Optimal "Pay-Performance-Sensitivity" in the presence of Exogenous Risk

Thomas Hemmer*

February, 2022

Abstract

I study the relation between the level of exogenous “risk” and pay-for-performance sensitivity (PPS) of optimal contracts. I first show that none of the known restrictions allow for exogenous risk in the standard principal-agent model. Next, I identify restrictions that support using the first-order approach for sufficiently high levels of exogenous risk. Third, by placing further restrictions on the agent’s preferences I provide a parametric example where there is not a monotone relation between risk and PPS. Finally, by appealing to the limiting case of this example I make the case that optimal contracts are unlikely to exhibit a monotone relation between risk and PPS even when risk is exogenous.

*I appreciate comments and suggestions from Eva Labro, Christian Leutz, Doug Hanna, Bjorn Jorgensen as well as from workshop participants at Aarhus University, the FMG (London School of Economics), the University of Houston, OSU, SMU, UNC the Utah Winter Conference and the Chicago-Minnesota.and UT-Austin Theory Conferences. All remaining errors are exclusively mine.
1 Introduction

Research on executive compensation in accounting and related fields relies to a significant extent on agency theory. Within this paradigm, the ability to study determinants and properties of optimal contracts rests on the ability to formulate the contracting problem in a tractable manner. For the standard principal-agent model that involves reliance on the so-called first order approach. Unfortunately, while the first-order approach offers the tractability needed, applying it comes at a cost. As is well known since (and due to) Mirrlees [1974], the approach is not generally valid and thus neither are the results the approach facilitates. As first proposed by Mirrlees, however, and subsequently proven by Rogerson [1985], validity of the first-order approach can be assured if attention is confined to production functions satisfying the so-called MLR and CDF conditions. Roughly, the former suggest that higher outcomes be more consistent with higher effort, while the latter corresponds to a form of stochastically diminishing return to effort in the production function.

While from a theoretical perspective these conditions have (some) intuitive appeal, from a more practical point of view these conditions are less satisfying as few examples of production functions that have these properties have been identified.\(^1\) For example, the continuous equivalent of the discrete distribution with these properties provided in Rogerson [1985], while possessing the same desired properties, does not lend itself to the first-order approach as it is easily shown to suffer form the Mirrlees non-existence problem.\(^2\) Jewitt [1988] takes a different approach to extending the reach of the first-order approach. By placing arguably somewhat weak additional restrictions on the contracting parties preferences along with a slightly stronger condition on the likelihood ratio (concavely increasing), he provides access to a broader class of productions functions that satisfy (also) arguably somewhat less stringent conditions than the CDF condition.\(^3\) These distributions are all bounded from below and seem to provide reasonable representations of phenomena of significant interest in contract theory (and practice) such as (the empirical distribution of) stock prices. Despite these efforts to map out new territory agreeable by the first-order approach, however, it still

\(^1\) Noteworthy exceptions are the two groups of distributions introduced by LiCalzi and Spaeter [2003].

\(^2\) Specifically, Stole [2001] suggests that a continuous version of the distribution of the distribution provided by Rogerson [1985], a form of Beta-distribution, satisfies the MLR and CDF conditions. While the particular distribution he suggests does not satisfy the CDF condition, it is easily verified that for Beta versions that do, f^a/f falls without limit as x approaches its lower limit.

\(^3\) The MLR condition remains central though.
seems fair to suggest that the current territories occupied are small at best and quite constraining realistically.

Seemingly unfazed by the practical challenges involved in characterizing optimal incentive contracts in standard models of moral hazard, a large body of empirical work has emerged testing a prediction attributed to principal-agent theory: an inverse relation between “risk” or noisiness of a performance measure and “pay-for-performance sensitivity” (PPS hereafter). This relation, while often in the empirical literature illustrated using the contractual form of Holmstrom and Milgrom [1987], is typically ascribed to principal-agent theory in general without having encountered much of a theoretical challenge. In (fitting) contrast, high profile empirical studies such as those by Jensen and Murphy [1990], Haubrich [1994], Garen [1994], Aggarwal and Samwick [1999] and Core and Guay [2002], have provided only limited or, perhaps more appropriately characterized, contradictory evidence regarding the empirical validity of this "predicted" relation.\footnote{See also Prendergast [2002] for an overview of this literature.}

The insistence on an inverse equilibrium-relation between risk (or “noise”) and the sensitivity of pay to performance in optimal contracts targeted at the standard problem of moral hazard seems to be based on a view of risk being exogenous. More specifically, it appears based on implicitly restricting attention to production functions where the agent’s choice is confined to selecting only the mean of a symmetric, unimodal, continuous output distribution to allow for the exogenously determined dispersion to serve as a measure of “risk.” For such models the logical equilibrium link between risk and incentive then seems straightforward to establish. Presumably, if the dispersion of the outcome distribution increases, a (risk-neutral) principal would respond by decreasing the variation in the agent’s contract to re-attain the optimal trade-off between improving risk sharing and weakening of incentives.

While this link is intuitively appealing the simple fact is, however, that little is known about the nature of optimal contracts in production environments of this type. Indeed, due to methodological constraints imposed by the first-order approach, there actually are no results available that link exogenous output risk to the PPS of optimal contracts for standard basic (one shot) principal-agent models. The purpose of this paper is thus twofold. The first is to fill out methodological gaps that have stood in the way of doing this. Then, in turn, to use the methodological advances to achieve insights into the (equilibrium) risk-PPS trade-off that actually is predicted by the standard
principal-agent model.

