment problem in models with large shareholders
has been studied by Kihlstrom (2000), and Gorton et al. (2014).
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tion) risk distorts risk allocation, and the blockholder holds a larger stake than under symmetric

information. In that case, information asymmetry brings about stronger monitoring and higher

firm productivity. Though information asymmetry often leads to greater cash flow volatility, under

plausible conditions, it yields a higher stock price in the long-run (on average). By contrast, when

the blockholder’s private information commands no risk premium, either because the market is risk

neutral or because (private information) risk can be diversified away, then asymmetric information

only has transitory effects on the firm’s ownership structure, but in the long-run, the blockholder’s

portfolio converges to full diversification, as under symmetric information.

The literature has examined the role of liquidity in facilitating blockholder activism, but the

analysis has focused on static settings. Two opposing arguments have been advanced: While

liquidity makes it easier for the blockholder to build his block (Coffee (1991)) thereby facilitating

blockholder monitoring, it, on the other hand, makes it easier for the blockholder to unwind his

position, thereby decreasing the duration of blockholder monitoring (Maug, 1998; Kyle and Vila,

1991; Back et al., 2018). It is thus unclear whether liquidity promotes activism or weakens it, as

the answer, in prior literature, seems determined by assumptions about the blockholder’s initial

stake. By considering a dynamic setting, we are able to answer this question. We find that under

information asymmetry, liquidity tends to be low. While, this may slow down the speed at which

the blockholder builds his stake, relative to the symmetric information case, it leads in the long-run

to a larger stake, hence stronger monitoring. In a nutshell: the illiquidity caused by information

asymmetry can be detrimental in the short-run but plays a favorable role in the long-run by inducing

higher blockholder monitoring (or activism).

We extend the model to incorporate unobservable liquidity shocks. In this case, the equilibrium

is not fully revealing as the market can’t tease apart whether the blockholder’s trading is motivated

by private information about the firm or his own liquidity needs. The market uses two signals to

learn about the firm’s fundamentals, the evolution of cash flows, and the blockholder’s trading

behavior. Private information determines a target for the blockholder stake. Given his price

impact, the blockholder adjusts his portfolio slowly towards his target stake. At the same time,

the blockholder begins to distort cash flows, by altering effort, to manipulate market beliefs and,

ultimately, the stock price. For example, when the blockholder position is below its target, so the

blockholder intends to buy shares, he reduces his effort to depress cash flows, which in turn leads to

a lower stock price. The incentive to distort effort is related to the Ratchet effect in the literature on

career concerns (Holmström, 1999). However, unlike in the career concerns literature, the incentive

to over and under provide effort is endogenous and jointly determined with the blockholder trading

strategy.

In addition, by introducing unobservable persistent liquidity shocks into a dynamic trading
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model with asymmetric information, our paper also makes a methodological contribution. Our

model cannot be solved using standard techniques because the market perfectly observes the trad-

ing rate, which is a linear combination of two mean reverting processes. Thus, conditional on the

observed trading rate, liquidity and ability shocks are collinear. Using techniques from the liter-

ature on singular filtering, we transform the original two dimensional filtering problem into a one

dimensional problem that can be analyzed using standard techniques. In the new one-dimensional

filtering problem, the market adjusts its beliefs based on the changes in the trading rate instead of

the level of the trading rate (as is the case in standard models, e.g. Kyle (1985)). This is natural

in our setting as the trading rate is driven by two mean reverting processes, so one needs to look

at the mean reversion in the trading rate to identify the driving shock. Because beliefs are update

based on changes in the trading rate, the impact that today’s order has on beliefs depends on

yesterday’s order, which means that the blockholder’s incentive to deviate from the equilibrium

trading strategy is affected by previous deviations. Thus, it is not enough to restrict attention

to local incentive compatibility constraints to construct an equilibrium, and we need to consider

the impact of global deviations. This problem of “double deviations” is similar to the one in the

literature on dynamic contracts and games with persistent private information that relies on the

“first order approach” (DeMarzo and Sannikov, 2016; He et al., 2017; Cisternas, 2017; Marinovic

and Varas, 2019). Following ideas from this literature, we solve for the equilibrium considering

local incentive compatibility conditions, and then verifying global optimality by constructing an

upper bound to the blockholder’s off-path continuation payoff.

Literature The most closely related papers are Huddart (1993), Admati et al. (1994) and De-

Marzo and Urošević (2006), who study the incentives of large shareholders to monitor a firm. They

emphasize the blockholder’s lack of commitment and free riding problem, and highlight the tension

between optimal risk-sharing and monitoring incentives, which require concentrated ownership.

Our model is based on DeMarzo and Urošević (2006). Our main contribution relative to DeMarzo

and Urošević (2006) is to allow for information asymmetry between the blockholder and small

investors.

Although blockholders may add value through monitoring, Admati et al. (1994) and DeMarzo

and Urošević (2006) show that large blocks are unstable because, in the absence of commitment,

a blockholder would tend to reduce his stake over time to decrease his risk exposure. One policy

implication of these models is that corporate governance could be improved if blockholders are

subsidized to hold large blocks.

In a static setting, Leland and Pyle (1977) shows that, in the presence of asymmetric informa-

tion, a risk-averse entrepreneur will retain ownership to signal that the firm value is high. This
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suggests that asymmetric information might provide an endogenous commitment device for the

blockholder to hold his stake for a longer period of time.

Our model features multiple equilibria. This arises in our model from the presence of feedback

effects (see e.g., Bond and Eraslan (2010); Bond et al. (2012) between the blockholder’s actions

and the market beliefs, similar to Edmans et al. (2015). Specifically, there is a complementarity

between the amount of effort the blockholder wants to exert at any given point, and the sensitivity

of the price to the blockholder’s stake (i.e., if the market believes that the blockholder will sell his

block quickly, the price becomes less sensitive to blockholder stake, and this in turn induces the

agent to trade quickly).

More broadly, our paper belongs to the corporate governance strand that looks at the real effect

of blockholders and activist investors. This literature is surveyed in Becht, Bolton, and Röell (2003)

and Edmans and Holderness (2017). Starting with Hirschman (1970), the literature on corporate

governance has looked at how investors can affect corporate decision by voice (direct intervention)

or exit (showing their discontent by selling their shares). Admati and Pfleiderer (2009) and Edmans

(2009) show that an investor can intervene in the corporation by exiting when they disagree with

the firm’s management. The key assumption in these models is that the manager’s compensation

is tied to the price of the company, so the manager is hurt when selling pressures bring the price

down.

Our paper also belongs to the literature studying the impact of liquidity on investor intervention.

A key issue in this literature is that, when the firm is under-performing, blockholder may have

incentives to sell (cut and run) instead of bearing the cost of interventions. For this reason, it has

been argued that market liquidity might harm corporate governance (Coffee, 1991). For example,

motivated by this idea, the European Union agreed to implement a transaction tax in September

2016. This trade-off between governance and liquidity has been formally analyzed by Kahn and

Winton (1998), Noe (2002) and Faure-Grimaud and Gromb (2004). A counterargument to the thesis

in (Coffee, 1991) is that liquidity might reduce the free riding problem identified by Grossman and

Hart (1980) and Shleifer and Vishny (1986). By facilitating the creation of a large block in the

first place, liquidity can actually strengthen the firm’s corporate governance. These argument is

formalized by Kyle and Vila (1991), in the contexts of takeovers, and Maug (1998) in the contexts

of investor activism.

Most of these models are static in nature, and thus silent about the effect of future trading,

identified by Admati et al. (1994) and DeMarzo and Urošević (2006). Our paper contributes to

the literature on dynamic trading under information asymmetry (see e.g., Bond and Zhong (2016);

Kyle (1985); Kyle et al. (2017)). Recently, Back et al. (2018) analyzed many of these issues in

a dynamic setting. They consider a setting similar to Kyle (1985) in which an informed trader
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has private information about his initial stock holdings, and can exert costly effort to increase

the firm value before it becomes known. Surprisingly, and in contrast to Kyle (1985), they find

that the relation between efficiency and liquidity is ambiguous and depends on model parameters.

Because liquidity and intervention are simultaneously determined, more noise trading can increase

the information asymmetry about the activist’s intentions and thus decrease liquidity. Unlike Back

et al. (2018), we consider a setting in which intervention is continuous (rather than one-off), the

block size is observable, and there is asymmetric information about the blockholder’s ability. Also

our setting allows for risk aversion, which introduces a trade-off between monitoring, which requires

large blocks, and diversification. Moreover, our setting with risk aversion allow us to explore the

asset pricing implications of activism.

Gomes (2000) also studies a reputation game, with two types of manager/owners, who differ

in terms of their cost of effort. In Gomes (2000) the manager effort is observable. He shows how

reputation effects moderate the insider’s incentive to expropriate minority shareholders. Unlike

Gomes, we allow for hidden effort and time-varying private information. Moreover, our main focus

is not the effect of reputation on managerial incentives but rather to show how price impact due to

asymmetric information can reduce the commitment problem referenced above and its asset pricing

implications.

Finally, there is a relatively small literature in asset pricing that looks at the asset pricing

implications of agency frictions in general equilibrium settings. The main lesson from this literature

is that, by distorting productive decisions, agency frictions affect the volatility of cash-flows and

the overall risk premium. For example, Gorton et al. (2014) considers a Lucas-tree economy, in

which the output is determined by the effort of a manager who’s compensation depends on output

and who can trade the shares of the asset. They show that depending on the risk aversion of the

manager, trading by the manager can lead to more or less volatile cash flows an risk premium.

Albuquerue and Wang (2008) study the effect of investor protection on welfare and asset pricing in

a general equilibrium model with production. They show that weaker investor protection increase

agency costs, which lead to over-investment, more volatile cash-flows and larger risk premium.

2 Model

We study the behavior of a large investor (henceforth, blockholder) who can both trade a firm’s

stock and make costly decisions that affect the firm’s cash flows.

There is a singly risky asset/firm. There is a continuum of small investors who trade but can’t

influence the firm’s cash flows. All agents in the economy maximize expected utility and have

CARA preferences. Hence, as DeMarzo and Urošević (2006) we can aggregate the competitive
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investors into a single, aggregate investor with risk aversion parameter γM .

Time t is continuous and the horizon is infinite. There is a single firm in unit supply with a

cumulative cash flow process (Dt)t≥0 evolving as

dDt = (µD + at)dt+ σDdB
D
t ,

where at is the blockholder’s action and (BD
t )t≥0 is a standard Brownian motion. The cash flow

dDt is publicly observable but at is not. The market thus faces a moral hazard problem. Without

loss of generality, we assume that the realized cash flows are paid to shareholders in each period,

and interpret dDt as the firm’s dividends (or cash flows).

We refer to at as effort but interpret it broadly as any action of the blockholder that affects the

firm’s cash flows. The blockholder’s effort produces thus an externality on the firm’s cash flows.

When at > 0, the externality is positive; that is blockholder effort increases the cash flow. We allow

at < 0, in which case at represents the blockholder’s rent extraction. We are agnostic as to the

source of the blockholder externality. In the case of an external investor, one can think of at as the

blockholder’s monitoring — which disciplines managers and mitigates agency conflicts— or as the

influence the blockholder exerts on the firm’s management (as in Admati et al. (1994)). Examples

of at include public criticism of management or launching a proxy fight, advising management on

strategy, figuring out how to vote on proxy contest launched by others or not taking private benefits

for himself. In the case of a CEO or the founder of a company, at can represent effort or a reduction

of private benefits that increases the productivity of the firm.

The blockholder privately bears the cost of effort.3 The small shareholders free ride on the

blockholder’s effort. The blockholder’s cost of effort is given by

Φ(at, ζt) = φa2t − ψζtat,

Hence, the cost of effort depends on two variables: effort at, and ability ζt.
4 Broadly, the term ψζtat

captures private benefits that the blockholder receives from his effort to influence the firm. Cross

sectional differences in ability and preferences are realistic: Cronqvist and Fahlenbrach (2008) find

significant blockholder fixed effects in investment, financial, and executive compensation policies.5

3Bill Ackman, a well known hedge fund activist, asserts “Shareholder activism is extremely time-consuming,
expensive and a drain on an investment firm’s resources.” See “For Activist Investors, a Wide Reporting Window”,
The New York Times, May 19, 2014.

4It is natural to think that blockholder ability depends on the blockholder’s holdings, X. The model does not
qualitatively change if the cost function includes a term −χaX, but to simplify the exposition we don’t include it.

5The Economist analyzed the 50 largest activist positions in America since 2009 and found that on average, profits,
capital investment, and R&D have risen. See “Shareholder activism Capitalism’s unlikely heroes”, The Economist,
February, 2015.
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Effort is unobservable to the market. Furthermore, the blockholder privately observes his ability

(ζt)t≥0. Ability is random but persistent. In particular, it evolves according to a mean reverting

process

dζt = −κζtdt+ σζdB
ζ
t ,

where (Bζ
t )t≥0 is a Brownian motion independent of (BD

t )t≥0. The speed of mean reversion is thus

captured by κ. When κ is small, ability shocks are highly persistent.

Ability (ζt)t≥0 is a stationary Gaussian process

E[ζt] = 0 and Cov[ζt, ζs] =
σ2ζ
2κ
e−κ|t−s|.

The variance of the stationary distribution of ζt is given by σ̄2ζ ≡ σ2ζ/2κ.

All agents are risk averse and have preferences with constant absolute risk aversion. Specifically,

the flow utility of a trader type i is represented by CARA utility function

ui(c) = − exp (−γic)

for i ∈ {L,M} where c is consumption and γi is the coefficient of risk aversion of a type i investor.

In this context γL/γM represents the market’s risk-bearing capacity.

The information structure is as follows. The blockholder observes the dividend dDt and his

ability ζt. Based on this information set, the blockholder chooses effort, consumption/savings ct

and stock holdings Xt, where Xt is the number of shares the blockholder holds at time t.

Competitive investors observe the dividend process Dt as well as the large shareholder’s or-

der flow qLt . Hence, the competitive investors information set is given by the filtration FM
t =

σ(Ds, q
L
s |s ≤ t), while the blockholder’s information set is given by the filtration FL

t = σ(Ds, q
L
s , ζs|s ≤

t). Throughout the paper, we use the notation E
M
t [·] ≡ E[·|FM

t ] and E
L
t [·] ≡ E[·|FL

t ], and denote

ζ̂t ≡ E
M
t [ζt].

Competitive investors choose a consumption cMt and order flow qMt strategy adapted to FM
t .

We denote the aggregate holdings of market makers at time t by Yt. Since the firm is in unit supply

the market clearing condition at time t is

Xt + Yt = 1,

Hence, the holdings Xt and Yt, represent the shareholder and competitive investors percentage of

ownership, respectively. We follow Kyle, Obizhaeva, and Wang (2017) and consider equilibria with

smooth trading in which the blockholder inventory Xt is an absolutely continuous process, so the
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market clearing condition requires that at any time t

qMt + qLt = 0.

Optimization Program Denote by Wt the savings of a small investor. Given a FM
t -adapted

price process pt, at any time t, the competitive investor chooses a FM
t -adapted strategy (cMt , q

M
t )t≥0

to solve the following problem

max
c,qM

E
M
t

[∫ ∞

0
e−r(s−t)uM (cs)ds

]

subject to

dWt = (rWt − ct − ptq
M
t + (µD + at)Yt)dt+ σDYtdB

D
t

dYt = qMt dt.

The second equation captures the market maker’s budget constraint. The market maker’s

savings grow at the interest rate r. The market makers consumes ct invests ptqt in additional

shares and receives dDt as dividends on their existing shares. Observe that because market makers

are a competitive fringe they take the price pt as given; in other words their order flow does not

have a price impact.

On the other hand, the blockholder chooses a FL
t -adapted strategy (cLt , q

M
t , at)t≥0 to solve the

following problem

max
c,qL,a

E
L
t

[∫ ∞

t
e−r(s−t)uL(cs)ds

]

subject to

dWt = (rWt − ct − Φ(at, ζt)− pt(q
L
t )q

L
t + (µD + at)Xt)dt+XtσDdB

D
t

dXt = qLt dt.

The blockholder chooses effort at, consumption ct, and an order flow qLt . The blockholder is

privately informed about ζt so, unlike the market, he does not need to form beliefs about ζt. Also,

the blockholder has market power, hence he takes into consideration the price impact of his order

flow qLt . In fact, his order flow affects the price for two reasons: because of competition and because

it conveys information about his ability ζt.

In summary, two things distinguish the problem of the blockholder from that of small investors.

First, the blockholder does not take the price as given. Second, the blockholder bears the cost of

effort Φ(at, ζt) (More generally, we can think of Φ(at, ζt) as capturing the cost of effort net of the
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blockholder’s private benefits).

Equilibrium definition An equilibrium is a price process pt and a profile (qLt , q
M
t , at) such that

qMt solves the small investors’ portfolio problem, (qLt , at) solves the blockholder’s problem, and the

market clearing condition qLt = −qMt is satisfied.

We consider stationary Markov perfect equilibria in which (pt, q
L
t , q

M
t , at) are affine functions of

the three natural state variables (Xt, ζt, ζ̂t) where

qLt = Q0 −QxXt +Qζζt

at = AxXt +Aζζt

pt = P0 + PxXt + Pζ ζ̂t.

Throughout the paper, we use boldface to denote the coefficient vectors (Q,A,P).

3 Competitive Investors’ Problem

Small investors choose their portfolios based on their beliefs about the blockholder’s ability ζt and

his trading strategy. In particular, given the conjectured strategy, and the blockholder’s inventory

Xt, the market makers can invert the order flow of the blockholder qL to infer the exact value of

the ability ζt. Hence, the evolution of the market makers’ belief is given by

dζ̂t = −κζ̂tdt+ σζdB
ζ
t .

As usual in Gaussian linear quadratic models with CARA preferences (e.g., see Vayanos andWoolley

(2013)), we conjecture and then verify that the value function takes the form

J(W,Y,X, ζ̂) = − exp
(

−rγM(W +H(Y,X, ζ̂))
)

/r,
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where the function H is the certainty equivalent of a market maker and satisfies the following HJB

equation:6

rH = max
q

(µD +AxX +Aζ ζ̂)Y − p(X, ζ̂)q − 1

2
rγM

(

Y 2σ2D + σ2ζH
2
ζ

)

qHy + (Q0 −QxX +Qζ ζ̂)Hx − κζ̂Hζ +
1

2
σ2ζHζζ (1)

Taking the first order condition for q we get

p(X, ζ̂) = Hy. (2)

This condition states that for the market maker to be willing to trade, the price must equal

the marginal impact of an additional share on the market maker’s certainty equivalent, given his

conjecture about ζt and the strategy that the blockholder is expected to follow in the future. The

market maker computes the firm value, given his belief ζ̂t by projecting the trading strategy that

the blockholder will adopt and the impact this will have on the firm’s future cash flows. The

certainty equivalent is given by the quadratic function

H(Y,X, ζ̂) = hyY + hyxXY + hyζY ζ̂ + hyyY
2,

where the coefficient are provided in Lemma A.1 in the appendix. Since the market clearing

condition requires X+Y = 1, the price is given by p(X, ζ̂) = Hy(1−X,X, ζ̂). Matching coefficients

we obtain the coefficients of the price function.