Several specific issues are addressed to this end. First, I establish formally that using the first-order approach to characterize the optimal risk/incentive trade-off for production functions of the “effort-plus-noise” type cannot be supported by neither the conditions provided by Mirrlees and Rogerson, nor by those provided by Jewitt [1988]. Second, I then demonstrate that necessary conditions for the first-order approach to be valid for such production functions are that the likelihood ratio is bounded from below and that the dispersion of the noise-term (the risk) (therefore) is “sufficiently large.” This makes the comparative static exercise relating risk to the PPS of sharing rules derived using the first-order approach somewhat fragile. I do, however, demonstrate in a setting where the first-order approach is valid and PPS is well defined, that the PPS of the optimal sharing rule is not monotonically decreasing in the dispersion of the noise term! Rather it is first increasing - then decreasing as risk is increased. Finally, in the light of the findings provided here I offer some specific suggestions for how to reexamine the mixed empirical results followed by some brief concluding remarks.

2 Fixing Ideas

To help identify the key issues that must be addressed to formally link exogenous risk to PPS, consider Figures 1 through 3. Each of the three figures depicts the outcome density for a relatively high and a relatively low risk production environment where only the mean of each density is determined by an agent’s effort, \(a \). The figures differ only in terms of the level of effort supplied: the lowest possible, \(a_0 \), in Figure 1, an intermediate level, \(a_m \), in Figure 2 and in Figure 3 a higher level of effort, \(a^* \), the significance of which I will return to a bit later. The (identical) kinked \(u(s(x)) \)-curve in the three figures illustrates outcome-dependent utility levels (ignoring cost of effort) under the optimal contract \(s(x) \), where \(x \) is taken to be the contractible economic outcome.

Before proceeding, some remarks on the nature and the properties of the contract depicted here are in order. While the particular functional form with an “incentive zone” straddled by a lower bound, \(u_1 \), and a cap, \(\overline{u} \), has some real world appeal, these specific features seem somewhat at odds with those of optimal contracts typically obtained from agency models. Accordingly, relying on

\footnote{Specifically I show that no production function of this type exists that satisfies either the Mirrlees/Rogerson or the Jewitt conditions for which the first-order approach is valid.}
this form here may appear somewhat arbitrary or even inappropriate. As will become apparent from the subsequent formal analysis, however, the key reason why such contracts are elusive in the agency literature is exactly because the non-existence of model specifications that allow for analysis of the case where risk is truly exogenous. The specification partly introduced, partly derived in this paper contains as a naturally occurring case optimal contracts with the exact properties depicted in Figures 1 through 3. More generally, non-linearity as dictated by upper and lower bounds and some underlying symmetry around the second-best effort-level, \(a^* \),\(^6\) are the utility-space properties of all optimal contracts derived from the standard principal-agent model in cases where risk is truly exogenous.

With this in mind, start now comparing Figure 1 with Figure 2. The way Figure 1 is drawn here, the agent’s expected utility is pretty much the lower bound for both of the risk levels since virtually all the probability mass resides below the bottom threshold of the incentive zone in either case. As effort is increased in Figure 2 and more probability mass is pushed onto the variable portion of the contract, expected utility, \(Eu \), increases for both levels of risk. Notice however that for the level of effort depicted in Figure 2 the expected utility for the high risk distribution now is strictly higher than that for the low risk case as the upper bound is largely irrelevant for both distributions at that effort level. Indeed for levels of effort between \(a_0 \) and \(a_m \), the change in the agent’s expected utility as he increases his effort \((dEu/da)\) is highest in the high risk case for this particular contract. In other words, the incentives provided by this contract in this effort-range are highest for the high-risk distribution because the contract here provides the agent with greater personal net returns to effort.

Compare now instead Figures 2 and 3. Because in Figure 3 the two distributions here are centered on \(a^* \) half way between the start and end of the incentive zone, the expected utility is the exact same in both cases: \((\bar{u} - u)/2\). Accordingly, somewhere between \(a_m \) and \(a^* \), \(dEu/da \) must be higher for the low-risk distribution than it is for the high-risk distribution. It should be clear, that this certainly is the case at \(a^* \) because at this level of effort, the lower and upper bounds have a more significant (dampening) effect on \(dEu/da \) when the distribution is more disperse. Accordingly, in cases where risk is truly exogenous, unlike in the highly special linear case typically referenced, the strength of the incentives for a specific contract are not constant in effort. Moreover for any given

\(^6\)Specifically, symmetry of the RHS of equation (7) in Holmstrom (1979).
level of effort the incentives provided by a given contract depend not just on the functional form of the contract itself - they also depend on the level of risk.

The implications of this for trying to link truly exogenous risk to *PPS* are two fold - one technical, one conceptual. From a technical perspective the problem revolves around the need to be able to rely on the so-called first-order approach. To be able to do so it must be the case that the \(a \) for which \(d(Eu - v(a))/da = 0 \) is unique, and that it is the one that is maximizing \(Eu - v(a) \) over the contract one derives using the approach. Whether that is the case or not, however, will unfortunately itself hinge on the level of risk involved. To see this consider redrawing figures 1 thorough 3 for the case where the risk is approaching zero and all the probability mass therefore is mainly concentrated on \(a \). In such a case \(a^* \) should be approaching the first-best and then be at least as high as in Figure 3. Further, as the distribution narrows, so does the incentive zone and virtually all the variation in the optimal contract in this case will thus be concentrated in close proximity of \(a^* \).

With these changes, consider moving \(a \) from \(a_0 \) to \(a^* \). Because \(Eu \) remains basically constant as \(a \) is increased, \(Eu - v(a) \) is actually decreasing between \(a_0 \) to \(a^* \). The same is true for \(a > a^* \), and since the contract by construction has \((d(Eu - v(a))/da)|_{a^*} = 0 \), where \(v(a) \) is the agent’s convexly increasing cost of effort, \(a_0 \) and not \(a^* \) is actually the effort level that maximizes \(Eu - v(a) \). Stated differently, in the limit as the risk goes to zero, for the contract obtained using the first-order approach the agent’s expected utility at \(a^* \) is at a reflection-point with \(Eu \) declining both before and after \(a^* \). Consequently using this approach to characterize the contract is not valid. If the distributions (and thus the incentive zone) in figure 1 are instead widened, however, it may then well be the case that \(Eu \) is everywhere increasing between \(a_0 \) to \(a^* \) in which case the FOA could well be valid. Accordingly, before basing any conclusions about the relation between truly exogenous risk and *PPS* on the FOA, the validity of the FOA must first be ensured.

Conceptually what is important here is that *incentive* strength and *PPS* cannot be equated even when the FOA is valid exactly due to the non-linearities introduced by the required boundedness of the likelihood ratio. Increasing the variance of either of the distributions in Figure 1 reduces \((d(Eu - v(a))/da)|_{a^*} \) and thus the agent’s desire to increase effort even if no changes are made to the contract \(s(x) \) itself. Assume for specificity then that \(a^* \) is the second-best effort level for the low variance distribution. Clearly, then in the high risk case the optimal response to this contract
is to choose an \(a \) lower than \(a^* \). Shifting the contract to the left would improve the incentives and then move the high-risk \(a \) closer to \(a^* \) but the highest \(a \) that can be implemented in the high risk case with this level of \(PPS \) will be strictly lower than \(a^* \). The problem then is of-course that if the highest \(a \) this contract can implement when optimally centered is less than high-risk second-best, it implies that it could be optimal to increase \(PPS \) when risk is increased. As I'll show in this paper this is exactly the case for a broad class of production functions with exogenous risk for which the \(FOA \) is actually valid.

3 \ The Basic Model

In this (brief) section I start by laying out the basic structure of a production environment where the noise or risk is entirely outside the agent’s control. I further establish here that the standard results in the principal-agent literature cannot be assumed to carry over to optimal sharing rules in such environments. Specifically I demonstrate here that the known conditions under which the first-order approach, on which most of our formal understanding of this paradigm is based, is valid, simply are not satisfied when risk is exogenous.

For risk to be entirely exogenous it must enter separately and independently of the agent’s efforts, and the production functions to qualify are therefore necessarily on the “effort-plus-noise” form

\[
x = a + \epsilon(\theta),
\]

where \(a \in \mathcal{R}^+ \) is the agent’s “effort,” and \(\epsilon(\theta) \) is the random (or risky) component parameterized by \(\theta \) - the determinant of the dispersion of the random component. Here, lower a value of \(\theta \) is taken to imply that \(\epsilon(\theta) \) is less risky in the sense of second-order stochastic dominance. I use \(f(x,a,\theta) \) to denote the density of \(x \) for given values of \(a \) and \(\theta \) while \(F(x,a,\theta) \) is used to represent the corresponding distribution function. \(F(x,a,\theta) \) and \(f(x,a,\theta) \) are as usual both required here to be twice continuously differentiable in \(a \).

For simplicity and consistent with the literature relating risk to \(PPS \), the principal is taken to be risk-neutral while the risk-averse and effort-averse agent has (standard) additively separable preferences, \(U(s(x),a) = u(s(x)) - v(a) \) where \(s(x) \) is the agent’s share of realized output, \(u(s(x)) \) is the agent’s increasing and strictly concave utility for income defined over the entire real line, and
$v(a)$ is the agent’s strictly increasing, convex, and twice continuously differentiable cost of effort.
$h(u(s(x))) \equiv s(x)$ is here the inverse of the agent’s utility of consumption. The agent’s reservation utility is represented by U and the timing of events is the standard one.

For an agency of this form the following observation (adapted from Jewitt [1988]) is of central importance:

Observation 1. When the production function is of the form (1), then $F(x, a, \theta) = F(x - a, \theta)$.

Indeed, this observation forms the basis for the first result:

Proposition 1. No production function of the form (1) exists that satisfies either (i) the Jewitt-conditions or (ii) the Mirrlees-Rogerson-conditions for which the first-order approach (FOA) to characterizing the optimal solution to the principal’s problem is valid.

Proof of Proposition 1. First, note that when $f(x, a, \theta) = f(x - a, \theta)$, the support of x must be unbounded from below to avoid moving support and, thus, first-best. To prove part (i) then, suppose that the FOA is valid so that the optimal contract satisfies

$$\frac{1}{u'(s(x))} = \lambda + \frac{f^a(x, a, \theta)}{f(x, a, \theta)}, \quad (2)$$

where λ and μ are the Lagrange multipliers associated with the (IR) and the (IC) constraints respectively and primes indicate derivatives. With the support of x unbounded from below, condition (2.11) of Jewitt [1988] implies that $f^a(x, a, \theta)/f(x, a, \theta) \to -\infty$ as $x \to -\infty$. Since validity of the FOA implies that $\mu > 0$, the RHS of (2) falls without limit as $x \to -\infty$. But the LHS of (2) is always strictly positive contradicting the presumption that the FOA is valid. This concludes the first part of the proof.

To prove part (ii) note that $F^{aa}(x - a) = f^x(x - a)$. CDFC thus requires $f^x(x - a)$ to be everywhere non-negative and strictly positive for some x. Since the support of x must be unbounded from below and since $\int_{-\infty}^{\xi + a} f(x - a)dx = 1$, where ξ is the upper bound of the support of $f(x)$, CDFC implies that ξ must be finite and that $f(\xi) > 0$. Accordingly, then $f(x - a)$ is not differentiable w.r.t. a at $x = \xi + a$ for any a. Q.E.D.

7Holmstrom (1979) Proposition 1. Also, Jewitt (1988) established without first assuming that the FOA is valid that in the case of a risk-neutral principal, $\mu > 0$ if a is interior.