Lemma 1. Given coefficients (Q,A), the coefficients P of the price function are

P0 =
µD
r

+
AxQ0

r (r +Qx)
− γM

[

σ2D +
σ2ζ

(r + κ)2

(

Aζ +Ax
Qζ

r +Qx

)2
]

(3a)

Px =
Ax

r +Qx
+ γM

[

σ2D +
σ2ζ

(r + κ)2

(

Aζ +Ax
Qζ

r +Qx

)2
]

(3b)

Pζ =
1

r + κ

(

Aζ +Ax
Qζ

r +Qx

)

. (3c)

Observe that these conditions hold both when ζt is unobservable and when ζt is public informa-

tion. The price function is determined by competition among small investors: given their beliefs

6This equation is not formally an HJB equation but it is derived from the HJB equation due to the term
1

2
rγM

(

Y 2σ2

D + σ2

ζH
2

ζ

)

. That being said, hereafter, we refer to it as the HJB equation with some abuse of ter-
minology.
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about the state and the blockholder strategy, small investors break even for any order that the

blockholder may place. The price is sensitive to the stake of the blockholder, Xt, for two reasons:

first, the impact of the blockholder on the firm’s productivity depends on the blockholder stake.

Second, the larger the blockholder stake, the lesser risk the market absorbs, which lowers the risk

premium.

4 Benchmark: Symmetric Information

Before solving the blockholder’s problem and characterizing the equilibrium, we study the case when

ζt is observable using as a starting point the solution to the market makers’ problem characterized in

the previous section. As a special case, we provide the solution when the ability of the blockholder

is irrelevant ψ = 0, which corresponds to the setting in DeMarzo and Urošević (2006).

When ζt is observable the market does not need to form beliefs about ζt and, for that reason,

the price only depends on the holding Xt but the order flow qLt is irrelevant. As before, we consider

a linear equilibrium with the following structure:

qt = Qo0 −QoxXt +Qo
ζζt

at = AxXt +Aζζt

pt = P o0 + P oxXt + P o
ζ ζt.

The market makers’ problem was characterized in the previous section. The problem of the block-

holder is

max
c,q,a

E
L
t

[∫ ∞

t
e−r(s−t)uL(cs)ds

]

subject to

dWt = (rWt − ct − Φ(at, ζt)− p(Xt, ζt)qt + (µD + at)Xt)dt+XtσDdB
D
t

dXt = qtdt.

One can verify that the value function of the blockholder takes the form

V (W,X, ζ) = − exp (−rγL(W +Go(X, ζ))) /r,

14



where the certainty equivalent G satisfies the HJB equation:

rGo = max
q,a

(µD + a)X − φa2 + ψζa− p(X, ζ)q − 1

2
rγL

(

σ2DX
2 + σ2ζ (G

o
ζ)

2
)

+ qGox − κζGoζ +
1

2
σ2ζG

o
ζζ (4)

Taking the first order conditions, yields

a =
ψζ +X

2φ
(5a)

p (X, ζ) = Gox (5b)

Condition (5a) states that the blockholder effort is a linear function of the blockholder ability and

his holdings. This is intuitive: the blockholder exerts more effort when he is more productive.

Also, the blockholder exerts more effort when he owns a larger stake, since he internalizes more

the benefits of his effort. Put differently, the free riding problem is milder when the blockholder’s

stake is larger.

Condition 5b says that the price must equal the marginal value of a share to the blockholder.

Because of competition the price also equals the marginal value to a market maker, Hy. Hence, when

ability is observable, trading is characterized by Coasian dynamics: At each point, the blockholder

trades until his marginal valuation equals the price, despite having market power. Trade can be

smooth, but at any point the blockholder effectively trades at a price that equals his marginal

valuation, as predicted by the Coase conjecture.

As before, we conjecture and verify that the certainty equivalent is a quadratic function of X

and ζ. The coefficients are provided in Lemma A.2 in the appendix. There are two solutions to

the polynomial describing the equilibrium, which correspond to two different equilibria, but one of

them dominates the other in terms of the blockholder’s certainty equivalent.

The next step is to find expressions for the coefficients of the trading strategy, Q. We know

that P = GoX , which must coincide with the coefficients in Lemma 1. Matching coefficients, we

obtain a system of equations that allows to solve for the trading strategy coefficients, Q. We have

the following Proposition:
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Proposition 1. Let

ν+ ≡
(

r +

√

(r + 2κ)2 − 2
ψ2

φ
rγLσ2ζ

)−1

ν− ≡
(

r −
√

(r + 2κ)2 − 2
ψ2

φ
rγLσ

2
ζ

)−1

.

If
1

2rφ
> (γL + γM )

(

σ2D +
ψ2

φ2
ν2+σ

2
ζ

)

,

then there is a Markov Perfect Equilibrium with observable shocks such that the coefficients of the

blockholder trading strategy are

Qo0 =
r2γM

(

σ2D + ψ2

φ2
σ2ζν

2
+

)

(2φ)−1 − r (γL + γM )
(

σ2D + ψ2

φ2
ν2+σ

2
ζ

) (6a)

Qox =
r2φ (γL + γM )

(

σ2D + ψ2

φ2
ν2+σ

2
ζ

)

(2φ)−1 − r (γL + γM )
(

σ2D + ψ2

φ2
ν2+σ

2
ζ

) (6b)

Qoζ =
r
(

ψ2

φ2
(r + κ)ν2+ − ψ

2φ

)

(2φ)−1 − r (γL + γM )
(

σ2D + ψ2

φ2
ν2+σ

2
ζ

) , (6c)

If
1

2rφ
> (γL + γM )

(

σ2D +
ψ2

φ2
ν2−σ

2
ζ

)

,

there is a second equilibrium with coefficients given by (6a)-(6c) but ν− in place of ν+.

We show in the appendix, that the block-holder payoff is always higher in the first equilibrium.

Hence, hereafter we focus on the equilibrium with ν+ as our benchmark case. That being said, the

qualitative results presented below hold regardless of the equilibrium considered as a benchmark.

In particular, it can be verified that in either equilibrium Qoζ < 0. This means that a positive shock

to the blockholder’s ability induces the blockholder to sell shares. To understand this result, notice

that ζt could be interpreted as an endowment shock that increases the exposure of the blockholder

to the firm’s dividends, µD + at (Of course, it’s not merely an endowment shock since it also has

an impact on the firm’s cash flows)

Under CARA preferences, risk aversion induces the blockholder to sell shares in the face of a
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positive ability shock and buy otherwise. This means that the potential productivity benefits asso-

ciated with the blockholder holding a larger stake do not fully materialize because the blockholder

reduces his stake precisely when he is most effective. The lack of commitment on the part of the

blockholder explains this result.

In fact, the blockholder tends to hold a diversified portfolio, regardless of his ability to monitor

the firm. Indeed, the mean blockholder stake in steady state, X̄o
ss ≡ Qo0/Q

o
x, is

X̄o
ss =

γM
γL + γM

, (7)

which coincides with that in DeMarzo and Urošević (2006). The mean stake of the blockholder

depends only on relative risk aversions, but is independent of the intensity of moral hazard problem,

as measured by φ, which suggests that this case may entail very inefficient levels of effort. Indeed,

the blockholder thus holds a stake of the same size as that he would hold if he could not monitor

the firm (at=0). Of course, his inability to commit is behind this inefficiency.

As a special case, we recover the equilibrium when blockholder ability is constant, which corre-

sponds to the solution in DeMarzo and Urošević (2006). Setting ψ = 0, we obtain

Q0 =
r2γMσ

2
D

(2φ)−1 − r (γL + γM ) σ2D

Qx =
r2 (γL + γM ) σ2D

(2φ)−1 − r (γL + γM ) σ2D

Px =
φ−1 − 2rγLσ

2
D

r
.

Finally, we briefly discuss what happens when the condition Qox > 0 is violated. In DeMarzo

and Urošević (2006), when this condition is violated, the blockholder jumps immediately to the

competitive solution, withXt = X̄o
ss. The same is true in our case although the competitive solution

is not constant due to shocks to ζt. To illustrate this point, let Xo∗
t be the target holding defined

by the condition that qt = 0 so the blockholder does not trade away of his current position. By

definition, we get that

Xo∗
t ≡ X̄o

ss +
Qoζ
Qox

ζt,

and we can write the evolution equation for Xt as

dXo
t = Qx(X

o∗
t −Xo

t )dt.

If we consider the the first equilibrium in Proposition 1 we get that Qox and Qoζ diverge to infinity
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when the denominator of Qox becomes zero. However, the ratio Qoζ/Q
o
x converges to a finite negative

number. In the limit, the blockholder instantly adjust his position to the target and Xo
t = Xo∗

t .

In sum, if shocks are observable, the blockholder adjusts his holdings instantly in response to

a shock. This is a consequence of the Coasian dynamics highlighted by DeMarzo and Urošević

(2006). We will see that with asymmetric information, that is no longer the case. As we show in

the next section, the incentive to signal high or low ability leads the blockholder to refrain from

trading fast and generates an equilibrium with smooth trading.

Remark 1. Two aspects of the previous solution are worth noting. First, notice that the mean

stationary holdings when ψ = 0 is the same as the one when ψ > 0 and ζt is observable. Hence,

time-varying ability may only affect the average long-term stake under information asymmetry.

Second, even though in our continuous time formulation the price impact, Px, and long term stake

are the same as the one in DeMarzo and Urošević (2006), the rate of trade is higher. In fact, the

rate of trade in (DeMarzo and Urošević, 2006, Equation 24 in p. 797) is

Qx =
r2 (γL + γM )σ2D
(2φ)−1 − rγLσ2D

.

Both expressions coincide only if the market is risk neutral (γM = 0). The general lack of conver-

gence between the discrete time limit and the continuous time solution arises because in continuous

time the order flow does not increase the instantaneous risk exposure of the market (which depends

on the residual supply 1−Xt), so there is no instantaneous price impact. Consistent with this, the

rate of trade is higher than in the discrete time limit.

5 Asymmetric Information

We return to the general case in which the blockholder’s ability ζt is unobservable. This case poses

some challenges. To be able to value the firm shares, the market must infer the evolution of ζt

because the firm’s productivity is linked to ζt. The market may infer this based on the two signals

available, the firm’s cash flows, and the blockholder order flow. In turn, this inference problem

creates incentives for the blockholder to manipulate the market beliefs by distorting his trading.

Consider the blockholder’s problem. Since Xt and qt are observable, the market forms its belief

ζ̂t by inverting the blockholder’s trading strategy as follows:

ζ̂(qt,Xt) =
qt −Q0 +QxXt

Qζ
(8)
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Substituting ζ̂(qt,Xt) in the price function yields

p(Xt, ζ̂t) = P0 + PxX + Pζ ζ̂(qt,Xt), (9)

so the residual supply function faced by the blockholder can be written as

R(qt,Xt) = R0 +RxXt +Rqqt, (10)

where the coefficients satisfy

R0 = P0 −
Pζ
Qζ

Q0,

Rx = Px +
Pζ
Qζ

Qx,

Rq =
Pζ
Qζ

.

This function captures the price facing the blockholder as a function of his order flow. Unlike the

case with observable ability, the price that the blockholder must pay for a share does not depend

on ζt directly, but only indirectly via the order flow. In general, the more relevant the blockholder

ability, as measured by ψ, the more sensitive is the price to the order flow qLt . This means that

the liquidity faced by the blockholder decreases when ζt is unobservable, particularly so when his

ability is more relevant to the firm.

We provide the blockholder’s problem under information asymmetry as:

max
c,qL,a

E
L
t

[∫ ∞

t
e−r(s−t)uL(cs)ds

]

subject to

dWt = (rWt − ct − Φ(at, ζt)−R(Xt, q
L
t )q

L
t + (µD + at)Xt)dt+XtσDdB

D
t

dXt = qLt dt

The blockholder faces a similar problem as in the observable case except that, in choosing his

trading strategy, he must take into account the signaling effect of his order flow; namely its price

effect. As with the market makers, we conjecture that the value function of the blockholder takes

the form

V (W,X, ζ) = − exp (−rγL(W +G(X, ζ))) /r,
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where the blockholder’s certainty equivalent G satisfies the following HJB equation:

rG = max
q,a

(µD + a)X − φa2 + ψζa−R(X, q)q − 1

2
rγL

(

σ2DX
2 + σ2ζG

2
ζ

)

+ qGx − κζGζ +
1

2
σ2ζGζζ (11)

Taking the first order conditions, yields the effort and trading strategy of the blockholder:

a =
ψζ +X

2φ

q =
Gx −R0 −RxX

2Rq
.

Two observations are in order. First, the effort strategy is myopic. This is due to the fact that

cash flows are not informative, conditional on the order flow qL. In section 6, we generalize the

model to a setting where the order flow is not fully revealing, and the blockholder distorts cash

flows via effort to affect his reputation and, ultimately, the stock price.

Second, while the stock price is always equal to the market’s marginal valuation (P = Hy),

there is a wedge between the blockholder’s marginal valuation Gx and the stock price R(q,X).

This wedge is given by the price effect of the blockholder’s order flow, Rq. Indeed, we can rewrite

the first order condition above as Gx−R(X, q) = Rq(X, q)q. Using the fact that R(Xt, qt(Xt, ζt)) =

Pt(Xt, ζt) = Hy(1−Xt,Xt, ζt) we get

qt =
Gx(Xt, ζt)−Hy(1−Xt,Xt, ζt)

Rq
.

In contrast to the observable case —in which the blockholder trades at a competitive price— the

presence of private information mitigates the blockholder’s commitment problem, and moderates

his tendency to trade fast, effectively introducing a wedge between the price and the marginal

valuation of the blockholder. The lower the market’s liquidity, the larger the gap between his

marginal valuation and the price he faces.

The second order condition is satisfied if Rq > 0, that is, if the residual supply has a positive

slope. The next result characterizes the blockholder’s certainty equivalent as a quadratic function

of the two state variables ζt and Xt.

Lemma 2. The large shareholder’s certainty equivalent is given by

G(ζ,X) = g0 + gxX + gζζ + gxxX
2 + gζζζ

2 + gxζXζ,
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where the coefficients are given by the solution to equations (A.9a) - (A.9f).

We can then use the first order conditions to obtain the coefficients Q as given by

Q0 =
gx −R0

2Rq

Qx =
Rx − 2gxx

2Rq

Qζ =
gxζ
2Rq

Using these coefficients together with the equations for R0 and Rq, we can write the coefficients

of the price function in terms of Q0 and Qζ . At the same time, from the solution to the market

maker problem the price coefficients also satisfy Equation (3a)-(3c). In equilibrium, both sets of

coefficients must coincide. We can derive a system of equations for the coefficients by combining

these two equations, and the equations for the coefficients g in Lemma 2.

Proposition 2. There exists a linear Markov perfect Bayesian equilibrium with smooth trading if

the system of equations (A.20)-(A.21) has a positive solution. Given a positive solution (Rq, Qx),

the coefficient Qζ is given by

Qζ =
ψ

2(r + κ)φRq − (r +Qx)−1

and the long run mean holding is

X̄ss =
γM

ω(Rq, Qx)γL + γM
,

where ω(Rq, Qx) is given by equation (A.25) in the appendix.

To obtain the equilibrium, we need to solve a system of two polynomial equations. Similar to

previous models of trading (Vayanos, 1999, 2001) the main difficulty in finding close form solutions

comes from the risk premium associated to the volatility of ζ. To develop intuition, we will consider

two limits which can be solved in closed form. First, we consider the case in which both σ2ζ and κ

tend to zero at rate such the limit of σ2ζ/2κ → σ̄2ζ is strictly positive. This captures a situation when

ability shocks are small but highly persistent, so the long-run distribution of ability has positive

variance. In the second limit, we consider the case in which σ2ζ goes to zero but κ remains fixed,

in which case the limit is deterministic. As we discuss later, this limit is equivalent to the case in

which we take γL, γM to zero and σD to infinity at a rate such γLσ
2
D and γMσ

2
D are bounded above
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zero. This limit captures the case in which the shocks to ζt can be diversified so only the dividend

shocks dBD
t command a risk premium.

The next proposition present the case σ2ζ → 0 but κ > 0, so the stationary distribution is

such σ̄2ζ = 0. In this case, the limit blockholder stake is the same in both the observable and

unobservable case. However, the trajectory is different due to the price impact generated by

asymmetric information.

Proposition 3. Consider the small noise limit σ2ζ → 0, κ > 0. In the limit, there is a linear

Markov perfect Bayesian equilibrium with coefficients

Rq =

√

η2 + 2r(r + 3κ)α2 + η

rφ(r + 3κ)(2r + 3κ)

Qx =

√

η2 + 2r(r + 3κ)α2 − η

2α

Qζ =
1

2

ψ(2r + 3κ)Qx
√

η2 + 2r(r + 3κ)α2 − η − 2κα
,

where

α ≡ rφ(γL + γM )σ2D

η ≡ 2r + 3κ+ 2(r − 3κ)α

4
.

The coefficient of the trading strategy Qζ is positive if and only if

φ > φ ≡ κ(2r + 3κ)

2r(r + κ)2 (γL + γM ) σ2D
.

In this equilibrium, the steady-state stock-holding of the blockholder is

X̄ss =
γM

γL + γM
.

It is useful to note that the limit case in Proposition 3 can be interpreted as the case when the

shock ζt can be fully diversified. The equilibrium in Proposition 3 also corresponds to the limit

when γǫL = ǫγL, γ
ǫ
M = ǫγM , and σǫD = ǫ−1/2σD and ǫ goes to zero. This corresponds to the case in

which only the dividend shocks, dBD
t , are priced while there is no risk premium for the shocks to

ζt. That is, the shocks to ζt are idiosyncratic.7 For this reason, sometimes we refer to the previous

limit as the limit with idiosyncratic shocks.

7The equilibrium condition depends on σ2

D and σ2

ζ only through the terms γLσ
2

D, γMσ
2

D and γLσ
2

ζ , γMσ
2

ζ .
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The next proposition examines the limit in which there is a risk premium associated with ζt.

In this case, the limit of X̄ss differs from that in the observable case. In particular we find that

asymmetric information leads to larger blockholder stake in the long run.

Proposition 4. Consider the small noise limit κ, σ2ζ → 0, σ2ζ/2κ → σ̄2ζ > 0. In the limit, there is

a linear Markov perfect Bayesian equilibrium with coefficients

Rq =

√

(α+ 1)2 + 8α2 + α+ 1

4r2φ

Qx =

√

(α+ 1)2 + 8α2 − α− 1

4φ (γL + γM )σ2D

Qζ =
ψ

2φ (γL + γM )σ2D
,

where α ≡ rφ(γL + γM )σ2D. The steady-state mean stock-holding of the blockholder is

X̄ss =
γM

ω0γL + γM
,

where

ω0 ≡ 1−
(γL + γM ) σ̄2ζ

γLσ̄2ζ +
1
2

(

γLσ̄2ζ +
φ
ψ2

)(

√

(α+ 1)2 + 8α2 − α− 1
) ∈ (−γM/γL, 1] ,

so X̄ss > γM/(γL + γM ).

The market’s liquidity R−1
q decreases in risk aversion and the volatility of cash flows σ2D but

increases in the cost of effort, φ.

Proposition 4 reveals that under asymmetric information the cost of effort φ does affect the

stationary blockholder stake, contrary to the case under symmetric information. In the asymmetric

information case, the more efficient the blockholder (lower φ), the less liquid the market (higher Rq)

and the larger the stake the blockholder holds in the long-run (higher X̄ss). Indeed, Proposition

4 shows that, in steady state, the blockholder’s stake is larger than under symmetric information,

more so the larger is the volatility of ability shocks (σ2ζ ). This effect holds as long as there is a risk

premium associated with variation in blockholder ability. However, moral hazard is not strictly

required: the blockholder holds a large stake, even in the absence of moral hazard, that is even if

there is no effort but the blockholder has private information about the cash flow evolution.8

The mechanism that leads the blockholder to hold more shares for signaling purposes in settings

such as Leland and Pyle (1977) is different from ours. Leland and Pyle (1977) is static, as if

8For example, we have verified the result holds when the cash flow follows dDt = (µ + ζt)dt + σdBt where ζt is
privately observed by the blockholder.
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the blockholder had commitment power. Over time, the blockholder would have incentives to

continue selling, and their analysis suggests that signaling effects would delay the speed at which

the blockholder sells his shares, but it does not speak to the size of the stake the blockholder will

hold in the long-run. Moreover, contrary to the static intuition, we show that, under information

asymmetry, the blockholder may trade a faster rate in response to changes in his private information

despite his price impact.

As previously mentioned, the limit in Proposition 4 is such that long-run uncertainty is positive,

even though the individual shocks are very small. This happens because shocks are highly persistent,

so σ̄2ζ > 0. Long-run asymmetric information explains why X̄ss is higher than in the absence of

asymmetric information. A necessary condition for the asymmetric information to affect X̄ss is

that the ability shocks ζt have an effect on the risk premium required by the market to absorb the

residual shares 1− X̄ss.

Finally, we look at the effect that asymmetric information has on the stock price.

Corollary 1. Consider the limit equilibrium in Propositions 3 and 4. Suppose that 1 > 2rφ(γL +

γM )σ2D so an equilibrium with smooth trading exists in the observable case, and let P o and P u be

the coefficients in the observable and unobservable case, respectively. Then,

1. There is κ† such that permanent price impact is higher with asymmetric information P ux > P ox

if and only if κ ≤ κ†.

2. Impact of ability shocks is higher with asymmetric information, that is P uζ > P oζ if and only

if φ ≥ φ where φ is defined in Proposition 3.

This corollary studies the impact of liquidity, generated by asymmetric information, on stock

prices. Previous literature looking at the impact of liquidity on blockholder’s intervention has

suggested that illiquid markets are beneficial because they encourage blockholder monitoring. This

idea is consistent with the intuition following the literature on signaling (Leland and Pyle, 1977).

However, Corollary 1 shows that this is only if the case if ability shocks are sufficiently persistent.

Later on, in section 5.2.2, we show that if shocks are highly transitory, so private information is

short lived, the blockholder trades more aggressively under information asymmetry, which reduces

the impact of blockholding on prices. Similarly, ability shocks have a larger impact on prices if the

marginal cost of effort is sufficiently high.

5.1 Multiplicity

The feedback between stock prices and firm productivity may lead to multiple equilibria. This

result is reminiscent of the feedback effects surveyed by Bond, Edmans, and Goldstein (2012).
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Figure 2: Equilibrium Multiplicity.

If we look at the plot of Qζ in Figure 2, we see that for low ψ there are three equilibria, and

two of them feature a negative coefficient Qζ , which is consistent with the symmetric information

case. One of these equilibria yields Qζ = 0 as ψ goes to zero, thus converging to the unique Markov

equilibrium of the symmetric information case. By contrast, the bottom equilibrium, converges

to a strictly negative coefficient Qζ , which represents a situation in which trading depends on

the blockholder’s ability despite ζt is payoff irrelevant; hence in the limit, this is not a Markov

equilibrium. The upper branch of the correspondence, depicts an equilibrium with positive Qζ .

This is the only equilibrium that survives when ψ is large, which is the case in which we focus.

Similarly, figure 2(b) shows the equilibrium correspondence for the limit considered in Proposi-

tion 4. This figure shows the equilibrium correspondence for σǫζ =
√
ǫσζ and κǫ = ǫκ as ǫ goes to

zero. For ǫ close to zero, the equilibrium is unique, and coincides with the equilibrium in Proposi-

tion 4. However, for larger values of ǫ there are three equilibria, two of them with negative values

of Qζ and one in which Qζ is positive. The latter equilibrium is the one featuring larger ownership

by the blockholder in the long-run (i.e. X̄ss).
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5.2 Dynamics and Steady State

In this section we study the effect of information asymmetry on the dynamics of block-holding,

firm productivity and stock prices. As an intermediate step, we analyze the stationary distribution

of the two state variables, Xt and ζt.

The blockholder’s stake is determined by the solution to a linear system of stochastic differential

equations for (Xt, ζt), and the solution for Xt is given by (see, e.g. Evans (2012)):

Xt = X̄ss + e−Qxt
(

X0 − X̄ss

)

+

(

e−κt − e−Qxt
)

Qζ

Qx − κ
ζ0

+

∫ t

0

Qζ
(

e−κ(t−s) − e−Qx(t−s)
)

Qx − κ
σζdB

ζ
s . (12)

From this equation, we arrive at9

E[Xt] = X̄ss + e−Qxt
(

X0 − X̄ss

)

+

(

e−κt − e−Qxt
)

Qζ

Qx − κ
ζ0

V[Xt] =
Q2
ζσ

2
ζ

(κ−Qx)2

[

1− e−2Qxt

2Qx
+

1− e−2κt

2κ
− 2

(

1− e−(κ+Qx)t
)

κ+Qx

]

Cov[Xt, ζt] =
Qζσ

2
ζ

(κ−Qx)

[

(

1− e−(κ+Qx)t
)

κ+Qx
− 1− e−2κt

2κ

]

.

Taking the limit as t→ ∞ we find that (Xt, ζt) converges to the following stationary distribution

N





(

X̄ss

0

)

,





σ2
ζ
Q2

ζ

2κQx(κ+Qx)

σ2
ζ
Qζ

2κ(κ+Qx)
σ2
ζ
Qζ

2κ(κ+Qx)

σ2
ζ

2κ







 . (13)

5.2.1 Steady State

Before characterizing the equilibrium dynamics, we study the stationary distribution of the block-

holder’s stake. The next proposition provides comparative statics for the stationary distribution of

holdings and prices, in the small noise limit in Proposition 4 (i.e. limσ2ζ/2κ = σ̄2ζ > 0).

Proposition 5. In the small noise limit equilibrium characterized in Proposition 4:

1. The mean steady-state block X̄ss is increasing in ψ and σ̄2ζ and decreasing in φ and σ2D.

9Remember that X̄ss ≡ Q0/Qx.
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2. The mean steady-state price, p̄ss = P0 + PxX̄ss, is increasing in ψ and σ̄2ζ , and decreasing in

φ and σ2D.

3. The stationary variance of Xt is

V[Xt] =

(

2σ̄ζψ
√

(α+ 1)2 + 8α2 − α− 1

)2

,

α ≡ rφ(γL + γM )σ2D. Hence, the long run variance of Xt is:

(a) Increasing in ψ and σ̄ζ .

(b) Decreasing in φ, γL + γM and σ2D.

As mentioned above, under information asymmetry, the blockholder’s long-run stake is larger

than under symmetric information. This leads to stronger monitoring and higher firm productivity,

and, ultimately, higher cash flows. On the other hand, cash flows are also more volatile under

asymmetric information. Hence, the long-run effect of asymmetric information on the expected

stock-price is ambiguous and depends on the blockholder’s risk aversion, γL. In effect, when the

blockholder risk aversion is low, the productivity effect dominates the risk effect, leading to a higher

stock price. However, when the blockholder’s risk aversion is relatively high, the risk premium effect

dominates the productivity effect, thereby leading to a lower stock price.

We had found that, under symmetric information, the blockholder stake is independent of the

blockholder monitoring productivity, as captured by his cost of effort φ. By contrast, Proposition

5 shows that the intuitive relation between the the blockholder productivity and his holdings is

recovered under asymmetric information: in effect, a lower cost of effort leads the blockholder to

increase his holdings.

5.2.2 Equilibrium Dynamics

Information asymmetry not only distorts the long-run ownership structure, but it also affects the

equilibrium dynamics. Here, we address the following question: how quickly does the blockholder

builds his stake (or unwinds it) under information asymmetry vis-a-vis symmetric information.

Intuitively, one would think that asymmetric information slows down the blockholder trading,

due to price impact considerations. Below we show that this relationship is more subtle: under some

conditions, the blockholder trades faster, towards the steady state, under asymmetric information,

despite the lower liquidity caused by asymmetric information.

Two cases must be considered depending on whether the private information risk, ζt, is priced in

equilibrium. First, we study the case when the private information risk is diversifiable. Specifically,
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the next proposition studies the dynamics of the small noise limit of Proposition 3, when the private

information is diversifiable.

Proposition 6. Consider the small noise limit equilibrium in Proposition 3 (that is, σ2ζ → 0 and

κ > 0, or the limit with idiosyncratic shocks). Suppose that

1

2φ
> r(γL + γM )σ2D,

so an equilibrium with smooth trading exists in the observable case, and consider the case where

ζ0 = 0. Let E[Xu
t ] and E[Xo

t ] be the expected path of ownership in the unobservable and observable

case, respectively. Then,

• There is κ† such that asymmetric information reduces speed of adjustment, that is Qux < Qox

if and only if κ < κ†. If φ ≤ 1/2 then κ† = ∞ and Qux is always less than Qox.

• If κ < κ†, where κ† is defined in equation (A.31), then:

1. if X0 > X̄ss then E[Xu
t ] > E[Xo

t ], E[a
u
t ] > E[aot ] for all t > 0, and

2. if X0 < X̄ss then E[Xu
t ] < E[Xo

t ], E[a
u
t ] < E[aot ] for all t > 0.

• If κ > κ†, then:

1. if X0 > X̄ss then E[Xu
t ] < E[Xo

t ], E[a
u
t ] < E[aot ] for all t > 0, and

2. if X0 < X̄ss then E[Xu
t ] > E[Xo

t ], E[a
u
t ] > E[aot ] for all t > 0.

This result demonstrates that the notion that information asymmetry increases the duration

of the blockholder stake via lower liquidity is true only if the private information is sufficiently

persistent. However, when the private information is rather transitory, the blockholder trades

more aggressively (i.e., faster) than under symmetric information, to take advantage of his private

information (nonetheless, he is not able to do so because in equilibrium his trading pattern reveals

his information).

The previous pattern changes when private information entails a risk-premium, as in the limit

studied in Proposition 4. We have shown that, in the long-run, the blockholder’s stake is higher

under asymmetric information. On the other hand, the blockholder trading is always slower under

asymmetric information (Qux ≤ Qox). In summary, though the blockholder holds a larger stake in the

long-run, he takes longer to build it under asymmetric information. Hence, whether information

asymmetry boosts monitoring or not, depends on the importance of the long vs short-run effects.
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Proposition 7. Consider the small noise limit equilibrium in Proposition 4 (that is, σ2ζ/2κ →
σ̄2ζ > 0), and suppose that

1

2φ
> r(γL + γM )σ2D,

so an equilibrium with smooth trading exists in the observable case, and that ζ0 = 0 and X0 ≥ 0.

There is z† and x†0 such that

• If ψ2σ̄2ζ < z† and X0 < x†0, then there is 0 < t∗ <∞ such that:

1. For t < t∗, the expected blockholding and effort are lower under asymmetric information,

that is E[Xu
t ] < E[Xo

t ] and E[aut ] < E[aot ].

2. For t > t∗, the expected blockholding and effort are higher with asymmetric information,

that is E[Xu
t ] > E[Xo

t ] and E[aut ] > E[aot ].

• If ψ2σ̄2ζ ≥ z† or X0 ≥ x†0, then, for all t > 0, E[Xu
t ] > E[Xo

t ] and E[aut ] > E[aot ].

In a nutshell, this result indicates that under asymmetric information the expected blockholder’s

stake single crosses from below (at some point in time) the blockholder’s stake under asymmetric

information (whenX0 = 0). This result speaks to the relationship between liquidity and blockholder

monitoring. Some authors have suggested that illiquidity can be beneficial because it reduces the

incentives to “cut an run” (Coffee, 1991). The counterargument is that illiquidity is costly because

it deters investors from acquiring a large block in the first place (Maug, 1998; Kyle and Vila, 1991;

Back et al., 2018). Proposition 7 reconciles these views by showing that illiquidity might indeed

reduce the size of the block in the short-term (blocks take longer time to build) but, on the upside,

it leads to a larger block in the long-run. The overall impact of information asymmetry depends

on which effect dominates, the short- or long-run effect.

6 Liquidity Shocks: Beyond a Fully Revealing Equilibrium

In our baseline model, the blockholder’s order flow fully reveals his ability ζt. Hence, in equilibrium,

there is no asymmetry of information between small investors and the blockholder. Furthermore,

conditional on the blockholder’s order flow, the firm’s cash flow does not provide any additional

information to the market. This implies that the blockholder effort choice at is myopic: it only

depends on the blockholder’s stake Xt and his ability ζt but not on his reputation ζ̂t.

In this section, we extend the baseline model and consider a situation in which trading is

not fully revealing and, hence, cash flows are informative. Formally, we add a second source

of information asymmetry: we assume that the blockholder is subject to unobservable liquidity
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(a) Case with X0 = 0
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(b) Case with X0 = 1

Figure 3: Expected path of Xt with and without asymmetric information. Parameters: γM = 0.5, γL = 2,
σD = 1, σζ = 0.05, φ = 1.2, ψ = 1, r = 0.15, µD = 1. In all cases we have taken ζ0 = 0 (that is, equal to its
long-run mean). The solid line corresponds to the case with κ = 0.1 while the dotted line corresponds to the
case with κ = 1.

shocks, bt, that reduce his incentive to hold shares. These liquidity shocks are orthogonal to

the firm’s fundamentals. Thus, similar to Manzano and Vives (2011), Hatchondo, Krusell, and

Schneider (2014) and Dávila and Parlatore (2017), we consider a setting in which trading is noisy

due to the presence of unobservable liquidity shocks rather than noise trading.

Liquidity shocks affect future trading needs and, due to moral hazard, also affect stock prices

in a way that is qualitatively different from noise trading. We depart from traditional models with

noise traders for two reasons. First, in practice the blockholder stake is largely observable (albeit

with some delay). Second, in our setting, a model with liquidity shocks is more tractable because

it requires fewer state variables to characterize the equilibrium.10

We assume that the liquidity shocks are privately observed by the blockholder and follow the

following Ornstein-Uhlenbeck process:

dbt = −λbtdt+ σbdB
b
t ,

where λ captures the persistence of liquidity shocks. In turn, the blockholder’s wealth process is

10Because competitive investors (that is market makers) are risk averse, we cannot model noisy supply as the
increments of a Brownian motion as in the traditional Kyle model. In continuous time, this implies that noise traders
cannot be i.i.d, which means that, in addition to keep track of Xt, ζt and ζ̂t, we also need to keep track of X̂t, the
current noisy supply, and the market beliefs about the current noisy supply
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given by

dWt = (rWt − ct −Rt(qt)qt − Φ(at, ζt) + (µD + at − δbt)Xt)dt+XtσDdB
D
t .

The parameter δ captures the exposure of the blockholder to the liquidity shock. This specifi-

cation nests the baseline model when δ = 0.

Denoting the market beliefs by b̂t = E[bt|(Ds, q
L
s )s≤t], ζ̂t = E[ζt|(Ds, q

L
s )s≤t], then a linear

Markov equilibrium is given by an affine function of five variables (Xt, ζt, bt, ζ̂t, b̂t). As will become

clear later, due to the persistence of the liquidity shock bt, one needs to consider the impact of

deviations from the equilibrium trading rate qLt , which we denote by ∆t.

In the sequel, we consider a linear equilibrium, which is characterized by the following strategies:

qLt = Q0 −QxXt +Qζζt +Qbbt +Qb̂b̂t (14a)

at = A0 +AxXt +Aζζt +Abbt +Ab̂b̂t (14b)

pt = P0 + PxXt + Pζ ζ̂t + Pb̂b̂t (14c)

R(Xt, b̂t, qt) = R0 +RxXt +Rb̂b̂t +Rqqt (14d)

Notice that our conjectured equilibrium strategies qLt and at depend on b̂t alone but not ζ̂t. This

holds without loss because, as we show below, the belief ζ̂t is uniquely determined by qLt and b̂t.

To pin down the equilibrium, we take the following steps. First, we derive the market’s beliefs

given the conjectured equilibrium by solving for the market’s filtering problem. Next we solve the

small investor portfolio problem and derive the residual supply faced by the blockholder. Finally,

we solve the blockholder’s optimization problem.

6.1 Learning

Because the market perfectly observes the order flow qLt , the variable

It ≡
qLt −Q0 +QxXt −Qb̂b̂t

Qζ
= ζt +

Qb
Qζ

bt, (15)

is informationally equivalent to the blockholder’s order flow qLt . From the market perspective, the

order flow is thus a noisy signal of ability ζt because it is also affected by liquidity shocks bt. Hence,

the market cannot perfectly disentangle the two drivers of blockholder trading, ability and liquidity

needs.

The market’s filtering problem is non-standard. Unlike in standard Kalman filtering problems,

the market observes a linear combination of ζt and bt without any noise, which means that the
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covariance matrix of the conditional distribution of (ζt, bt) is singular, so we cannot use standard

filtering techniques. Technically, this corresponds to a singular filtering problem (Xiong, 2008).11

The key to solving this filtering problem is to transform the original two-dimensional filtering

problem for (ζt, bt) into a single dimensional filtering problem for bt. Then, once we have determined

the belief b̂t, we solve for ζ̂t using equation (15), specifically, given It and b̂t we have that

ζ̂t = It −
Qb
Qζ

b̂t.