8Jewitt (1988).
4 Alternative Restrictions

This section derives a set of alternative restrictions for the "effort-plus-noise" case to ensure access to the first-order approach for generating insights. Due to the nature of the task, the majority of the section is inherently quite technical. While the technical details are central to arriving at a problem formulation that can be utilized to generate explicit insights into the risk/PPS trade-off for exogenous risk settings, they are not necessary for understanding the analysis and discussion in subsequent sections of this paper. The reader less interested in the technical details may thus do well by skipping the remainder of this section.

Given the incompatibility of production functions of the form (1) with the standard restrictions used to ensure the validity of the FOA, any insight into the relation between exogenous risk and PPS requires identification of alternate restrictions to be placed on the production function as well as on the agent’s preferences. At the outset it seems quite unlikely that one would be able to find such restrictions unless the sharing rule is monotone non-decreasing in x. As a starting point it therefore seems natural to confine attention to production functions that satisfy the MLR condition.\(^9\)

This immediately places structure on the general shape of $f(x, a, \theta)$.

Lemma 1. When the production function is of the form (1), a necessary condition for the MLR condition to be satisfied is that $f(x, a, \theta)$ is unimodal.

Proof of Lemma 1 Suppose $f(x, a, \theta)$ is not unimodal. Then, for any given a and θ there exists corresponding values of x, say \underline{x} and \overline{x}, such that $f^\prime(x, a, \theta)|_{x=\underline{x}} < 0$ and $f^\prime(x, a, \theta)|_{x=\overline{x}} > 0$. Since $f^\prime(x, a, \theta) = -f^\prime_n(x, a, \theta)$ when the production function is of the form (1), $f^\prime_n(\overline{x}, a, \theta)/f(x, a, \theta) > f^\prime_n(\underline{x}, a, \theta)/f(x, a, \theta)$. Q.E.D.

For the purpose of concreteness and to facilitate further analysis I confine my attention to unimodal distributions that are also symmetric. Specifically:

$$f(x, a, \theta) = g\left(\frac{-b(|x-a|)}{\theta}\right) k(\theta),$$

(3)

where $g' > 0$, $g(0) > 0$ and finite, $\lim_{|x-a| \to \infty} g\left(\frac{-b(|x-a|)}{\theta}\right) \to 0$, $b(0) = 0$, $b'(0) = 0$, $b' > 0 \forall x \neq a$, and $k(\theta) > 0$ satisfies $\int_{-\infty}^{\infty} g\left(\frac{-b(|x-a|)}{\theta}\right) k(\theta)dx/d\theta = 0$. Besides arguably being a natural choice,\(^9\)

\(^9\)It follows directly from (1) that when the first-order approach is valid, $s(x)$ is monotone non-decreasing in x if and only if f^\prime_n/f is monotone non-decreasing in x.

9
confining attention to symmetric distributions is motivated by two factors. First, comparing the riskiness of skewed distributions is more involved and involves placing restrictions on the type of skewness that can be considered anyway. Second, the empirical work on the relation between risk and PPS typically make reference to the variance of a symmetric distribution (typically the Normal) as a proper measure of risk.

That the likelihood ratio must be monotone and, from the proof of Proposition 1, is required to be bounded then generates further information about \(b \) and \(g \):

Lemma 2. For the class of production functions given by (3), the likelihood ratio is monotonic non-decreasing and bounded if and only if (i) \(b'g'/g \) is monotonic non-decreasing in \(x \) and (ii) \(f(x, a, \theta) \rightarrow k(\theta)Exp[-B|x - a|/\theta + R] \) as \(|x - a|/\theta \rightarrow \infty \).

Proof of Lemma 2. With (3) we have

\[
 f^a = \text{Sign}[x - a] \frac{b'g'}{g}k(\theta),
\]

so that

\[
 \frac{f^a}{f} = \text{Sign}[x - a] \frac{b'g'}{g},
\]

which is monotonic non-decreasing in \(x \) if and only if \(b'g'/g \) is. Moreover, given (4) \(\lim_{(|x-a|/\theta) \to \infty} \frac{f^a}{f} = B > 0 \) implies \(\lim_{(|x-a|/\theta) \to \infty} \frac{g'}{g} = \frac{B}{g} \) or that \(\frac{1}{g} dg = Bd(\frac{|x - a|}{\theta}) \). Solving yields the second requirement in Lemma 2. Q.E.D.

Corollary 1. For the class of production functions given by (3) with likelihood ratios bounded above at \(B > 0 \), \(\lim_{(|x-a|/\theta) \to \infty} b'(\cdot) \to B \).

Lemma 3 As \(\theta \to 0 \),

\[
 \frac{d(f^a/f)}{dx} \to \begin{cases} 0, & \text{for } x \neq a, \\ \infty, & \text{for } x = a. \end{cases}
\]

Proof of Lemma 3 Since \(\frac{d(f^a/f)}{dx} = b''g' + b' \left[\frac{g''}{g} - \left(\frac{g'}{g} \right)^2 \right] \), Lemma 2 yields the first line. With \(\frac{d(f^a/f)}{dx} \big|_{(|x-a|/\theta)=0} = \frac{b''g'}{g} \big|_{(|x-a|/\theta)=0} \) the second line follows from the fact that with \(f(x, a, \theta) \) twice continuously differentiable in \(x \), \(\frac{b''g'}{g} \big|_{(|x-a|/\theta)=0} > 0 \) and finite. Q.E.D.

Unfortunately, the properties identified above rule out many (if not all) of the best known standard distributions that could be useful as a platform for further analysis. To identify distributions that do belong to the class of candidate distributions defined by (3) and Lemma 2 consider first
the (Double Exponential) Laplace distribution:

\[f(x, a, \theta) = \frac{1}{2\theta} e^{-\frac{|x-a|}{\theta}}, \]

which satisfies part (ii) of Lemma 2.