On some level, this problem is similar to how the market forms belief ζ̂t when the order flow is fully

revealing, except that the intercept of the residual supply is time varying and determined by b̂t.

If we differentiate It, and use equation (15) to eliminate ζt, we get the following SDE for It

dIt = −
(

κIt + (λ− κ)
Qb
Qζ

bt

)

dt+ σζdB
ζ
t +

Qb
Qζ

σbdB
b
t . (16)

Similarly, substituting the conjectured equilibrium effort, and using equation (15) to substitute ζt,

we find that the dividend process follows

dDt =

(

µD +A0 +AxXt +AζIt −Aζ
Qb
Qζ

bt +Abbt +Ab̂b̂t

)

dt+ σDdB
D
t . (17)

The key step in this derivation is to use (15) to eliminate ζt from equations (16) and (17). This

allows us to transform our original singular filtering problem for (ζt, bt) into a standard filtering

problem for bt alone in which the information consists of two signals Dt and It.

Now, we can use the Kalman-Bucy formula to get the market’s belief updating

db̂t = −λb̂tdt+ βq

(

σζdB̃
ζ
t +

Qb
Qζ

σbdB̃
b
t

)

+ βDσDdB̃
D
t , (18)

where (B̃ζ
t , B̃

b
t , B̃

D
t ) are Brownian motions under the filtration generated by (qt,Dt)t≥0. In a sta-

tionary linear equilibrium, the covariance matrix of (b̂t, ζ̂t) is constant.

Because we only need to keep track of b̂t, this amounts to looking for the stationary solution

of the differential equation for the conditional variance of bt, which we denote by σ2
b̂
≡ V[bt|Fq,D

t ].

Given equation (18), we can use equations (15) and (16) to derive a stochastic differential equation

for ζ̂t. In the appendix, we show that the evolution of the vector (ζ̂t, b̂t) is given by the following

11More generally, this is a filtering problem with Ornstein-Uhlenbeck noise. The theory of filtering for general
Gaussian process is developed in Kunita (1993). The specific case with Ornstein-Uhlenbeck noise is developed in
detail in Liu and Xiong (2010).
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lemma.

Lemma 3. ζ̂t and b̂t satisfy the following stochastic differential equations

db̂t = −λb̂tdt+ βq

(

σζdB̃
ζ
t +

Qb
Qζ

σbdB̃
b
t

)

+ βDσDdB̃
D
t (19a)

dζ̂t = −κζ̂tdt+
(

1− βq
Qb
Qζ

)(

σζdB̃
ζ
t + σb

Qb
Qζ

dB̃b
t

)

− βD
Qb
Qζ

σDdB̃
D
t , (19b)

dB̃ζ
t = σ−1

ζ (dζt + κζ̂tdt)

dB̃b
t = σ−1

b (dbt + λb̂dt)

dB̃D
t = σ−1

D (dDt − (µD + Et(at))dt)

where

βq =
σ2b + (κ− λ)σ2

b̂
(

Qb

Qζ

)2
σ2b + σ2ζ

Qb
Qζ

βD =
σ2
b̂

σ2D

(

Ab −Aζ
Qb
Qζ

)

and

0 = −2λσ2
b̂
+ σ2b −







(

σ2b + (κ− λ)σ2
b̂

)2

σ2ζ +
(

Qb

Qζ

)2
σ2b

(

Qb
Qζ

)2

+
σ4
b̂

σ2D

(

Ab −Aζ
Qb
Qζ

)2






. (20)

The innovation processes (B̃ζ
t , B̃

b
t , B̃

D
t ) are standard Brownian motions with respect to the filtration

(FM
t )t≥0.

The sensitivity of beliefs to order-flow surprises or dividend surprises depend on how blockholder

trading and effort react to liquidity and ability shocks, and the speed of mean reversion of these

variables. For example, if the blockholder’s order flow is increasing in both bt and ζt (Qζ and Qb

are positive), then market beliefs about liquidity shock (b̂t) increase after positive trading surprises.

This means that the market attributes part of the increase in blockholder stake to liquidity shocks.

The impact of unexpected trading on reputation ζ̂t depends on how sensitive is trading to ability

shocks —relative to liquidity shocks. The reaction of market beliefs to unexpected dividend shocks

depends on the magnitude of Ab/Aζ relative to Qb/Qζ .

The last step before analyzing the blockholder’s optimization problem is to analyze the evolution

of market beliefs b̂t given the blockholder’s information set and arbitrary effort and trading strategies
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(ãt, q̃t), which might differ from the equilibrium conjecture in (14a) and (14b). In other words, we

study how deviations from the equilibrium affect market beliefs.

Lemma 4. Suppose the market believes that the blockholder strategy is given by equation (14a) and

(14b) but the blockholder follows the strategy (q̃t, ãt), where q̃t = qt + ∆t. Given the blochkolder’s

information, the market belief b̂t follows the following stochastic differential equation

db̂t =
(

µb̂(Xt, bt, b̂t, ζt,∆t) + βDãt

)

dt +
βq
Qζ

d∆t + βqσζdB
ζ
t + βq

Qb
Qζ

σbdB
b
t + βDσDdB

D
t

where

µb̂(Xt, bt, b̂t, ζt,∆t) = B0 + BxXt + Bbbt − Bb̂b̂t + Bζζt + B∆∆t

and (B0,Bx,Bb,Bb̂,Bζ ,B∆) are coefficients provided in (B.4)-(B.6).

6.2 Optimal Strategy and Equilibrium

Given the characterization of small investor beliefs in Proposition 3, we can pin down their portfolio

optimization. The small investors solve the following stochastic control problem

max
c,qM

E
M
t

[∫ ∞

t
e−r(s−t)uM (cs)ds

]

subject to

dWt = (rWt − ct − ptq
M
t + (µD +A0 +AxXt +Aζ ζ̂t + (Ab +Ab̂)b̂t)Yt)dt+ σDYtdB̃

D
t

dYt = qMt dt

dXt =
(

Q0 −QxXt +Qζ ζ̂t +
(

Qb +Qb̂
)

b̂t

)

dt.

Because investors do not observe bt, the coefficients of b̂t in the law of motion of Dt and Xt given

their information set, are the sum of the coefficients of bt and b̂t in the blockholder’s strategy.

As in the baseline model, we conjecture a value function of the form

J(W,Y,X, b̂, ζ̂) = −
exp

(

−rγM
(

WM +H(Y,X, b̂, ζ̂)
))

r
,

and show that the certainty equivalent H satisfies an HJB equation analogous to the one in (1). In

particular, we have the following Lemma.
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Proposition 8. The certainty equivalent H satisfies the HJB equation

rH = max
q

(µD+A0+AxX+Aζ ζ̂+(Ab+Ab̂)b̂)Y −p(X, ζ̂, b̂)q−1

2
rγM

[

σ2DY
2 + 2βDσ

2
D

(

Hb̂ −
Qb
Qζ

Hζ̂

)

Y

+Σ2
b̂
H2
b̂
+Σ2

ζ̂
H2
ζ̂
+ 2Σb̂ζ̂Hb̂Hζ̂

]

+
(

Q0 −QxX +Qζ ζ̂ +
(

Qb +Qb̂
)

b̂
)

Hx

+ qHy − κζ̂Hζ̂ − λb̂Hb̂ +
1

2

[

Σ2
b̂
Hb̂b̂ +Σ2

ζ̂
Hζ̂ζ̂ + 2Σb̂ζ̂Hb̂ζ̂

]

,

where the coefficients (Σ2
b̂
,Σ2

ζ̂
,Σb̂ζ̂) correspond to the quadratic variation and covariation of b̂t and

ζ̂t, respectively, which are provided in (B.7)-(B.9).

We guess and verify that the certainty equivalent is given by a quadratic function of the form

H(Y,X, b̂, ζ̂) = h0 + hyY + hζ̂ ζ̂ + hb̂b̂+ hxyXY + hyζ̂ ζ̂Y + hyb̂b̂Y + hyyY
2,

where the coefficients are provided in equations (B.15a)-(B.15d) in the appendix. As before, taking

the first order condition from the HJB equation, and invoking the market clearing condition Xt +

Yt = 1, yields the equilibrium price as given by

pt = Hy(Yt,Xt, b̂t, ζ̂t)
∣

∣

∣

Yt=1−Xt

(21)

= P0 + PxXt + Pζ ζ̂t + Pb̂b̂t.

As in the case without liquidity shocks, we can derive the residual demand combining the price

function in (14c) with equation the equation for ζ̂t in equation (15), which yields

R(Xt, b̂t, qt) = P0 + PxXt +
Pζ̂
Qζ

(

qt −Q0 +QxXt − (Qb̂ +Qb)b̂t

)

+ Pb̂b̂t

= P0 − Pζ̂
Q0

Qζ
+

(

Px + Pζ̂
Qx
Qζ

)

Xt +

(

Pb̂ −
Qb +Qb̂
Qζ

Pζ̂

)

b̂t +
Pζ̂
Qζ

qt

= R0 +RxXt +Rb̂b̂t +Rqqt.

Next, we can formulate the blockholder problem. Because shocks are mean reverting, we need

to consider deviations in the rate of change of the order flow qt. Hence, if we consider a trading
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strategy q̃t = qt +∆t, where d∆t = ∆̇tdt, we can write the problem of the blockholder as follows

max
(ct,∆̇t,at)

t≥0

E
L
0

[∫ ∞

0
e−rtuL(ct)dt

]

subject to

dWt = (rWt − ct − Φ(at, ζt)−R(Xt, b̂t, q
L
t +∆)(qLt +∆) + (µD + at − δbt)Xt)dt+XtσDdB

D
t

db̂t =
(

µb̂(Xt, bt, b̂t, ζt,∆t) +
βq
Qζ

∆̇t + βDat

)

dt+ βqσζdB
ζ
t + βq

Qb
Qζ

σbdB
b
t + βDσDdB

D
t

dXt = (qLt +∆t)dt

d∆ = ∆̇tdt.

We guess and verify that the value function again takes the exponential form. The certainty

equivalent G satisfies an HJB equation similar to that in the case without liquidity shocks. Notice

that ∆t = 0 on equilibrium path, so the certainty equivalent is G(X, ζ, b, b̂, 0). The verification

argument used here differs from the standard one in stochastic control. We construct a verification

function V (W,X, ζ, b, b̂,∆) which only corresponds to the value function on-the-equilibrium path.

Off-the-equilibrium path, V (W,X, ζ, b, b̂,∆) provides an upper bound to the continuation payoff

that the blockholder can get from a deviation, which allows us to verify the optimality of our

conjectured optimal strategy using V (W,X, ζ, b, b̂,∆).

Proposition 9. Let

V (W,X, ζ, b, b̂,∆) = −
exp

(

−rγL
(

W +G(X, ζ, b, b̂,∆)
))

r
,

where G satisfies the HJB equation

rG = max
a

(µD + a− δb)X −R(X, b̂, qL +∆)(qL +∆)− Φ(a, ζ)

− rγL
2

[

σ2DX
2 + 2σ2DβDGb̂X +Σb̂G

2
b̂
+ σ2bG

2
b + σζG

2
ζ + βqσ

2
ζGb̂Gζ + βq

Qb
Qζ

σ2bGb̂Gb

]

− κζGζ − λbGb +
(

µb̂(X, b, b̂, ζ,∆) + βDa
)

Gb̂ + (qL +∆)GX

+
1

2

[

Σb̂Gb̂b̂ + σ2bGbb + σ2ζGζζ + βqσ
2
ζGb̂ζ + βq

Qb
Qζ

σ2bGb̂b

]

.

36



If the following optimality conditions are satisfied for all (Xt, ζt, bt, b̂t,∆t)

G∆(Xt, ζt, bt, b̂t, 0) +
βq
Qζ

Gb̂(Xt, ζt, bt, b̂t, 0) = 0 (22a)

(

G∆(Xt, ζt, bt, b̂t,∆t) +
βq
Qζ

Gb̂(Xt, ζt, bt, b̂t,∆t)
)

∆t ≤ 0, (22b)

then the trading strategy qLt in equation (14a) is incentive compatible and, on the equilibrium path,

the blockholder continuation value is V (Wt,Xt, ζt, bt, b̂t, 0).

It can be verified that the certainty equivalent G is given by a linear quadratic function of the

form

G(X, ζ, b, b̂,∆) = g0 + gxX + gζζ + gbb+ gb̂b̂+ g∆∆+ gxζζX + gxbbX + gxb̂b̂X

+ gζbζb+ g∆x∆X + g∆ζ∆ζ + g∆b∆b+ g∆b̂∆b̂+ gζb̂ζb̂+ gbb̂bb̂+ gxxX
2

+ gζζζ
2 + gbbb

2 + gb̂b̂b̂
2 + g∆∆∆

2.

If we combine equations (22a) and (22b), we get that (22b) is satisfied only if the coefficients satisfy

the following inequality

g∆∆ +
βq
Qζ

gbb̂ ≤ 0. (23)

The system of equations satisfied by the coefficients can be found in Section B.1 in the appendix.

The proof of Proposition 9 requires to address the fact that the function V corresponds to the

value function only on-the-equilibrium path, and consider global deviations rather than only local

ones. Equation (22a) is a local incentive compatibility constraint so that ∆̇t = 0 is optimal on the

equilibrium path when ∆t = 0. However, the fact that the blockholder cannot benefit from a local

deviation does not imply he cannot benefit from a global one. The function V is constructed under

the assumption that following any deviation with ∆t = q̃t − qt, the blockholder follows the trading

strategy q̃s = qs+∆t, s > t. That is, the blockholder keeps adjusting the order flow at the same rate

as before the deviation, which means that the deviation is permanent. In the verification argument

we show that, if such a deviation is suboptimal, then any global deviation is also suboptimal.

Finally, we need to verify that the vector (ζt, bt, b̂t,Xt) converges to a stationary distribution

(that is, that the linear system of SDEs describing the evolution of (ζt, bt, b̂t,Xt) is stable), which
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amounts to verifying that Qx > 0.12 Taking the first order condition in the HJB equation we get

that on-the-equilibrium-path the effort strategy is given by

at =
ψζt +Xt + βDGb̂(Xt, ζt, bt, b̂t, 0)

2φ
. (24)

The solution to the blockholder strategy in (24) is difficult to interpret. However, we can obtain

some intuition about the effect of reputation using the following representation for the equilibrium

strategies

Proposition 10. The equilibrium effort at satisfies

at =
ψζt +Xt

2φ
+
βD
2φ

E
L
t

[
∫ ∞

t
e−(r+B

b̂
)(s−t)u

′
L(c

L
s )

u′L(c
L
t )
Rb̂q

L
s ds

]

. (25)

Equation (25) reveals a fundamental difference between the baseline model and the model with

liquidity shocks. The first term corresponds to the optimal effort in the fully revealing equilibrium,

while the second term captures the impact of reputation concerns. Under the baseline model,

effort is myopic because cash flows do not provide incremental information about ability, relative

to the order flow. By contrast, with liquidity shocks, effort is forward looking. Effort has long-

term implications because, by altering the cash flow, the blockholder’s effort affects the market

belief about ability, hence the price the blockholder will pay on future trades. The incentive to

exert or cut effort is determined by the impact of beliefs in the future residual supply faced by the

blockholder, weighted by the blockholder’s stochastic discount factor. This effect is discounted at

Bb̂, which captures the mean reversion of beliefs under the blockholder’s information set FL
t .

In this context, a positive shock may induce the blockholder to reduce his effort to depress the

cash flows and thus draw the market belief down. The blockholder has an incentive to depress cash

flows so the market interprets his buying new shares as driven by liquidity needs rather than higher

ability. This effect can be seen by looking at equations (25).

12We need to verify that all eigenvalues of









−κ 0 0 0
0 −λ 0 0
Qζ Qb −Qx Qb̂

Bζ + βDAζ Bb + βDAb Bx + βDAx −Bb̂ + βDAb̂









are negative. However, by the properties of the determinant of a block matrix, we only need to check the eigenvalues
of the lower block which are −Qx and −Bb̂ + βDAb̂ as Bx + βDAx = 0. Substituting Bb̂ we find that −Bb̂ + βDAb̂ =

−λ− σ2

D

σ2

b̂

β2

D < 0, so we only need to verify that Qx > 0.
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6.3 Numerical Example

To obtain the equilibrium one needs to solve a large system of polynomial equations. Because

it is not possible to solve this system in closed form, we look at two numerical examples that

illustrate the interaction between the blockholder’s incentives to work and trade, and highlight the

mechanism behind the dynamics.

Table 1 presents the coefficients of the equilibrium for several values of the mean reversion of

liquidity shocks λ. In particular, we focus in two examples. In the first example, the liquidity

shock is more persistent than the ability shock (λ = 0.1) while in the second example the liquidity

shock is relatively transitory (λ = 0.5). Notice that when the blockholder stake has an impact

on ability, liquidity shocks affect the firm fundamentals. A high liquidity shock suggests that the

blockholder is likely to sell in the future, which anticipates a reduction in productivity. If liquidity

shocks are more persistent, they are also more relevant for valuation, as they have long lasting

effects on productivity. However, when liquidity shocks are transitory their main role is to obscure

the trading motives of the blockholder.

Steady State Table 1 shows the expected blockholder stake and effort as well as the price under

the stationary distribution for both the case with and without liquidity shocks.

If liquidity shocks are less persistent than ability shocks, then the presence of liquidity shocks

reduces the blockholder stake, effort, and ultimately leads to a lower stock price. The effect of

liquidity shocks is milder as the shocks become more transitory (that is, a higher value of λ).

Efficient risk sharing requires that the blockholder holds a smaller block in this case. If shocks are

less persistent, the long-run variance of liquidity shocks is reduced and so its impact on risk-sharing.

The situation is qualitatively different when liquidity shocks are more persistent than ability shocks:

then the average blockholder stake can even be higher with liquidity shocks than in the benchmark.

In that case, liquidity shocks may decrease liquidity and exacerbate the ownership concentration.

Effort and Trading Strategy The coefficients of the effort strategy at in table 1, capture the

Ratchet effect identified in Proposition 10. Specifically, the negative intercept and lower coefficients

on ability, in the presence of liquidity shocks, capture the blockholder’s tendency to distort effort

due to the Ratchet effect. A positive ability shock leads the blockholder to buy shares, and this

generates incentives to reduce effort to depress cash flows and lower the price of the shares he

intends to buy.

The effect of block size on effort is apparent when we look at the level of current effort relative

39



Equilibrium Strategy

λ 0.1 0.5 1.0 1.5 Benchmark

Effort

A0 −1.23 −0.19 0.00 0.00 0.00
Ax 1.91 1.28 1.00 1.00 1.00
Aζ −7.36 −0.23 0.99 1.00 1.00
Ab 5.67 −0.62 0.00 0.00
A

b̂
−3.22 0.48 0.00 0.00

Trading

Q0 8.05 2.05 2.63 2.69 2.74
Qx 7.31 3.08 3.47 3.51 3.53
Qζ 52.40 12.44 14.54 14.80 14.98
Qb −36.22 5.83 0.94 0.32
Q

b̂
20.56 −4.44 −0.50 −0.12

Residual Supply

R0 13.66 14.02 13.37 13.34 13.32
Rx 23.32 20.90 23.06 23.23 23.34
R

b̂
−3.33 −1.40 −0.51 −0.24

Rq 0.47 1.56 1.41 1.40 1.38

Beliefs

βD 0.05 −0.02 0.00 0.00
βq −0.57 0.28 0.04 0.01

1− βq
Qb

Qζ
0.60 0.87 1.00 1.00

−βD Qb

Qζ
0.04 0.01 0.00 0.00

σ2

b̂
0.09 0.04 0.02 0.01

Steady State

X̄ss 1.10 0.67 0.76 0.77 0.78
p̄ss 39.34 27.92 30.87 31.19 31.41
āss 0.87 0.66 0.76 0.77 0.78

Table 1: Coefficients Equilibrium. Parameters: Parameters: γM = 1.0, γL = 10.0, σD = 1.0, σζ = 0.2,
σb = 0.2, κ = 0.2, φ = 0.5, ψ = 1.0, r = 0.05, µD = 1.0.

to the steady state, which is given by

at − āss = Ax(Xt − X̄ss) +Aζζt +Abbt +Ab̂b̂t (26)

The coefficient Ax is higher than in the benchmark because the blockholder has an incentive to

over supply effort if his stake is above its long-term target so he expects to sell shares. This effect
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is more pronounced when liquidity shocks are persistent as in this case the blockholder adjusts his

portfolio more aggressively – this is captured by the higher coefficient Qx.

Finally, if we look at the impact of liquidity shocks on effort, we notice that this effect is driven

by the blockholder’s trading strategy. The blockholder sells shares in response to liquidity shocks

only if these shocks are sufficiently persistent, in which case he increases effort to increase the selling

price. However, if liquidity shocks are transitory, the blockholder actually buys shares in response

to liquidity shocks, and at the same time reduces his effort to lower the price through lower cash

flows. It is counterintuitive that the blockholder buys shares when holding them is more costly for

him. The benefit of doing is only understood once we consider the dynamics of trading that follow

the liquidity shock, as captured by the impulse response function in Figure 4 which we discuss next.

Impulse Response Function Next, we discuss how ability, liquidity, and dividend shocks, affect

the dynamics. We again distinguish two cases, the case in which liquidity shocks are more persistent

than ability shocks, and vice-versa. As previously mentioned, when the blockholder can influence

the value of the firm, liquidity shocks affect the firm’s fundamentals. If these liquidity shocks are

more persistent than ability shocks, then valuation is driven more by beliefs about liquidity shocks

than ability shocks. On the other hand, if liquidity shocks are transitory, then beliefs about ability

are more relevant.

We provide the case when liquidity shocks are transitory (λ = 0.5) in figure 4 and the case in

which liquidity shocks are permanent (λ = 0.1) in figure 5 . Figures 4(a) and 5(a) show the impulse

response for ability shocks (ζt). As in the baseline, a positive ability shock leads the blockholder

to buy shares. Whether liquidity shocks increases the trading rate depends on the persistence of

liquidity shocks. However, regardless of persistence, the Ratchet effect leads to a reduction in effort,

in contrast to the baseline where increments in ability always increase effort.

Figures 4(b) and 5(b) show the impact of liquidity shocks. A liquidity shocks leads the block-

holder to sell shares when liquidity shocks are persistent, and this lead the blockholder to increases

effort to boost the selling price of his shares. However, if liquidity shocks are transitory, then we get

the counterintuitive outcome that the blockholder buys shares (figure 5(b)) despite holding them

is personally more costly. Because the increment in the blockholder stake is partly attributed by

the market to a positive productivity shock (the term 1−βqQb/Qζ in table 1), the blockholder can

benefit from the increment in price when he reverts his position after the shock, so the subsequent

trading gain offsets the higher cost of holding the shares at the time of the shock. This trading

strategy is not significantly costly, when liquidity shocks are transitory.

Finally, Figures 4(c) and 5(c) show the response to dividend shocks. In the absence of liquidity

shocks, cash flows are uninformative, the market has nothing to learn from cash flows, and there is
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no reaction to cash flow shocks. This is no longer the case under liquidity shocks because trading

is not fully revealing, so cash flows are informative. Because the market incorrectly attributes a

transitory cash flow shock to variation in ability or liquidity needs, it expects the blockholder to

buy more shares which in turn leads to an increase in the stock price.
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Figure 4: Impulse response trading and effort with transitory liquidity shocks (λ = 0.1). Parameters: γM = 1,
γL = 10, σD = 1, σζ = 0.2, σb = 0.2, κ = 0.2, φ = 0.5, ψ = 1, r = 0.05, µD = 1.

7 Empirical Implications

We find that under information asymmetry the blockholder faces an illiquid market and holds a

larger block, so information asymmetry leads to greater ownership concentration. However, we

show that asymmetric information has a long-term impact on ownership only if there is a risk

premium associated to the blockholder private information. If there is no such risk premium, for

example because ability shocks can be diversified, then asymmetric information only has temporary

effects. We show that this effect is more acute in volatile environments with large uncertainty about

blockholder ability, and in settings where the risk-bearing capacity of the market is limited. This

prediction is seemingly consistent with the conventional wisdom that more opaque markets (e.g., in

under-developed countries) are characterized by greater ownership concentration, relative to U.S.
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Figure 5: Impulse response trading and effort with persistent liquidity shocks (λ = 0.5). Parameters: γM = 1,
γL = 10, σD = 1, σζ = 0.2, σb = 0.2, κ = 0.2, φ = 0.5, ψ = 1, r = 0.05, µD = 1.

However, Holderness (2007) questions the notion that firm ownership is relatively diffuse in the

U.S. He finds that on average the large shareholders in a firm collectively own 39% (median 37%)

of the voting power of the common stock. When a firm has at least one blockholder, 96% of the

sample, the average size of the largest block is 26% (median 17%). He also finds an inverse relation

between ownership concentration and firm size.

Because the blockholder stake affects the firm’s productivity, asymmetric information has an

impact on firm productivity. Thus, asymmetric information can lead to higher productivity. The

impact of asymmetric information is more subtle in the presence of unobservable liquidity shocks.

Even though asymmetric information still increases productivity in the long-run, it might also

decrease productivity in the short run due to the Ratchet effect because the blockholder has in-

centives to manipulate short term prices. The evidence with respect to productivity improvements

of blockholders is mixed. Barclay and Holderness (1991) find that trade of large blocks between

investors lead to 16% increase in market value. Similarly, looking at a broader class of blockholders

(investors holding more than 5% of the shares), Cronqvist and Fahlenbrach (2008) show significant

blockholder fixed effects in operational, financing, and compensation policies of a firm. On the other

hand, Holderness and Sheehan (1988) finds that diffuse ownerwhip makes no difference for Tobin’s

Q. In the contexts of managerial ownership, Fabisik, Fahlenbrach, Stulz, and Taillard (2018) finds a
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negative relation between managerial ownership and performance. Consistent with our model, they

find that the relation between ownership and productivity is driven by market liquidity. According

to Fabisik et al., the negative relation between firm productivity and ownership is driven by the

higher liquidity of more productive firms, which allows manager to divest. Consistent with their

hypothesis, they find that firms with high managerial ownership corresponds to those with low

liquidity, which tend to be the less productive ones, and this would help to explain the negative

relation between managerial ownership and profitability measures such as the Tobin’s Q.

In the case of activist hedge funds. Denes et al. (2017) finds that 8 of 11 studies on hedge fund

activism conclude that earnings-based measures of operating performance improve after activist

interventions, and the remaining three find no change. Brav et al. (2008) finds that activists target

factories that experience abnormal declines in productivity in the years preceding the activist

intervention, followed by productivity increases afterward. Finally, Brav et al. (2015) uses plant-

level data from manufacturing firms to assess the operational effects of hedge fund activism. The

biggest improvements in productivity are concentrated among plants that were sold after the activist

intervention. deHaan et al. (2018) confirm prior findings that the operating performance of target

firms appears to improve after an intervention when compared to control firms that are matched

on the level but not trend in pre-activism ROA.

In our model, an unintended consequence of asymmetric information is a greater cash-flow

volatility. In the presence of asymmetric information the blockholder sell shares in reaction to

negative productivity shocks, which amplifies the impact on cash flows. This means that the

firm is more exposed to variation in the blockholder’s ability, which should lead to more risky

cash flows. One empirical prediction then is that market illiquidity generated by asymmetric

information should increase the volatility of cash flows. We are unaware of empirical evidence

looking at this particular effect; however, the literature has documented an association between

return volatility and ownership concentration that is consistent with our model. Two explanations

have been advanced for why stock-return volatility might affect ownership concentration. Demsetz

and Lehn (1985) propose that the greater the volatility of a firm’s environment, the more difficult

it is for outsiders to monitor management, and the greater are the benefits of inside ownership.

In other words, according to Demsetz and Lehn volatility is the caused of concentration rather

than its consequence. Alternatively, Himmelberg et al. (1999) look at the impact on volatility

in light of risk aversion. Because large shareholders may be underdiversified as a result of their

block investment, the optimal level of block ownership should decline, ceteris paribus, as volatility

increases. Our model suggest that the relation between ownership concentration and cash flow

volatility crucially depends on the liquidity of the market. We predict that the relation between

cash flow volatility and ownership concentration should be concentrated in shares that suffer from
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price impact (that is, illiquid shares). In our model, higher volatility increases concentration only if

productivity shocks are private information and cannot be diversified; moreover, unlike in Demsetz

and Lehn’s explanation this happens not because monitoring is more valuable but because it is

more costly for the blockholder to divest. In other words, our model predict that the relation

between cash flow volatility and ownership should be stronger in firms that are more opaque, and

in which asymmetric information is likely to be more important.

8 Conclusion

This paper studies the impact strategic trading on blockholder ownership and firm productibity.

We propose a model where a blockholder can affects the value of the firm value but has private

information about the effect of his interventions. We contrast the case where ability is observable

with the one in which ability is private information. Asymmetric information generates price

impact which allows us to study the impact of liquidity on trading and long-term ownership.

We show that without information asymmetry, the blockholder’s trading is characterized by the

same Coasian dynamics previously identified in the literature. In this context, an improvement

in the blockholder’s productivity increases the price and induces the blockholder to reduce his

holdings. Effectively, the incentive of the blockholder to hedge against productivity shocks leads

the blockholder to sell when he is most productive. By doing so, the blockholder effectively deprives

other shareholders from some of the potential benefits of his activism.

We show that the blockholder’s behavior drastically changes under information asymmetry.

Order flow becomes informative when the market does not observe blockholder ability, so the

blockholder trades gradually to mitigate the impact on prices. Furthermore, unlike in the absence

of asymmetric information, the blockholder responds to a positive productivity shock by acquiring

more shares. In addition to the impact on short-term ownership, we identify condition under which

asymmetric information has a long run impact on outcomes. Notably, we show that if these shocks

cannot be diversified, then the presence of information asymmetry modifies the firm’s ownership

structure causing the blockholder to hold a larger stake.

We also consider the incentives of blockholders to distort cash flows when prices are not fully

revealing because of liquidity motivated trade. In this case, blockholders over-provide effort if they

expect to sell shares in near future, and they under-provide effort effort if they expect to acquire

shares. This effect resembles the ratchet effect previously identified in the literature on career

concerns.

The literature has focused on whether/how liquidity interacts with activism (Maug (1998)). In

our setting, the presence of information asymmetry reduces market’s liquidity in that the order
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flow has a price impact. Such illiquidity effect has some positive effects, insofar as it induces the

blockholder to hold a larger stake. As such, the information asymmetry restores the incentive of

the blockholder to hold an undiversified portfolio. In the long-run, this leads to more activism,

and a higher firm productivity, but it also exacerbates the cash flow volatility, causing a higher

risk premium. Our model has a number of limitations. First, we model intervention (effort by a

manager or intervention by a blockholder) as having only short-term effects but, in practice, this has

persistent effects on the firm’s cash flows. Relaxing this assumption would be useful if one wishes

to understand how policy makers should address blockholder’s myopia, namely the blockholder’s

tendency to underestimate the long-run consequences of their interventions. Second, we assume

a blockholder holdings are observable. In practice, their holdings are observed with some delay.

For example, the Williams Act of 1968 requires that investors must disclose ownership stakes of

more than 5% within 10 days, while in Britain investors must disclose stakes of more than 5%

within two days. Third, our model captures the interventions of a blockholder in a stationary

environment where the average holdings of the blockholder are positive. This is reasonable if we

consider founders of a company, CEOs, private individuals, and institutional investors. By contrast,

such an assumption is not realistic if we consider activist hedge funds whose intervention take place

over a limited period of time, and they are not meant to last forever. In future work, it would be

interesting to consider a model in which the activist investor decides the optimal timing to start

acquiring shares as well as the optimal timing to exit its investment.
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Appendix

A Observable Case

Lemma A.1. The market makers certainty equivalent is given by

H(Y,X, ζ̂) = hyY + hyxXY + hyζY ζ̂ + hyyY
2

such that

hy =
µD
r

+
AxQ0

r(r +Qx)
hyx =

Ax
r +Qx

hyζ =
1

r + κ

(

Aζ +
AxQζ
r +Qx

)

hyy = −γM
2

(

σ2D + σ2ζh
2
yζ

)

.

Proof. The HJB equation is

rJ = max
c,q

uM (c) +
(

rW − c− p(X, ζ̂)q + Y (µD +AxX +Aζ ζ̂)
)

JW

+ qJY + (Q0 −QxX +Qζ ζ̂)JX − κζ̂Jζ +
1

2

(

Y 2σ2DJWW + σ2ζJζζ
)

The first condition for the consumption choice is

∂uM (c)

∂c
= JW ,

and using our conjectured value function J we get

uM (c) = rJ

c = r(W +H(Y, ζ̂,X))

Substituting in the HJB equation

rH = max
q

(µD +AxX +Aζ ζ̂)Y − p(X, ζ̂)q − 1

2

(

rγMY
2σ2D + rγMσ

2
ζH

2
ζ

)

qHy + (Q0 −QxX +Qζ ζ̂)Hx − κζ̂Hζ +
1

2
σ2ζHζζ

We conjecture a quadratic form for the certainty equivalent H

H(Y, ζ̂,X) = hyY + hyxXY + hyζY ζ̂ + hyyY
2
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Substituting, we get

r(hyY + hyxXY + hyζY ζ̂ + hyyY
2) = Y (µD +AxX +Aζ ζ̂)

+ (Q0 −QxX +Qζ ζ̂)hyxY − κhyζY ζ̂ −
rγM
2

(

σ2D + σ2ζh
2
yζ

)

Y 2

We get the following system of equations

rhy = µD +Q0hyx

rhyx = Ax −Qxhyx

rhyζ = Aζ +Qζhyx − κhyζ

rhyy = −rγM
2

(

σ2D + σ2ζh
2
yζ

)

Solving the system we get

hy =
µD
r

+
AxQ0

r(r +Qx)

hyx =
Ax

r +Qx

hyζ =
1

r + κ

(

Aζ +
AxQζ
r +Qx

)

hyy = −γM
2

(

σ2D + σ2ζh
2
yζ

)

.

Lemma A.2. The large shareholder’s certainty equivalent in the observable case is given by

Go(X, ζ) = go0 + goxX + goxxX
2 + goζζζ

2 + goxζXζ,
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where

go0 =
σ2ζ
r
goζζ gox =

µD
r

goxζ =
ψ

2φ(r + κ+ 2rγLσ
2
ζg
o
ζζ)

goxx =
1

4rφ
− γL

2

(

σ2D + σ2ζ (g
o
xζ)

2
)

goζζ =
±
√

(r + 2κ)2 + 2rγLσ
2
ζ
ψ2

φ − (r + 2κ)

4rγLσ2ζ

The maximal certainty equivalent corresponds to the positive root goζζ.

Proof. Substituting our conjecture for the certainty equivalent in (4), we get the following system

of for the coefficients in G.

rgo0 = σ2ζg
o
ζζ (A.1)

rgox = µD (A.2)

(r + κ)goxζ =
ψ

2φ
− (2rγLσ

2
ζg
o
ζζ)g

o
xζ (A.3)

(r + 2κ)goζζ = −2rγLσ
2
ζ (g

o
ζζ)

2 +
ψ2

4φ
(A.4)

rgoxx =
1

4φ
− rγL

2

(

σ2D + σ2ζ (g
o
xζ)

2
)

(A.5)

From here, we immediately get that gx = µD/r and

goζζ =
±
√

(r + 2κ)2 + 2rγLσ
2
ζ
ψ2

φ − (r + 2κ)

4rγLσ2ζ

The rest of the expression follow directly. To verify that Go+(X, ζ) > Go−(X, ζ), notice that, because

go0+ > v = go0−, we have that go0+ + gox+X > go0− + gox−X, where go·+ and go·− are the coefficients of

Go+ and Go− respectively. Next, let

M ≡
(

goζζ+ − goζζ−
1
2(g

o
xζ+ − goxζ−)

1
2(g

o
xζ+ − goxζ−) goxx+ − goxx−.

)
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be the difference in the quadratic coefficients Go+ and Go−. The eigenvalues of M are 0 and

√

2rσ2
ζ
ψ2γL
φ + (r + 2κ)2

(

rσ2ζψ
2γL

(

rσ2ζ
(

ψ2 + 1
)

γL + 4κφ(r + κ)
)

+ 4κ2φ2(r + κ)2
)

2rγL

(

rσ3ζψ
2γL + 2κσζφ(r + κ)

)2 > 0,

which means that M is positive semidefinite. It follows that (ζ,X)M(ζ,X)⊺ ≥ 0, which means

that goxx+X
2 + goζζ+ζ

2 + goxζ+Xζ ≥ goxx−X
2 + goζζ−ζ

2 + goxζ−Xζ for all (X, ζ).

Proof Proposition 1

Proof. Using the certainty equivalent for the blockholder, together with the first order condition

we get that coefficients in the price function are

P0 = gox

Px = 2goxx

Pζ = goxζ .