Although this distribution perhaps is somewhat unusual from an empirical vantage point, the specific property of (5) that \(f''/f \) is a negative (positive) constant for \(x < (>) a \), is quite useful for identifying the general fallacy in asserting that the level of exogenous risk must be inverse related to the PPS in optimal incentive contracts.\(^{10}\) Unfortunately (5) doesn’t satisfy the requirement that \(b'(0) = 0 \) and \(f(x, a, \theta) \) is thus not twice differentiable in \(a \) (or \(x \)) at \(a = x \). Fortunately, however, it is (relatively) straight forward to obtain a density function that is everywhere twice continuously differentiable in \(a \) (and \(x \)) that preserves the properties of the Laplace distribution almost everywhere.

To this end, consider the following hybrid distribution:

\[
\gamma f(x, a) = \begin{cases}
N(x, a) = n + \frac{\psi}{2\theta} e^{-\frac{n(x-a)^2}{2\theta}}, & a - \omega \leq x \leq a + \omega, \quad \omega > 0, \\
L(x, a) = \frac{n}{\theta} e^{-\frac{|x-a|}{\theta}}, & \text{otherwise,}
\end{cases}
\]

(6)

where \(\gamma \equiv 2 \left(\int_0^\infty N(x, a)dx + \int_0^\infty L(x, a)dx \right) \). Both \(N(x, a) \) and \(L(x, a) \) are twice continuously differentiable at \(x = a \pm \omega \) and symmetric around \(a \) while \(N(x, a) \) also is twice continuously differentiable at \(x = a \). For a production function of the form (6) to be everywhere twice continuously differentiable in \(a \) it is then required that

\[N(\omega) = L(\omega), \]

\[\frac{dN(x-a)}{da} \bigg|_\omega = \frac{dL(x-a)}{da} \bigg|_\omega, \]

and

\[\frac{d^2N(x-a)}{da^2} \bigg|_\omega = \frac{d^2L(x-a)}{da^2} \bigg|_\omega. \]

\(^{10}\)I will return to this in the Discussion section.
Solving yields \(\eta = \frac{1+\theta}{\omega} \), \(n = \frac{1}{\omega} e^{-\frac{\omega}{\theta}} \) and \(\psi = e^{-\frac{\omega+\theta}{2\theta}} \). With this I then have

\[
N(x, a) = \frac{1}{\omega} e^{-\frac{(1+\theta)(x-a)^2+\omega^2\theta}{2\omega}} + \frac{1}{\omega^2} e^{-\frac{\omega}{\theta}}.
\]

\[
f^a(x, a) = \begin{cases}
\frac{(1/\omega+1/\omega^2)(x-a)}{\omega^2\theta} & a - \omega \leq x \leq a + \omega, \\
\text{Sign}[x-a] & \text{otherwise}.
\end{cases}
\]

Notice now that if the FOA is valid when the production function is on the form (6), as \(\omega \to 0 \), the optimal contract approaches

\[
u(s(x)) = \begin{cases}
\overline{U} + \nu(a^\theta) + \theta \nu'(a^\theta), & \text{for } x \geq a^\theta, \\
\underline{U} + \nu(a^\theta) - \theta \nu'(a^\theta), & \text{for } x < a^\theta,
\end{cases}
\]

independent of the relation between \(u \) and \(1/u' \). The lack of dependence between \(s(x) \) and the properties of \(u \) follows since as when \(\omega \to 0 \), \([\lambda + \mu \frac{\theta}{\omega}] \) basically takes on only one of two different values while both the (IR) and the (IC) constraint still must be (exactly) satisfied. To exploit this simplicity, in what follows I focus on the case where \(f(x, a) \) in on the form (6) with \(\omega \) being arbitrarily close to zero (and thus arbitrarily close to the production function given by (5)) and where the contract derived via the FOA therefore is arbitrarily closely approximated by the \(s(x) \) that satisfies (7). In what follows I will take the (approximate) properties of (5) and (7) to be exact and will refer to this combination as the Approximate Laplace Specification.

While a main attraction of this specification is the simplicity of the contract derived from the FOA, equally important for the purpose at hand is that the risk-PPS trade-off when the FOA is valid becomes well defined. Specifically, with this representation the PPS is measured unambiguously by the difference in the payments for \(x < a^\theta \) and \(x \geq a^\theta \). The standard empirical hypothesis that increased risk here measured by the Laplace distribution’s standard deviation, \(\theta \), should be accompanied by a decrease in the PPS in the agent’s contract, therefore simply becomes a statement about the equilibrium relation between \(\theta \) and \(h(\overline{U} + \nu(a^\theta) + \theta \nu'(a^\theta)) - h(\underline{U} + \nu(a^\theta) - \theta \nu'(a^\theta)) \). The remainder of this section explores this relation and in doing so demonstrates the lack of a monotone relation between risk and PPS.

\[^{11}a^\theta \text{ denotes the agent’s optimal response to the optimal contract (derived using the FOA) for a given } \theta.\]
Since the PPS in (7) is monotonic increasing in:

$$\theta v'(a^\theta),$$

(8)

it would seem to be straightforward to conclude that the relation between exogenous risk and PPS cannot be everywhere decreasing. This appears to follow because when $\theta \to 0$, presumably $a \to a^{FB}$ and with $v'(a^{FB}) \leq 1$ for the production function specified here, $\theta v'(a^\theta) \to 0$ from above as $\theta \to 0$.\(^{12}\)

The problem with the above argument is closely related to Lemma 2. As $\theta \to 0$, $\partial EU/\partial a \to -v'(a)$ for any $a < a^{FB}$. Moreover, as $s(x) \to U + v(a^{FB})$, $EU(s(x), 0) \to U + v(a^{FB})$ as well. As under the optimal contract $EU(s(x), a^\theta) = U$ independent of θ, in the limiting case of $\theta = 0$, $a = 0$ then is the agent’s optimal response to the contract (7) implying that the first-order approach is not valid in this case. Accordingly, establishing that the relation between risk and PPS is not always everywhere decreasing by appealing to (8) requires that it be established that preferences exist such that the first-order approach is valid for a range of values of θ “sufficiently close to 0.” Proposition 2 first addresses the possibility that the FOA is valid for any given value of $\theta > 0$.