Moreover, from the solution of the market makers problem we also have that the coefficients are

given by

P0 = hy + 2hyy

Px = hyx − 2hyy

Pζ = hyζ ,

where

hy =
µD
r

+
Qo0

2φ(r +Qox)

hyx =
1

2rφ(r +Qox)

hyζ =
1

r + κ

(

ψ

2φ
+

Qoζ
2φ(r +Qox)

)

hyy = −γM
2

(

σ2D + σ2ζh
2
yζ

)

.
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That is, in equilibrium, the marginal valuation of the large shareholder and the one of the compet-

itive investors must coincide. Matching coefficients, we get

gox =
µD
r

+
Qo0

2φr(r +Qox)
− 2

γM
2

(

σ2D + σ2ζh
2
yζ

)

(A.6)

2goxx =
Ax

r +Qox
+ γM

(

σ2D + σ2ζh
2
yζ

)

(A.7)

goxζ =
1

r + κ

(

Aζ +
AxQ

o
ζ

r +Qox

)

(A.8)

We can solve for Qox, Q
o
ζ using equations (A.7) and (A.8)

1

rφ
− γL

(

σ2D + σ2ζ (g
obs
xζ )2

)

=
2

2φ(r +Qox)
+ γM

(

σ2D + σ2ζh
2
yζ

)

ψ

2φ
+

Qoζ
2φ(r +Qox)

= (r + κ)goxζ ,

which yields

Qox =
r2 (γL + γM )

(

σ2D + σ2ζ (g
o
xζ)

2
)

(2φ)−1 − r (γL + γM )
(

σ2D + σ2ζ (g
o
xζ)

2
)

Qoζ = (r +Qox)
(

2(r + κ)φ(goxζ)
2 − ψ

)

For Qo0, we use the equation

gox =
µD
r

+
Qo0

2φr(r +Qox)
− 2

γM
2

(

σ2D + σ2ζh
2
yζ

)

,

and substituting goζ = 0 and gox = µD
r , we get

0 =
Qo0

2φr(r +Qox)
− 2

γM
2

(

σ2D + σ2ζh
2
yζ

)

,

so

Qo0 = 2rγMφ(r +Qox)
(

σ2D + σ2ζh
2
yζ

)

.

Substituting Qox, we arrive to

Qo0 =
r2γM

(

σ2D + σ2ζ (g
o
xζ)

2
)

(2φ)−1 − r (γL + γM )
(

σ2D + σ2ζ (g
o
xζ)

2
) .
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Proof Lemma 2

Proof. The derivation of the certainty equivalent for the large shareholder is similar to the one for

market makers. If we conjecture the following quadratic function for the certainty equivalent

G(ζ,X) = g0 + gxX + gζζ + gxxX
2 + gζζζ

2 + gxζXζ,

then we get that

a =
ψζ +X

2φ

q =
gx −R0 + (2gxx −Rx)X + gxζζ

2Rq
.

Substituting in the HJB equation, and matching coefficients, we arrive to the system of equations

in the Lemma.

A.1 Proofs

Proof Proposition 2

Proof. From the first order condition, we get that the coefficients (A,Q) are

Ax =
1

2φ

Aζ =
ψ

2φ

Q0 =
gx −R0

2Rq

Qx =
Rx − 2gxx

2Rq

Qζ =
gxζ
2Rq
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Substituting our guess for the certainty equivalent in the HJB equation and matching coefficients,

we get the following system of equation

rg0 =
gx(gx − 2R0)

4Rq
+

R2
0

4Rq
+ σ2ζgζζ −

1

2
rσ2ζγLg

2
ζ (A.9a)

rgx = µD − rγLσ
2
ζgζgxζ +

(R0 − gx)(Rx − 2gxx)

2Rq
(A.9b)

(r + κ)gζ =
gxζ(gx −R0)

2Rq
− 2rγLσ

2
ζgζgζζ (A.9c)

(r + κ)gxζ =
ψ

2φ
+
gxζ(2gxx −Rx)

2Rq
− 2rγLσ

2
ζgζζgxζ (A.9d)

(r + 2κ)gζζ =
ψ2

4φ
+
g2xζ
4Rq

− 2rγLσ
2
ζg

2
ζζ (A.9e)

rgxx =
1

4φ
+

(2gxx −Rx)
2

4Rq
− 1

2
rγL

(

σ2D + σ2ζg
2
xζ

)

(A.9f)

It is convenient to express the coefficients R in terms of the coefficients Q

R0 =
Qζgx −Q0gxζ

Qζ

Rq =
gxζ
2Qζ

Rx = 2gxx +
Qx
Qζ

gxζ

Substituting this in (A.9a)- (A.9f) , we get the system

rg0 = −1

2
rγLg

2
ζσ

2
ζ +

1

2

Q2
0

Qζ
gxζ + σ2ζgζζ (A.10a)

rgx = µD − Q0Qx
Qζ

gxζ − rγLσ
2
ζgζgxζ (A.10b)

(r + κ)gζ = −2rγLσ
2
ζgζζgζ +Q0gxζ (A.10c)

(r + κ)gxζ =
ψ

2φ
− (Qx + 2rγLσ

2
ζgζζ)gxζ (A.10d)

(r + 2κ)gζζ =
Qζ
2
gxζ − 2rγLσ

2
ζg

2
ζζ +

ψ2

4φ
(A.10e)

rgxx =
Q2
x

2Qζ
gxζ +

1

4φ
− rγL

2

(

σ2D + σ2ζg
2
xζ

)

(A.10f)
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The next step is to find expressions for the coefficients Q. The coefficients in the price function

are

P0 = gx −
Q0

2Qζ
gxζ

Px = 2gxx +
Qx
Qζ

gxζ

Pζ =
gxζ
2
.

But, from the solution of the market makers’ problem we have that

P0 = hy + 2hyy

Px = hyx − 2hyy

Pζ = hyζ ,

where

hy =
µD
r

+
Q0

2φr(r +Qx)

hyx =
1

2φ(r +Qx)

hyζ =
1

r + κ

(

ψ

2φ
+

Qζ
2φ(r +Qx)

)

hyy = −γM
2

(

σ2D + σ2ζh
2
yζ

)

.

Matching coefficients

2gxx +
Qx
Qζ

gxζ =
1

2φ(r +Qx)
+ γM

(

σ2D + σ2ζ
g2xζ
4

)

gxζ =
1

r + κ

(

ψ

φ
+

Qζ
φ(r +Qx)

)
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The following block of equations can be solved independently

(r + κ)gxζ =
ψ

2φ
− (Qx + 2rγLσ

2
ζgζζ)gxζ (A.11)

(r + 2κ)gζζ =
Qζ
2
gxζ − 2rγLσ

2
ζg

2
ζζ +

ψ2

4φ
(A.12)

rgxx =
Q2
x

2Qζ
gxζ +

1

4φ
− rγL

2

(

σ2D + σ2ζg
2
xζ

)

(A.13)

2gxx +
Qx
Qζ

gxζ =
1

2φ(r +Qx)
+ γM

(

σ2D + σ2ζ
g2xζ
4

)

(A.14)

gxζ =
1

r + κ

(

ψ

φ
+

Qζ
φ(r +Qx)

)

(A.15)

Finally, using equations (A.13) and (A.14) to eliminate gxx we arrive to

(r + κ)gxζ =
ψ

2φ
− (Qx + 2rγLσ

2
ζgζζ)gxζ (A.16)

(r + 2κ)gζζ =
Qζ
2
gxζ − 2rγLσ

2
ζg

2
ζζ +

ψ2

4φ
(A.17)

Qx
2Qζ

(r + 2Qx) gxζ = − Qx
2φ(r +Qx)

+ r(γL + γM )σ2D + r
(γM

4
+ γL

)

σ2ζg
2
xζ (A.18)

gxζ =
1

r + κ

(

ψ

φ
+

Qζ
φ(r +Qx)

)

. (A.19)

Replacing (A.19) in (A.16) we get a an equation that is linear in gζζ . Solving for gζζ and replacing

in (A.17) we end with a system of three equations in Qx, Qζ , gxζ . Substituting gxζ = 2RqQζ and

simplifying terms we get

2R2
qQζ(Rq, Qx)

2

[

rγLσ
2
ζ

(

4RqQζ(Rq, Qx)
2 +

ψ2

φ

)

+ 2κ(r + κ)− 2Qx (r +Qx)

]

(A.20)

+RqQζ(Rq, Qx)(r + 2Qx)
ψ

φ
− ψ2

4φ2
= 0

2rφ(r +Qx)
[

(γL + γM )σ2D +R2
qQζ(Rq, Qx)

2 (4γL + γM ) σ2ζ
]

(A.21)

−Qx
[

rRq + 1 + 6rφRqQx + 4φRqQ
2
x

]

= 0

where

Qζ(Rq, Qx) =
ψ

2(r + κ)φRq − (r +Qx)−1

Finally, we compute the steady state holdings X̄ss. Using the envelope theorem in equation (11)
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we get

rGx = (µD +AxX +Aζζ)−Rxq
L(X, ζ)− rγL

(

σ2DX + σ2ζGζGxζ
)

+ qGxx − κζGxζ +
1

2
σ2ζGxζζ ,

which has the stochastic representation

Gx = Et

[
∫ ∞

t
e−r(s−t)

(

µD +AxXs +Aζζs − qLs Rx − rγLσ
2
ζgxζ (gζ + 2gζζζs)

−rγL
(

σ2D + σ2ζg
2
xζ

)

Xs

)

ds
]

Similarly,

Hy = Et

[
∫ ∞

t
e−r(s−t)

(

µD − rγM
(

σ2D + σ2ζh
2
yζ

)

(1−Xs)
)

ds

]

In steady state E[Gx] = E[Hy] and E[ζt] = E[qLt ] = 0 so

γLσ
2
ζgxζgζ + γL

(

σ2D + σ2ζg
2
xζ

)

X̄ss = γM
(

σ2D + σ2ζh
2
yζ

)

(1− X̄ss),

which it is equal to

γLσ
2
ζgxζgζ + γL

(

σ2D + σ2ζg
2
xζ

)

X̄ss = γM

(

σ2D + σ2ζ
g2xζ
4

)

(1− X̄ss) (A.22)

Multiplying equation (A.10c) by gxζ we get

γLσ
2
ζgζgxζ =

γLσ
2
ζQ0

r + κ+ 2rγLσ2ζgζζ
g2xζ =

γLσ
2
ζQx

r + κ+ 2rγLσ2ζgζζ
g2xζX̄ss (A.23)

Substituting in equation (A.22) and solving for X̄ss we get

X̄ss =
γM

ω(Rq, Qx)γL + γM
(A.24)

where

ω(Rq, Qx) ≡
σ2D + 4ψσ2ζR

2
qQζ(Rq, Qx)

2
(

ψ − 4φQζ(Rq, Qx)QxRq

)−1

σ2D + σ2ζR
2
qQζ(Rq, Qx)2

(A.25)
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Proof Proposition 4

Proof. We consider the limit when σǫζ =
√
ǫσζ , κ

ǫ = ǫκ, and ǫ goes to zero. Taking the limit in the

polynomial system in Proposition 2 we get

− 4R2
qQζ(Rq, Qx)

2Qx (r +Qx) +RqQζ(Rq, Qx)(r + 2Qx)
ψ

φ
− ψ2

4φ2
= 0 (A.26)

2rφ(r +Qx) (γL + γM )σ2D −Qx
[

rRq + 1 + 6rφRqQx + 4φRqQ
2
x

]

= 0 (A.27)

The previous system has only one positive solution

Qx =

√

rφ (γL + γM )σ2D
(

9rφ (γL + γM ) σ2D + 2
)

+ 1−
(

1 + rφ (γL + γM ) σ2D
)

4φ (γL + γM ) σ2D

Rq =

√

rφσ2D (γL + γM )
(

9rφ (γL + γM ) σ2D + 2
)

+ 1 +
(

1 + rφ (γL + γM ) σ2D
)

4r2φ
.

Substituting in Qζ(Rq, Qx) we get

Qζ =
ψ

2φ (γL + γM ) σ2D

Next, to derive the limit for X̄ss, we consider the limit of ω(Rq, Qx), which is given by

ω(Rq, Qx) ≡
σ2D + 4ψσ2ζR

2
qQζ(Rq, Qx)

2
(

ψ − 4φQζ(Rq, Qx)QxRq

)−1

σ2D + σ2ζR
2
qQζ(Rq, Qx)2

If we substitute the limit for (Qx, Qζ , Rq) that we found above we get that

lim (ψ − 4φQζ(Rq, Qx)QxRq) = 0,

which means that we have to consider the limit of the ratio

2σ2ζQζRq

ψ − 4φQζ(Rq, Qx)QxRq
.

Using the fact that 2QζRq = gxζ , it is convenient to rewrite the previous expression as

1

2φ

σ2ζgxζ
ψ
2φ − gxζQx
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Equation (A.11) implies that

(r + κ+ 2rγLσ
2
ζgζζ)gxζ =

ψ

2φ
− gxζQx,

which means that
σ2ζgxζ

ψ
2φ − gxζQx

=
σ2ζ

r + 2κ+ 2rγLσ2ζgζζ − κ
.

From equation (A.12) we get that

r + 2κ+ 2rγLσ
2
ζgζζ =

Qζ

2 gxζ +
ψ2

4φ

gζζ

so
σ2ζgxζ

ψ
2φ − gxζQx

=
2σ2ζgζζ

Qζgxζ +
ψ2

2φ − 2κgζζ
.

Letting ĝζζ ≡ σ2ζgζζ and remembering that σ̄2ζ = σ2ζ/2κ we get

σ2ζgxζ
ψ
2φ − gxζQx

=
2ĝζζ

Qζgxζ +
ψ2

2φ − (σ̄2ζ )
−1ĝζζ

.

The only step left is to determine the limit of ĝζζ . From equation (A.12) we get

(r + 2κ+ 2rγLĝζζ)ĝζζ = σ2ζ

(

Qζ
2
gxζ +

ψ2

4φ

)

.

Taking the limit when σ2ζ and κ go to zero we get two solutions for ĝζζ : ĝζζ = 0 and ĝζζ = −(2γL)
−1.

If we considering the non-zero solution we get

lim
σ2ζgxζ

ψ
2φ − gxζQx

= − γ−1
L

limQζgxζ +
ψ2

2φ + (2γLσ̄
2
ζ )

−1
,

where

limQζgxζ = lim 2Q2
ζRq =

ψ2

φ
(

√

(α+ 1)2 + 8α2 − (α+ 1)
) =

ψ2

4φ2 (γL + γM ) σ2DQx
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From here we get that ω0 ≡ limω(Rq, Qx) is given by

ω0 = 1 +
ψ

φ
RqQζ

σ2ζgxζ
ψ
2φ − gxζQx

1

σ2D

= 1− ψ

φ

2RqQζ

2γLσ̄2ζ

(

ψ2

4φ2(γL+γM )σ2
D
Qx

+ ψ2

2φ

)

+ 1

σ̄2ζ
σ2D

= 1− ψ2

4r2φ3 (γL + γM )σ2D

(
√

(α+ 1)2 + 8α2 + α+ 1)(
√

(α+ 1)2 + 8α2 − α− 1)

ψ2

φ γLσ̄
2
ζ

(

√

(α+ 1)2 + 8α2 − α+ 1
)

+
√

(α+ 1)2 + 8α2 − α− 1

σ̄2ζ
σ2D

= 1−
2 (γL + γM ) σ̄2ζ

γLσ̄2ζ

(

√

(α+ 1)2 + 8α2 − α+ 1
)

+
(

ψ2

φ

)−1 (√
(α+ 1)2 + 8α2 − α− 1

)
,

which corresponds to the expression in the appendix. Because ω0 is monotone in σ̄2ζ it is enough

to evaluate it at σ̄2ζ = 0 and take the limit as σ̄2ζ → ∞ to verify that ω0 ∈ (−γM/γL, 1].

Proof Proposition 3

Proof. Taking the limit when σ2ζ → 0 in Proposition 2 we get

0 =
(

2Rqφ (r +Qx) (r + 3κ− 2Qx)− 1
)(

2Rqφ (r +Qx) (r + κ+ 2Qx) + 1
)

(A.28)

0 = (2Rqφ (r +Qx) (r + κ)− 1)
(

Qx
(

2Rqφ (r +Qx) (r + 2Qx) + 1
)

− 2rφσ2D (r +Qx) (γL + γM )
)

(A.29)

Equation (A.28) can be satisfied by positive (Rq, Qx) only if

2Rqφ (r +Qx) (r + 3κ− 2Qx)− 1 = 0.

On the other hand,

Qζ =
ψ

2(r + κ)φRq − (r +Qx)−1

is well defined only if the denominator is different than zero, which means that in equation (A.29)

we can limit attention to

Qx
(

2Rqφ (r +Qx) (r + 2Qx) + 1
)

− 2rφσ2D (r +Qx) (γL + γM ) = 0

64



Hence, the coefficients (Qx, Rq) can be found solving the following system of two equations.

2Rqφ (r +Qx) (r + 3κ − 2Qx)− 1 = 0

Qx
(

2Rqφ (r +Qx) (r + 2Qx) + 1
)

− 2rφσ2D (r +Qx) (γL + γM ) = 0.

Letting

η ≡ 2r + 3κ+ 2rφ(r − 3κ) (γL + γM )σ2D
4

we we can write the two solutions to the previous system as

Q(1)
x =

−η +
√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D

2rφ (γL + γM ) σ2D

R(1)
q =

η +
√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D

rφ(r + 3κ)(2r + 3κ)

and

Q(2)
x = −

η +
√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D

2rφ (γL + γM )σ2D

R(2)
q =

η −
√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D

rφ(r + 3κ)(2r + 3κ)

Only the first solution is positive, so the equilibrium coefficients are

Qx =

√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D − η

2rφ (γL + γM ) σ2D

Rq =

√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D + η

rφ(r + 3κ)(2r + 3κ)

The coefficient Qζ is given by

Qζ
Qx

=
1

2

ψ(2r + 3κ)
√

η2 + 2r3φ2(r + 3κ) (γL + γM )2 σ4D − η − 2rφκ (γL + γM ) σ2D

Hence, Qζ is positive only if

φ >
κ(2r + 3κ)

2r(r + κ)2 (γL + γM )σ2D
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Finally, we compute the steady state. In this case, we have that

lim (ψ − 4φQζ(Rq, Qx)QxRq) 6= 0,

so we can directly take the limit of ω(Rq, Qx) as σ
2
ζ → 0 to get that limω(Rq, Qx) = 1, so

X̄ss =
γM

γL + γM
.

Proof Corollary 1

Proof. Consider the limit of the coefficients in Lemma 1 when σ2ζ → 0 (regardless of whether κ > 0

or κ→ 0), which are given by

Px =
Ax

r +Qx

Pζ =
1

r + κ

(

Aζ +Ax
Qζ

r +Qx

)

.

It can be verified that in the case 4 we have that Qox > Qux. On the other hand, in the case of

the limit in Propositions 3, we can verify that Qox > Qux if and only if κ is lower than some upper

threshold κ̄, which is provided in the proof of Proposition 7. These inequalities are verified as part

of the proofs of Propositions 6 and 7. It follows directly that P ux > P ox . Similarly, we have that in

the limit Qoζ = 0 and Qζ > 0 as long as φ ≥ φ̄, where φ̄ is defined in Proposition 3. Thus, it follows

that P uζ > P oζ if and only if φ ≥ φ̄.

Proof Proposition 5

Proof. It follows directly from Proposition 4 that ω0 is decreasing in ψ and σ̄2ζ , which means that

X̄ss is increasing in these parameters.

From Lemma 1 we get that the mean steady state price is

p̄ss =
µD
r

− γM (1− X̄ss)σ
2
D +

X̄ss

2φr

=
µD
r

− ω0γL
ω0γL + γM

γMσ
2
D +

1

2φr

γM
ω0γL + γM

The expected price is decreasing in ω0; it follows that the price is decreasing in ψ and σ̄2ζ . ω0 is
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increasing in φ and σ2D, and so it is p̄ss.

Proof Proposition 6

Proof. Let Qux, Q
u
ζ ,X

u
t and Qox, Q

o
ζ ,X

o
t be the coefficients and holdings in the unobservable and

observable case, respectively. Consider the trajectory of E[Xu
t −Xo

t ], which satisfies

d

dt
E[(Xu

t −Xo
t )] = (Qux −Qox)(X̄ss − E[Xu

t ])−Qox E[(X
u
t −Xo

t )] + (Quζ −Q0
ζ)E[ζt], (A.30)

and initial condition Xu
0 −Xo

0 = 0. Given ζ0 = 0 we have that E[ζt] = 0 so we can ignore the last

term. First, show that Qux < Qox. Using the solutions for Qux and Qox we get that,

Qox −Qux =
2r
(

1 + 2α2 − α
)

+ (1− 2α)
(

3κ(1 − 2α)−
√

η2 + 2rφ(r + 3κ)α2
)

4α(1 − 2α)
.

α < 1/2 given the hypothesis in the proposition which means that hte previous expression is positive

if and only if

2r (1− α(1 − 2α)) + (1− 2α)
(

3κ(1 − 2α)−
√

η2 + 2rφ(r + 3κ)α2
)

> 0.

Given α ∈ (0, 1/2), this conditions is satisfied if and only if

φ <
1

2

(

1 +
r

r + 3κ

1 + 2α(1 − 2α)

(1− 2α)2

)

From here we get that Qox > Qux if and only if κ < κ† where

κ† =







∞ if φ ≤ 1/2

r
3

(

1+2α(1−2α)
(2φ−1)(1−2α)2

− 1
)

if φ > 1/2
(A.31)

If κ < κ†, then we get that Qox > Qux so (Qux − Qox)(X̄ −Xt) > 0 if and only if X̄ < Xt. The

conclusion follows directly from looking at the trajectories of the ODE in (A.30). A similar analysis

follows when κ > κ† with the reversed inequalities.
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Proof Proposition 7

Proof. The first step is to verify that Qox > Qux. In the limit when σ2ζ and κ go to zero, Proposition

1 implies that

Qox =
2rα

1− 2α
,

where α ≡ rφ(γL + γM )σ2D, and α < 1/2 from the hypothesis in the Proposition. On the other

hand,

Qux = r

√

8α2 + (α+ 1)2 − α− 1

4α
.

Combining both expressions we get

Qox −Qux = r
6α2 − α+ 1− (1− 2α)

√

8α2 + (α+ 1)2

4α(1 − 2α)
,

which is positive for all α ∈ [0, 1/2). The next step is to compare Qo0 and Qu0 . First, we have from

Proposition 1 that

Qo0 =
2r2φγMσ

2
D

1− 2α
.

On the other hand, we have

Qu0 =
rγM

[(

√

8α2 + (α+ 1)2 + 1− α
)

θ +
(

√

8α2 + (α+ 1)2 − (α+ 1)
)]

4α (γL + γM ) (θ + 1)
,

where

θ ≡
ψ2γLσ̄

2
ζ

φ
.

Combining both expressions we get

Qo0 −Qu0 = rγM
2(1 − 2α) + (θ + 1)

[

6α2 + 3α− 1− (1− 2α)
√

8α2 + (α+ 1)2
]

4α(1 − 2α)(θ + 1) (γL + γM )
. (A.32)

Term 6α2 + 3α − 1 − (1 − 2α)
√

8α2 + (α+ 1)2 is negative if α < 1
16

(

1 +
√
17
)

and positive if

α > 1
16

(

1 +
√
17
)

. Thus, if 1
16

(

1 +
√
17
)

< α < 1
2 , then the expression in (A.32) is always positive.

On the other hand, if α < 1
16

(

1 +
√
17
)

, then the expression in (A.32) is positive if and only if

θ <
(1− 2α)

(

1 + α−
√

8α2 + (α+ 1)2
)

+ 8α2

(1− 2α)
(

1− α+
√

8α2 + (α+ 1)2
)

− 8α2
.
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From here we get that Qo0 > Qu0 if and only if ψ2σ̄2ζ < z† ≡ φk(α)/γL where

k(α) =











∞ if 1
16

(

1 +
√
17
)

≥ α

(1−2α)
(

1+α−
√

8α2+(α+1)2
)

+8α2

(1−2α)
(

1−α+
√

8α2+(α+1)2
)

−8α2
if 1

16

(

1 +
√
17
)

< α
(A.33)

Next, we look at the ODE for the

d

dt
E[(Xu

t −Xo
t )] = Qu0 −Qo0 + (Qox −Qux)E[X

u
t ]−Qox E[(X

u
t −Xo

t )]. (A.34)

with initial condition Xo
0 − Xu

0 = 0. We need then to consider two cases: (1) Qu0 > Qo0 and (2)

Qo0 > Qu0 .

Case (1): ψ2σ̄2ζ ≥ z† so Qu0 ≥ Q0
0 is always positive. If Qu0 ≥ Qo0 and E[Xu

t ] ≥ 0 then E[(Xu
t −

Xo
t )] = 0 implies d

dt E[(X
u
t −Xo

t )] ≥ 0, which means that E[(Xu
t −Xo

t )] ≥ 0 for t > 0. Moreover,

looking at the second derivative d2

dt2 E[(X
u
t −Xo

t )] we can verify that the weak inequality actually

is strict.

Case (2): ψ2σ̄2ζ < z† so Qu0 < Qux. In this case we have that

d

dt
E[(Xu

t −Xo
t )]
∣

∣

∣

E[(Xu
t −X

o
t )]=0

> 0 ⇔ E[Xu
t ] > x†0 ≡

Qo0 −Qu0
Qox −Qux

where
Qo0 −Qu0
Qox −Qux

=
QoxX̄

o
ss −QuxX̄

u
ss

Qox −Qux
<
QoxX̄

o
ss −QuxX̄

o
ss

Qox −Qux
= X̄o

ss.

Substituting Qo0 −Qu0 and Qox −Qux we get that

x†0 =
γM

γL + γM





2(1 − 2α) + (θ + 1)
[

6α2 + 3α− 1− (1− 2α)
√

8α2 + (α+ 1)2
]

(θ + 1)
[

6α2 − α+ 1− (1− 2α)
√

8α2 + (α+ 1)2
]





From here we get that if Xo
0 = Xu

0 > x†0 then E[Xu
t ]−E[Xo

t ] > 0 for all t > 0. IfXo
0 = Xu

0 = x0(α, θ)

we can verify that d2

dt2
E[(Xu

t − Xo
t )]
∣

∣

∣

t=0
> 0 so by it also follows that E[Xu

t ] − E[Xo
t ] > 0 for all

t > 0. On the other hand, if Xo
0 = Xu

0 < x†0, then E[(Xu
t − Xo

t )] single crosses zero from below,

which means that there is t∗ such that E[Xu
t ] − E[Xo

t ] < 0 on (0, t∗) and E[Xu
t ] − E[Xo

t ] > 0 on

(t∗,∞).
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B Model with Liquidity Shocks

Proof Proposition 3

Proof. Using the definition of It in (15), we get that

dIt = dζt +
Qb
Qζ

dbt

= −κζtdt− λ
Qb
Qζ

bt + σζdB
ζ
t +

Qb
Qζ

σbdB
b
t

= −κ
(

It −
Qb
Qζ

bt

)

dt− λ
Qb
Qζ

bt + σζdB
ζ
t +

Qb
Qζ

σbdB
b
t

= −κItdt+ (κ− λ)
Qb
Qζ

bt + σζdB
ζ
t +

Qb
Qζ

σbdB
b
t ,

where in the third line we have use the relation

It = ζt +
Qb
Qζ

bt.

On the other hand, given the conjectured equilibrium effort and the definition of It, we can write

the stochastic differential equations for the cumulative dividends process as

dDt = (µD +A0 +AxXt +Aζζt +Abbt +Ab̂b̂t)dt+ σDdB
D
t

=

(

µD +A0 +AxXt +AζIt −Aζ
Qb
Qζ

bt +Abbt +Ab̂b̂t

)

dt+ σDdB
D
t .

From here, we get a standard single dimensional filtering problem for bt with the observation process

dIt =

(

−κIt + (κ− λ)
Qb
Qζ

bt

)

dt+ σζdB
ζ
t +

Qb
Qζ

σbdB
b
t

dDt =

(

µD +A0 +AxXt +AζIt −Aζ
Qb
Qζ

bt +Abbt +Ab̂b̂t

)

dt+ σDdB
D
t
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Adapting the notation in Liptser and Shiryaev (2001b) to our problem we get

a0(t) = 0

a1(t) = −λ
b1(t) = σb

b2(t) =

(

0

0

)

A0(t) =

(

−κIt
µD +A0 +AxXt +Ab̂b̂t +AζIt

)

A1(t) =

(

(κ− λ)Qb

Qζ

Ab −Aζ
Qb

Qζ

)

B1(t) =

(

Qb

Qζ
σb

0

)

B2(t) =

(

σζ 0

0 σD

)

Using Theorem 12.7 in Lipster and Shiryaev we get

db̂t = −λb̂tdt+ βq

(

dIt +

(

κIt − (κ− λ)
Qb
Qζ

b̂t

)

dt

)

+ βD

(

dDt −
(

µD +A0 +AxXt +Ab̂b̂t +AζIt +

(

Ab −Aζ
Qb
Qζ

)

b̂t

)

dt

)

where

(

βq βD

)

= (b1B
⊺

1 + b2B
⊺

2 + σ2
b̂
A⊺

1)(B1B
⊺

1 +B2B
⊺

2 )
−1

0 = 2a1σ
2
b̂
+ b1b

⊺

1 + b2b
⊺

2 − (b1B
⊺

1 + b2B
⊺

2 + σ2
b̂
A⊺

1)(B1B
⊺

1 +B2B
⊺

2 )
−1(b1B

⊺

1 + b2B
⊺

2 + σ2
b̂
A⊺

1)
⊺.

From here we get that (βq, βD) is given by

βq =
σ2b + (κ− λ)σ2

b̂
(

σ2ζ +
Qb

Qζ

)2
σ2b

Qb
Qζ

(B.1)

βD =
σ2
b̂

σ2D

(

Ab −Aζ
Qb
Qζ

)

(B.2)
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and the stationary variance of b̂t, which we denote by σ2
b̂
, is the positive root of the following

quadratic equation.

0 = −2λσ2
b̂
+ σ2b −







(

σ2b + (κ− λ)σ2
b̂

)2

σ2ζ +
(

Qb

Qζ

)2
σ2b

(

Qb
Qζ

)2

+
σ4
b̂

σ2D

(

Ab −Aζ
Qb
Qζ

)2






(B.3)

Next, we express the stochastic differential equation for b̂t in term of the innovation processes

B̃ζ
t , B̃

b
t , B̃

D
t . We can write

dIt +

(

κIt − (κ− λ)
Qb
Qζ

b̂t

)

dt = κ
Qb
Qζ

(bt − b̂t)dt+ σζdB
ζ
t +

Qb
Qζ

(

−λbtdt+ σbdB
b
t + λb̂tdt

)

= κ
Qb
Qζ

(bt − b̂t)dt+ σζdB
ζ
t +

Qb
Qζ

σbdB̃
b
t

= κ(ζ̂t − ζt)dt+ σζdB
ζ
t +

Qb
Qζ

σbdB̃
b
t

= σζdB̃
ζ
t +

Qb
Qζ

σbdB̃
b
t

where we have used the relation

It = ζt +
Qb
Qζ

bt = ζ̂t +
Qb
Qζ

b̂t.

Moreover, the previous relation also implies that ζ̂t and ζt are related as follows

ζ̂t − ζt =
Qb
Qζ

(bt − b̂t).

Hence, we arrive to the SDE for b̂t in the proposition

db̂t = −λb̂tdt+ βq

(

σζdB̃
ζ
t +

Qb
Qζ

σbdB̃
b
t

)

+ βDσDdB̃
D
t .
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The final step is to find the SDE for ζ̂t. By definition, dζ̂t = dIt − Qb

Qζ
db̂t, hence we can write

dζ̂t = −κItdt+ (κ− λ)
Qb
Qζ

bt + σζdB
ζ
t +

Qb
Qζ

σbdB
b
t −

Qb
Qζ

db̂t

= −κ
(

ζt +
Qb
Qζ

bt

)

dt+ (κ− λ)
Qb
Qζ

bt + σζdB
ζ
t +

Qb
Qζ

σbdB
b
t −

Qb
Qζ

db̂t

= −κζ̂tdt+ σζ

(

1− Qb
Qζ

βq

)

dB̃ζ
t + σb

Qb
Qζ

(

1− βq
Qb
Qζ

)

dB̃b
t − σDβD

Qb
Qζ

dB̃D
t ,

which corresponds to expression in the Proposition. Finally, by the innovation theorem (Liptser

and Shiryaev, 2001a, Theorem 7.17), the processes B̃ζ
t , B̃

b
t , B̃

D
t are standard Brownian motions

under Fq,D
t

Proof Lemma 4

Proof. We derive the stochastic differential equation for b̂t given the blockholder’s filtration FD,b,ζ
t .

Given an arbitrary strategy ãt and q̃t we have that

db̂t = −λb̂tdt− βD

(

A0 +AxXt +Ab̂b̂t +AζIt +

(

Ab −Aζ
Qb
Qζ

)

b̂t − ãt

)

dt+ βDσDdB
D
t

+ βq

(

dIt +

(

κIt − (κ− λ)
Qb
Qζ

b̂t

)

dt

)

Substituting It in equation (16) we get

db̂t = −λb̂tdt−βD
(

A0 +AxXt +Ab̂b̂t +Aζ

(

q̃t −Q0 +QxXt −Qb̂b̂t

Qζ

)

+

(

Ab −Aζ
Qb
Qζ

)

b̂t − ãt

)

dt

+ βDσDdB
D
t +

βq
Qζ

(

dq̃t +
(

κ
(

q̃t −Q0 +QxXt −Qb̂b̂t

)

− (κ− λ)Qbb̂t

)

dt
)

Letting ∆t = q̃t − qt we get

db̂t = −λb̂tdt− βD

(

A0 +AxXt +Ab̂b̂t +Aζ

(

ζt +
Qb
Qζ

bt

)

+

(

Ab −Aζ
Qb
Qζ

)

b̂t − ãt

)

dt

+

(

βq
κ

Qζ
− βD

Aζ
Qζ

)

∆tdt+
βq
Qζ

d∆t + βqσζdB
ζ
t + βq

Qb
Qζ

σbdB
b
t + βDσDdB

D
t
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so we get

db̂t = µb̂(Xt, bt, b̂t, ζt,∆t)dt+ βDãtdt+
βq
Qζ

d∆t + βqσζdB
ζ
t + βq

Qb
Qζ

σbdB
b
t + βDσDdB

D
t

where

µb̂(Xt, bt, b̂t, ζt,∆t) = B0 + BxXt + Bbbt − Bb̂b̂t + Bζζt + B∆∆t

and

B0 = −βDA0 Bx = −βDAx (B.4)

Bb = −βDAζ
Qb
Qζ

Bb̂ = λ+ βD

(

Ab +Ab̂ −Aζ
Qb
Qζ

)

(B.5)

Bζ = −βDAζ B∆ = βq
κ

Qζ
− βD

Aζ
Qζ

(B.6)

Proof Lemma 8

Proof. The HJB equation for the competitive investor optimization problem is

rJ = max
c,q

uM (c) + (rW − c− pq + (µD +A0 +AxX +Aζ ζ̂t + (Ab +Ab̂)b̂t)Y )JW − κζ̂Jζ̂ − λb̂Jb̂

+
(

Q0 −QxX +Qζ ζ̂ +
(

Qb +Qb̂
)

b̂
)

Jx+qJy+
1

2

[

σ2DY
2JWW +

(

β2qσ
2
ζ + σ2bβ

2
q

(

Qb
Qζ

)2

+ β2Dσ
2
D

)

Jb̂b̂

+

(

σ2ζ

(

1− Qb
Qζ

βq

)2

+ σ2b

(

Qb
Qζ

)2(

1− βq
Qb
Qζ

)2

+ σ2Dβ
2
D

(

Qb
Qζ

)2
)

Jζ̂ ζ̂

+2σ2DβDY JWb̂ − 2σ2DβDY
Qb
Qζ

JWζ̂ +

(

σ2ζβq

(

1− Qb
Qζ

βq

)

+ σ2bβq
Qb
Qζ

(

1− βq
Qb
Qζ

)

− σ2Dβ
2
D

Qb
Qζ

)

Jb̂ζ̂

]

As we did in the model without liquidity shocks, we conjecture a value function

J(W,Y,X, b̂, ζ̂) = −
exp

(

−rγM
(

WM +H(Y,X, b̂, ζ̂)
))

r

The first order condition for consumption is

u′M (c) = JW ,

74



so

uM (c) = rJ

and

c = rWM + rH(Y,X, b̂, ζ̂)

Substituting our conjecture for the value function and the first order condition for consumption,

and defining

Σb̂ ≡ β2qσ
2
ζ + σ2bβ

2
q

(

Qb
Qζ

)2

+ β2Dσ
2
D (B.7)

Σẑ ≡ σ2ζ

(

1− Qb
Qζ

βq

)2

+ σ2b

(

Qb
Qζ

)2(

1− βq
Qb
Qζ

)2

+ σ2Dβ
2
D

(

Qb
Qζ

)2

(B.8)

Σb̂ẑ ≡ σ2ζβq

(

1− Qb
Qζ

βq

)

+ σ2bβq
Qb
Qζ

(

1− βq
Qb
Qζ

)

− σ2Dβ
2
D

Qb
Qζ

(B.9)

we get

rH = max
q

(µD+A0+AxX+Aζ ζ̂t+(Ab+Ab̂)b̂)Y −pq− rγM
2

[

σ2DY
2 + 2σ2DβD

(

Hb̂ −
Qb
Qζ

Hζ̂

)

Y

+Σb̂H
2
b̂
+Σζ̂H

2
ζ̂
+ 2Σb̂ζ̂Hb̂Hζ̂

]

+
(

Q0 −QxX +Qζ ζ̂ +
(

Qb +Qb̂
)

b̂
)

Hx

+ qHy − κζ̂Hζ̂ − λb̂Hb̂ +
1

2

[

Σb̂Hb̂b̂ +Σζ̂Hζ̂ζ̂ + 2Σb̂ζ̂Hb̂ζ̂

]

.