Proposition 2. For the Approximate Laplace Specification the FOA is valid at θ if $v(a)$ satisfies $v'(a^\theta)e^{\frac{a-a^\theta}{\theta}} - v'(a) > 0$, $a < a^\theta$.

Proof of Proposition 2. A sufficient condition for the first-order approach to be valid in the case of the Approximate Laplace Specification is that $\partial EU(s(x), a)/\partial a > 0$ for all $a < a^\theta$, where $s(x)$ is derived using the first-order approach. This follows since by construction, $\partial EU(s(x), a)/\partial a = 0$ for $a = a^\theta$ and, as is easily verified, for the Approximate Laplace Specification, $\partial EU(s(x), a)/\partial a < 0$ for $a > a^\theta$. With the structure of this contract,

$$EU(s(x), a) = U + v(a^\theta) - \int_{-\infty}^{a^\theta} \theta v'(a^\theta)f(x, a, \theta)dx + \int_{a^\theta}^{\infty} \theta v'(a^\theta)f(x, a, \theta)dx - v(a),$$

and

$$\partial EU(s(x), a)/\partial a = 2\theta v'(a^\theta)f(a^\theta, a, \theta) - v'(a).$$

\(^{12}\) a^{FB} is here used to signify the first-best effort level.
Accordingly, the first-order approach is valid if \(v(a) \) satisfies

\[
v'(a) < 2\theta v'(a^\theta) f(a^\theta, a, \theta), \quad a < a^\theta, \]

or, using (5),

\[
v'(a^\theta) e^{\frac{a-a^\theta}{\theta}} - v'(a) > 0, \quad a < a^\theta. \]

As \(v'(a^\theta) > 0 \), \(e^{\frac{-a}{\theta}} > 0 \), and \(e^{\frac{a-a^\theta}{\theta}} \) is increasing convexly in \(a \) for \(a < a^\theta \), it is always possible to find an increasing and convex cost function, \(v(a) \), that satisfies this condition. \(Q.E.D. \)

Proposition 2 simply establishes that for the Approximate Laplace Specification, given a \(\theta > 0 \) and a solution \(a^\theta \) satisfying the agent’s first-order condition in \(a \), this is indeed the optimal solution to the principal’s problem as long as the agent’s cost function does not increase “too quickly” in \(a \) for \(a < a^\theta \). Proposition 3 establishes the implications of this constraint for the relation between \(\theta \) and \(a^\theta \).

Proposition 3. Suppose for some \(\theta \), \(v(a) \) is such that \(v'(a^\theta) e^{\frac{a-a^\theta}{\theta}} - v'(a) > 0, a < a^\theta \). Then for the Approximate Laplace Specification, \(\frac{da^\theta}{d\theta} < 0 \).

Proof of Proposition 3. Given the nature of (7), the principal's residual maximization problem can be expressed as

\[
\max_a \quad a - \frac{1}{2}h[U + v(a) - \theta v'(a)] - \frac{1}{2}h[U + v(a) + \theta v'(a)]
\]

which has the first-order condition (suppressing \(a \) from the notation for the moment)

\[
FOC \equiv 2 - (v' - \theta v'')h'[U + v - \theta v'] - (v' + \theta v'')h'[U + v + \theta v'] = 0.
\]

Furthermore, taking the partial derivatives of the left-hand-side of this first-order condition with respect to \(\theta \) and \(a \) respectively yield

\[
\frac{\partial FOC}{\partial \theta} = v''h'[L] + v'(v' - \theta v'')h''[L] - v''h'[H] - v'(v' + \theta v'')h''[H], \quad (9)
\]
\[
\frac{\partial \text{FOC}}{\partial a} = -(v'' - \theta v''')h'[L] - (v' - \theta v'')h''[L] - (v'' + \theta v''')h'[H] - (v' + \theta v'')h''[H],
\]
where \(L \equiv U + v(a^\theta) - \theta v'(a^\theta) \), and \(H \equiv U + v(a^\theta) + \theta v'(a^\theta) \). Accordingly,

\[
\frac{da^\theta}{d\theta} = -\frac{v''h'[L] + v'(v' - \theta v'')h''[L] - v'(v' + \theta v'')h''[H]}{-(v'' - \theta v''')h'[L] - (v' - \theta v'')h''[L] - (v'' + \theta v''')h'[H] - (v' + \theta v'')h''[H]},
\]
where the denominator is the second-order condition for \(a^\theta \) and thus guaranteed to be negative and the sign of \(\frac{da^\theta}{d\theta} \) is therefore determined by the sign of the numerator.

The requirement that \(v'(a^\theta)e^{\frac{a^\theta - \theta}{\sigma}} - v'(a) > 0 \), \(a < a^\theta \) can be re-written as \(v'(a^\theta)e^{\frac{a^\theta - \theta}{\sigma}} - \delta(a, \theta) = v'(a) \), where \(\delta(a, \theta) > (=) 0 \) for \(a < (=) a^\theta \). Accordingly, \(\delta(a, \theta) \leq 0 \), \(a < a^\theta \). Now differentiate \(v'(a) \) to get \(\theta v''(a) = v'(a^\theta)e^{\frac{a^\theta - \theta}{\sigma}} - \theta \delta(a, \theta) \). Accordingly, the requirement that \(v'(a^\theta)e^{\frac{a^\theta - \theta}{\sigma}} - v'(a) > 0 \) implies that \(\theta v''(a^\theta) \geq v'(a^\theta) \). This confirms that the numerator of the expression for \(\frac{da^\theta}{d\theta} \) is also negative. \(Q.E.D. \)

Using the relation between \(a \) and \(\theta \) from proposition 3, proposition 4 expands on proposition 2 to establish that if the agent’s cost function supports using the FOA for a given \(\hat{\theta} > 0 \), the FOA is also valid for all \(\theta > \hat{\theta} \).