Using the first conditions for q, i.e. p = Hy, we get

rH = (µD +A0 +AxX +Aζ ζ̂ + (Ab +Ab̂)b̂)Y − rγM
2

[

σ2DY
2 + 2σ2DβD

(

Hb̂ −
Qb
Qζ

Hζ̂

)

Y

+Σb̂H
2
b̂
+Σζ̂H

2
ζ̂
+ 2Σb̂ζ̂Hb̂Hζ̂

]

+
(

Q0 −QxX +Qζ ζ̂ +
(

Qb +Qb̂
)

b̂
)

Hx

− κζ̂Hζ̂ − λb̂Hb̂ +
1

2

[

Σb̂Hb̂b̂ +Σζ̂Hζ̂ζ̂ + 2Σb̂ζ̂Hb̂ζ̂

]

.

75



Proof of Proposition 9

Proof. As in the proof in Lemma 8, if G satisfies

rG = max
a

(µD + a− δb)X −R(X, b̂, qL +∆)(qL +∆)− Φ(a, ζ)

− rγL
2

[

σ2DX
2 + 2σ2DβDGb̂X +Σb̂G

2
b̂
+ σ2bG

2
b + σζG

2
ζ + βqσ

2
ζGb̂Gζ + βq

Qb
Qζ

σ2bGb̂Gb

]

− κζGζ − λbGb +
(

µb̂(X, b, b̂, ζ,∆) + βDa
)

Gb̂ + (qL +∆)GX

+
1

2

[

Σb̂Gb̂b̂ + σ2bGbb + σζGζζ + βqσ
2
ζGb̂ζ + βq

Qb
Qζ

σ2bGb̂b

]

,

then the function

V (W,X, ζ, b, b̂,∆) = −
exp

(

−rγL
(

W +G(X, ζ, b, b̂,∆)
))

r

satisfies the HJB equation

rV = max
c,a

uL(c) + (rW − c−R(qL +∆,X, b̂)(qL +∆)− Φ(a, ζ) + (µD + a− δb)X)VW

− κζVζ − λbVb +
(

µb̂(X, b, b̂, ζ,∆) + βDa
)

Vb̂ + qLVx

+
1

2

[

σ2DX
2VWW +Σb̂Vb̂b̂ + σ2bVbb + σζVζζ + 2σ2DβDXVWb̂ + βqσ

2
ζVb̂ζ + βq

Qb
Qζ

σ2bVb̂b

]

.

To simplify the notation, let’s define the infinitesimal operator given a policy (at, ct)t≥0 as

Da,cf ≡
(

rW − c−R(qL +∆,X, b̂)(q +∆)− Φ(a, ζ) + (µD + a− δb)X
)

fW

− κζfζ − λbVb +
(

µb̂(X, b, b̂, ζ,∆) + βDa
)

fb̂ + (qL +∆)fx + ∆̇f∆

+
1

2

[

σ2DX
2fWW +Σb̂fb̂b̂ + σ2bfbb + σζfζζ + 2σ2DβDXfWb̂ + βqσ

2
ζfb̂ζ + βq

Qb
Qζ

σ2bfb̂b

]

.
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Consider an arbitrary policy (c̃t, ãt, q̃t), and apply Itô’s Lemma to e−rtV (Wt,Xt, ζt, bt, b̂t,∆t) to get

E
[

e−rtV (Wt,Xt, ζt, bt, b̂t,∆t)
]

= V (W0,X0, ζ0, b0, b̂0,∆0)

+ E

[
∫ t

0
e−rs

(

Dã,c̃V (Ws,Xs, ζs, bs, b̂s,∆s)− rV (Ws,Xs, ζs, bs, b̂s,∆s)
)

ds

]

+ E

[
∫ t

0
e−rs

(

V∆(Xs, ζs, bs, b̂s,∆s) +
βq
Qζ

Vb̂(Xs, ζs, bs, b̂s,∆s)

)

∆̇sds

]

≤ V (W0,X0, ζ0, b0, b̂0,∆0)− E

[∫ t

0
e−rsu(c̃s)ds

]

(B.10)

+ E

[∫ t

0
e−rs

(

V∆(Xs, ζs, bs, b̂s,∆s) +
βq
Qζ

Vb̂(Xs, ζs, bs, b̂s,∆s)

)

∆̇sds

]

,

where the inequality follows from u(c̃) + Dã,c̃V ≤ rV . To keep the expression that follow short,

for any function f , we let f(s) ≡ f(Xs, ζs, bs, b̂s,∆s). Because V is an exponential of the function

G(·), we have that

E

[∫ t

0
e−rs

(

V∆(s) +
βq
Qζ

Vb̂(s)

)

∆̇sds

]

= rγLE

[∫ t

0
e−rsV (s)

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆̇sds

]

.

Using the integration by parts formula for semimartingales (Karatzas and Shreve, 2012), we get

E

[∫ t

0
e−rsV (s)

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆̇sds

]

= E

[

e−rtV (t)
(

G∆(t) +
βq
Qζ

Gb̂(t)
)

∆t

]

− E

[
∫ t

0
e−rs(Dã,c̃V (s)− rV (s))

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆sds

+

∫ t

0
e−rsV (s)∆sDã,c̃

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

ds

]

. (B.11)

Using the fact that G is linear quadratic, together with the local IC constraint (22a), we get

G∆(s) +
βq
Qζ

Gb̂(s) = 2g∆∆∆s +
βq
Qζ

g∆b̂∆s,

which means that

∆sDa,c

(

G∆(s) +
βq
Qζ

Gb̂(s)

)

=

(

G∆(s) +
βq
Qζ

Gb̂(s)

)

∆̇s. (B.12)
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Substituting (B.12) in (B.11), we get

E

[
∫ t

0
e−rsV (s)

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆̇sds

]

=
1

2
E

[

e−rtV (t)
(

G∆(t) +
βq
Qζ

Gb̂(t)
)

∆t

]

− 1

2
E

[∫ t

0
e−rs(Da,cV (s)− rV (s))

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆sds

]

.

Equation (22b) together with the HJB equation for V imply that for any policy the following

inequality is satisfied

(

Dã,c̃V (s)− rV (s)
)

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆s ≥ 0. (B.13)

Substituting (B.13) in (B.10), we arrive to

V (0) ≥ E

[
∫ t

0
e−rsu(c̃s)ds

]

− rγL
2

E

[

e−rtV (t)
(

G∆(t) +
βq
Qζ

Gb̂(t)
)

∆t

]

+ E

[∫ t

0
e−rs(Da,cV (s)− rV (s))

(

G∆(s) +
βq
Qζ

Gb̂(s)
)

∆sds

]

+ E
[

e−rtV (t)
]

≥ E

[∫ t

0
e−rsu(c̃s)ds

]

− rγL
2

E

[

e−rtV (t)
(

G∆(t) +
βq
Qζ

Gb̂(t)
)

∆t

]

+ E
[

e−rtV (t)
]

Taking the limit when t→ ∞, and using the transversality condition, we get that

V (W0,X0, ζ0, b0, b̂0,∆0) ≥ E

[
∫ ∞

0
e−rsu(c̃s)ds

]

.

In particular, at any time t, V (Wt,Xt, ζt, bt, b̂t, 0) provides an upper bound for the payoff that the

blockholder can get by deviating from the equilibrium strategy (cLs , a
L
s , q

L
s )s≥t from time t onward.

Finally, in the case of the strategy (cLt , a
L
t , q

L
t ), all the inequalities hold with equality so

V (W0,X0, ζ0, b0, b̂0, 0) = E

[∫ ∞

0
e−rsu(cLs )ds

]

,

which establishes the optimality of (cLt , a
L
t , q

L
t ).
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Proof Proposition 10

Proof. On the equilibrium path, the solution for the effort strategy is

at =
ψζt +Xt + βDGb̂(Xt, ζt, bt, b̂t, 0)

2φ
(B.14)

We have shown that the value function is given by

V (W,X, ζ, b, b̂,∆) = −
exp

(

−rγL
(

W +G(X, ζ, b, b̂,∆)
))

r

so we have that

Gb̂ =
Vb̂
VW

Moreover, the value function V satisfies the HJB equation

rV = max
c,a,∆̇

uL(c)+ (rW − c−R(X, b̂, q+∆)(q+∆)−Φ(a, ζ)+ (µD+a− δb)X)VW −κζVζ −λbVb

+
(

B0 + BxXt + Bbbt − Bb̂b̂t + Bζζ + B∆∆+ βDa
)

Vb̂

+(q+∆)Vx+
1

2

[

σ2DX
2VWW +Σb̂Vb̂b̂ + σ2bVbb + σζVζζ + 2σ2DβDXVWb̂ + βqσ

2
ζVb̂ζ + βq

Qb
Qζ

σ2bVb̂b

]

.

Using the envelope condition, and evaluating at ∆ = 0, we get that

(r + Bb̂)Vb̂ = −Rb̂qVW + (rW − c−R(q,X, b̂)q −Φ(a, ζ) + (µD + a− δb)X)Vb̂W − κζVb̂ζ − λbVb̂b

+
(

B0 + BxXt + Bbbt − Bb̂b̂t + Bζζ + B∆∆+ βDa
)

Vb̂b̂

+ qVb̂x+
1

2

[

σ2DX
2Vb̂WW +Σb̂Vb̂b̂b̂ + σ2bVb̂bb + σζVb̂ζζ + 2σ2DβDXVb̂W b̂ + βqσ

2
ζVb̂b̂ζ + βq

Qb
Qζ

σ2bVb̂b̂b

]

.

Using the Feynman-Kac formula (Karatzas and Shreve, 2012), we get that

Vb̂(Wt,Xt, ζt, bt, b̂t) = E
L
t

[∫ ∞

t
e−(r+B

b̂
)(s−t)Rb̂qsVW (Ws,Xs, ζs, bs, b̂s)ds

]

,

which means that

Gb̂(Xt, ζt, bt, b̂t) = E
M
t

[

∫ ∞

t
e−(r+B

b̂
)(s−t)Rb̂qs

VW (Ws,Xs, ζs, bs, b̂s, 0)

VW (Wt,Xt, ζt, bt, b̂t, 0)
ds

]

.
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Finally, using the first order condition for consumption u′L(c) = VW we get

Gb̂(Xt, ζt, bt, b̂t) = E
L
t

[∫ ∞

t
e−(r+B

b̂
)(s−t)Rb̂qs

u′L(c
L
s )

u′L(c
L
t )
ds

]

B.1 System of Equations Equilibrium

The first step in the determination of the equilibrium is to determine the coefficients of the certainty

equivalent. The system of equations determining the coefficients for the quadratic terms is decou-

pled from the system of equations determining the linear terms. After solving for the quadratic

terms, we can determine the rest of the coefficients by solving a system of linear equations. Sub-

stituting the conjecture certainty equivalent H in Lemma 8 we find that

hxy =
rAx
r +Qx

(B.15a)

hyζ̂ =
Aζ +Qζhxy

r + κ
(B.15b)

hyb̂ =
Ab +Ab̂ + hxy

(

Qb +Qb̂
)

r + λ
(B.15c)

hyy = −γM
2

(

σ2D +Σ2
b̂
h2
yb̂

+Σ2
ζ̂
h2
yζ̂

+ 2βDσ
2
D

(

hyb̂ −
Qb
Qζ

hyζ̂

)

+ 2Σ2
b̂ζ̂
hyb̂hyζ̂

)

. (B.15d)

From the market clearing condition (21) we get the pricing coefficients

P0 = hy + 2hyy (B.15ea)

Px = hyx − 2hyy (B.15eb)

Pζ̂ = hyζ̂ (B.15ec)

Pb̂ = hyb̂. (B.15ed)
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The coefficients of the residual supply are

R0 = P0 − Pζ̂
Q0

Qζ
(B.15fa)

Rx = Px + Pζ̂
Qx
Qζ

(B.15fb)

Rb̂ = Pb̂ −
Qb +Qb̂
Qζ

Pζ̂ (B.15fc)

Rq =
Pζ̂
Qζ

. (B.15fd)

The next step, is to derive a system of equations for the coefficient of the certainty equivalent G. To

simplify the notation, let’s introduce a 5×1 vector containing the state variables z ≡ (X, ζ, b, b̂,∆),

and write and

G(X, ζ, b, b̂,∆) ≡ g0 + g⊺

zz + z⊺Gzzz,

where g0 is a scalar, gz ≡ (gx, gζ , gb, gb̂, g∆)
⊺ is a 5 × 1 vector, and Gzz is the following 5 × 5

symmetric matrix

Gzz =

















gxx
1
2gxζ

1
2gxb

1
2gxb̂

1
2gx∆

1
2gxζ gζζ

1
2gζb

1
2gζb̂

1
2gζ∆

1
2gxb

1
2gζb gbb

1
2gbb̂

1
2gb∆

1
2gxb̂

1
2gζb̂

1
2gbb̂ gb̂b̂

1
2gb̂∆

1
2gx∆

1
2gζ∆

1
2gb∆

1
2gb̂∆ g∆∆

















Let 1i vector 5 × 1 vector with a one in the i-th row and zeros in the remaining entries, and

1i,j ≡ 1i1
⊺

j be a 5× 5 matrix with a one in the ij-th entry and zeros in the remaining entries. Let

Aζ ≡ (Ax, Aζ , Ab, Ab̂, A∆)
⊺ and Qζ ≡ (Qx, Qζ , Qb, Qb̂, 0)

⊺ be 5 × 1 vectors with the coefficients of

the effort and trading strategies. From the first order condition for effort we get that

A0 =
βD
2φ

1⊺4gz (B.7a)

Az =
1

2φ
[11 + ψ12 + 2βD1

⊺

4Gzz14] (B.7b)

Let Rz ≡ (Rx, Rζ , Rb, Rb̂, 0)
⊺ and Bz ≡ (Bx,Bζ ,Bb,Bb̂,B∆)

⊺, where the coefficients in Bz are given

in (B.4)-(B.6). Substituting in the HJB equation for the certainty equivalent in Proposition 9 and
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matching coefficients we get

rg0 = −(R0 +RqQ0)Q0 −
rγL
2

g⊺

z

[

Σb̂14,4 + σ2b13,3 + σζ12,2 + βqσ
2
ζ12,4 + βq

Qb
Qζ

σ2b13,4

]

gz

(B.8a)

− φA2
0 + (µ0 + βDA0)1

⊺

4gz +Q01
⊺

1gz +

[

Σb̂14,4 + σ2b13,3 + σζ12,2 + βqσ
2
ζ12,4 + βq

Qb
Qζ

σ2b13,4

]

Gzz

rg⊺

z = (µD +A0)1
⊺

1 −Q0R
⊺

z − (R0 + 2RqQ0)(Qz + 15)
⊺ − 2φA0A

⊺

z + ψA01
⊺

2 (B.8b)

− rγLσ
2
DβDg

⊺

z13,1 − 2rγLg
⊺

z

[

Σb̂14,4 + σ2b13,3 + σζ12,2 + βqσ
2
ζ12,4 + βq

Qb
Qζ

σ2b13,4

]

Gzz

+ 2Q01
⊺

1Gzz + g⊺

z(Q
⊺

z11 + 11,5)− (κ12,2 + λ13,3)g
⊺

z + 2(B0 + βDA0)1
⊺

4Gzz

+ g⊺

z14(µz + βDAz)
⊺

rGzz = Az1
⊺

1 − δ13,1 −
(

Rz +Rq(Qz + 15)
)

(Qz + 15)
⊺ − φAzA

⊺

z + ψAz1
⊺

2 (B.8c)

− rγL
2

[

σ2D11,1 + 4σ2DβDGzz13,1
]

− 2 (κ12,2 + λ13,3)Gzz + 2(Bz + βDAz)1
⊺

4Gzz

− 2rγLGzz

[

Σb̂14,4 + σ2b13,3 + σ2ζ12,2 + βqσ
2
ζ12,4 + βq

Qb
Qζ

σ2b13,4

]

Gzz + 2(Qz1
⊺

1 + 15,1)Gzz

Finally, we consider the first order condition determining the coefficients in Qz, which is given by

(

1⊺5 +
βq
Qζ

1⊺4

)

gz = 0 (B.9a)

JGzz

(

15 +
βq
Qζ

14

)

= 0 (B.9b)

where

J ≡
(

I4×4 O4×1

O1×4 0

)

and I4×4 is a 4×4 identity matrix andOn×m is a n×mmatrix of zeros. Thus, to find an equilibrium,

we need to solve the system given by equations (B.3) and (B.15a)-(B.9b).

B.2 Impulse Response Functions

In order to compute the impulse response function we use the following results that can be found

in Evans (2012).

Lemma B.1. The solution to the linear SDE

dXt = (c+DXt)dt+EdWt.
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is

Xt = eDtX0 +

∫ t

0
eD(t−s)(cds +EdWs),

where eDt is the matrix exponential.

Next we derive the impulse response function. We start deriving the impulse response functions

under FM
t . The blochholder block size is determined by the solution to the following linear system

of stochastic differential equation







dXt

dζ̂t

db̂t






=













Q0

0

0






+







−Qx Qζ Qb +Qb̂
0 −κ 0

0 0 −λ













Xt

ζ̂t

b̂t












dt

+









0 0 0

σζ

(

1− Qb

Qζ
βq

)

σb
Qb

Qζ

(

1− βq
Qb

Qζ

)

−σDβD Qb

Qζ

σζβq σbβq
Qb

Qζ
σDβD















dB̃ζ
t

dB̃b
t

dB̃D
t






.

The solution to this equation is (see, e.g. Evans (2012))







Xt

ζ̂t

b̂t






= Π(t)







X0

ζ̂0

b̂0






+

∫ t

0
Π(t−s)















Q0

0

0






ds+









0 0 0

σζ

(

1− Qb

Qζ
βq

)

σb
Qb

Qζ

(

1− βq
Qb

Qζ

)

−σDβD Qb

Qζ

σζβq σbβq
Qb

Qζ
βDσD















dB̃ζ
s

dB̃b
s

dB̃D
s















,

where

Π(t) =









e−Qxt (e−κt−e−Qxt)Qζ

Qx−κ
(e−λt−e−Qxt)(Qb+Qb̂

)

Qx−λ

0 e−κt 0

0 0 e−λt









.
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