Proposition 4. For any Approximate Laplace Specification where \(v(a) \) satisfies \(v'(a^\hat{\theta})e^{\frac{a^\hat{\theta} - \theta}{\sigma}} - v'(a) > 0 \), \(a < a^\hat{\theta} \), where \(a^\theta \) satisfies the agent’s first-order condition in \(a \), the FOA is valid for all \(\theta \geq \hat{\theta} \).

Proof of Proposition 4. Consider some strictly positive value of \(\theta \), say \(\hat{\theta} \), and define \(\theta_\varepsilon \) as the value of \(\theta \) for which \(a^{\theta_\varepsilon} = a^\hat{\theta} - \varepsilon \), \(\varepsilon \geq 0 \). Then, if \(a^\theta \) is decreasing in \(\theta \), \(\theta_\varepsilon \geq \hat{\theta} \). I can then re-write the condition from proposition 2 as

\[
e^{-\frac{|a^\theta - \theta - a|}{\sigma_\varepsilon}} \frac{v'(a)}{v'(a^\theta_\varepsilon)} > 0, \quad a < a^{\theta_\varepsilon} \text{ and } \varepsilon = 0.
\]

(11)

Now differentiate the LHS of (11) with respect to \(\varepsilon \) to obtain

\[
\left(\frac{1}{\theta_\varepsilon} + \frac{d\theta_\varepsilon}{d\varepsilon} \frac{a^\hat{\theta} - \varepsilon - a}{\theta_\varepsilon^2} \right) e^{-\frac{|a^\theta - \theta - a|}{\sigma_\varepsilon}} + \frac{v'(a)v''(a^\theta_\varepsilon)}{(v'(a^\theta_\varepsilon))^2} > 0, \quad \forall a \leq a^\hat{\theta} - \varepsilon > 0.
\]

15
Accordingly, if the first-order approach is valid for $\theta = \hat{\theta}$, it is valid for all $\theta \in [\hat{\theta}, \infty)$. Q.E.D.

5 The “Risk - PPS” Trade-off

While the preceding analysis establishes that it is indeed feasible to identify specific restrictions on preferences and the production function that guarantee the validity of the FOA when risk is truly exogenous, the task of establishing generally a relation between risk and PPS does not appear within reach, even with the benefits offered by the Approximate Laplace Specification developed in the previous section. The reason is that the validity of the FOA is crucially dependent on the risk in the production function in that for any given set of preferences the validity of the FOA requires that the risk is not “too low.” In this section I therefore restrict the functional forms further to be able to demonstrate that the maintained hypothesis that optimal contracts generally should exhibit an inverse relation between PPS and exogenous risk is false.

To that end I continue to rely on the Approximate Laplace Specification but utilize the following specific representation of the agent’s preferences:

$$U(s(x), a) = (s(x))^{\frac{1}{2}} - a^2/2,$$

and set $U = 1$. With this representation, under the maintained assumption that the FOA is valid, the optimal level of effort, $a^{\hat{\theta}}$, is simply the solution to the following polynomial:

$$1 - 2a - a^3 - 2\theta^2 a = 0.$$

Table 1 below summarizes the solution along with the properties of the contract derived using the FOA as well as indicates the sign of the second-order condition (SOC) and accordingly the validity of the FOA at the various levels of risk as per the condition in proposition 2.
<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(a^\theta)</th>
<th>(2\theta v'(a^\theta))</th>
<th>(s(H) - s(L))</th>
<th>(SOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>0.44995</td>
<td>0.08999</td>
<td>0.19820</td>
<td>+</td>
</tr>
<tr>
<td>.2</td>
<td>0.43986</td>
<td>0.17594</td>
<td>0.38593</td>
<td>+</td>
</tr>
<tr>
<td>.3</td>
<td>0.42380</td>
<td>0.25428</td>
<td>0.55423</td>
<td>+</td>
</tr>
<tr>
<td>.4</td>
<td>0.40285</td>
<td>0.32228</td>
<td>0.69686</td>
<td>+</td>
</tr>
<tr>
<td>.5</td>
<td>0.37834</td>
<td>0.37834</td>
<td>0.81084</td>
<td>-</td>
</tr>
<tr>
<td>.6</td>
<td>0.35166</td>
<td>0.42199</td>
<td>0.89617</td>
<td>-</td>
</tr>
<tr>
<td>.7</td>
<td>0.32414</td>
<td>0.45380</td>
<td>0.95527</td>
<td>-</td>
</tr>
<tr>
<td>.8</td>
<td>0.29690</td>
<td>0.47504</td>
<td>0.99196</td>
<td>-</td>
</tr>
<tr>
<td>.9</td>
<td>0.27076</td>
<td>0.48737</td>
<td>1.01047</td>
<td>-</td>
</tr>
<tr>
<td>1.0</td>
<td>0.24627</td>
<td>0.49254</td>
<td>1.01495</td>
<td>-</td>
</tr>
<tr>
<td>1.1</td>
<td>0.22371</td>
<td>0.49216</td>
<td>1.00896</td>
<td>-</td>
</tr>
<tr>
<td>1.2</td>
<td>0.20230</td>
<td>0.48552</td>
<td>0.99091</td>
<td>-</td>
</tr>
<tr>
<td>1.3</td>
<td>0.18470</td>
<td>0.48022</td>
<td>0.97682</td>
<td>-</td>
</tr>
<tr>
<td>1.4</td>
<td>0.16812</td>
<td>0.47074</td>
<td>0.95477</td>
<td>-</td>
</tr>
<tr>
<td>1.5</td>
<td>0.15329</td>
<td>0.45987</td>
<td>0.93055</td>
<td>-</td>
</tr>
<tr>
<td>1.6</td>
<td>0.14006</td>
<td>0.44819</td>
<td>0.90518</td>
<td>-</td>
</tr>
<tr>
<td>1.7</td>
<td>0.12826</td>
<td>0.43608</td>
<td>0.87934</td>
<td>-</td>
</tr>
<tr>
<td>1.8</td>
<td>0.11773</td>
<td>0.42383</td>
<td>0.85353</td>
<td>-</td>
</tr>
<tr>
<td>1.9</td>
<td>0.10832</td>
<td>0.41162</td>
<td>0.82806</td>
<td>-</td>
</tr>
<tr>
<td>2.0</td>
<td>0.09990</td>
<td>0.39960</td>
<td>0.80319</td>
<td>-</td>
</tr>
</tbody>
</table>

The column to the right reports the sign of the second-order condition and here indicates if the FOA is (-) or is not (+) valid for the given level of \(\theta \). The third and fourth columns of this table provide the PPS in the contract respectively in terms of utiles and consumption units ("compensation"). The latter’s relation with risk as measured by \(\theta \) is plotted in Figure 4 below.

Insert Figure 4 about here.
The solid curve in this figure represents the relation between risk and PPS over the range of θ where the FOA is indeed valid and the PPS listed in the table therefore is the PPS of the optimal contract. As reflected in this figure, the validity of the FOA hinges on the value of θ. For the particular preference representation the FOA attains validity for a value of θ between .4 and .5 and is, as per proposition 4, (in-) valid for all values of θ (smaller) greater than this cut-off.

What is most important about this example, however, is that it establishes that the PPS is not monotonically decreasing in θ over the range where the FOA is actually valid. This inverse relation only holds for relatively large values of θ while the relation between risk and PPS is actually reversed for relatively small values of θ. Unless the level of risk somehow is expected to always be “large” there is no theoretical reason for expecting that higher risk should be statistically associated with lower PPS. Indeed, the theory predicts mixed and/or weak empirical results and is therefore consistent with existing empirical evidence.

The question then becomes what the model specification identified here has to offer in terms of guidance for future empirical compensation research (re-) examining the risk-PPS relation. The most obvious suggestion, to me at least, is the need for allowing the sign of the estimated PPS-risk relation itself to depend on the level of risk; the inverse relation should be expected only for sufficiently high levels of risk. For lower levels of risk, little if any relation is more likely and for sufficiently low levels of risk even a positive relation is to be expected. Also, it seems like a straightforward suggestion that discrepancies in the existing empirical literature might be explainable by differences in the levels of risk in the various samples examined.

Some words of caution need to accompany perhaps in particular the latter of these suggestions. The reason for the non-monotonicity of the PPS-risk relation identified here is the boundedness of contracts that agency theory generally predicts. If this is indeed a central property of real-world contracts as well, the standard approach of relying on linear OLS estimates of the PPS-risk relation is inherently biased in favor of finding an inverse PPS-risk relation. Figure 5 provides intuition.

Insert Figure 5 about here.

While for visual effect Figure 5 is drawn in terms of a somewhat stark “meet or beat” type contract, the insight it offers apply generally to optimal contracts with at least one (a lower)
bound: if the outcome distribution is made more risky and thus wider, holding the contract constant implies probability mass is moved onto and further out the bound(s). The OLS regression therefore becomes more like the bound(s) and the regression line thus flattens even though the contract (and real PPS) itself is not affected by the increase in risk.

A better empirical measure of pay performance sensitivity may be the distance between the lower bound and the upper cap on compensation. Alternatively, the difference between the lower compensation bound and average compensation may work better generally as it may be less clear whether an upper cap is implemented. Stock-options obviously represent a case where there is only a lower bound. Also, from a theoretical perspective it is the lower bound that is crucial. But clearly it is important to recognize that when contracts are non-linear which they generally need to be/are, no single measure of PPS will always be the best.

6 Concluding Discussion

The analysis in this paper provides several insights. First, it is possible to place restrictions on preferences and production functions in such a way that the optimal sharing rule can be derived and studied for the standard principal agent model with exogenous risk. Second, there is no theoretical support for the claim that the standard principal-agent model predicts an inverse relation between exogenous risk and PPS. In the specific case studied, it was shown that when risk is sufficiently low, a positive relation exists. Third, and somewhat depressing, finding general restrictions to validate this type of analysis is unlikely. This follows since the restrictions needed on the agent’s preferences depend on the nature of the optimal contract and except in the case of the Approximate Laplace Specification where the functional form of the optimal contract is extremely simple, identifying even sufficient restrictions is not likely to be doable.

Despite the lack of restrictions that would allow for a more general analysis of optimal contracts in settings with exogenous risk, however, the nature of the optimal relation between PPS and such exogenous risk is bound to be the same as in the special case identified and analyzed here. This follows from the fact that any viable production function must satisfy lemma 2, implying that the optimal contracts are bounded from above as well as from below. As in the limit when the risk goes to zero, all contracts and all distributions “look” the same, the PPS must be approaching zero as
in the case presented here. Similarly, as risk grows without limit no effort will be elicited and the optimal PPS then should be approaching 0 as well. Thus, while whether the optimal contracts can actually be derived in alternative settings remains an open question, the analysis here strongly suggests that if settings exist where this is feasible, the contracts will also exhibit a non-monotonic relation between risk and PPS.
References

Figure 1: Minimum Effort

Second-Best Effort
Figure 2: Medium Effort
Figure 3: Risk and PPS