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W e consider production and service systems that consist of parallel lines of two types: (i) M/M/1 lines and (ii) lines
that have no buffers (loss systems). Each line is assumed to be controlled by a dedicated supervisor. The manage-

ment measures the effectiveness of the supervisors by the long run expected cost of their line. Unbalanced lines cause
congestion and bottlenecks, large variation in output, unnecessary wastes and, ultimately, high operating costs. Thus, the
supervisors are expected to join forces and reduce the cost of the whole system by applying line-balancing techniques,
possibly combined with either strategic outsourcing or capacity reduction practices. By solving appropriate mathematical
programming formulations, the policy that minimizes the long run expected cost of each of the parallel-lines system, is
identified. The next question to be asked is how to allocate the new total cost of each system among the lines’ supervisors
so that the cooperation’s stability is preserved. For that sake, we associate a cooperative game to each system and we
investigate its core. We show that the cooperative games are reducible to market games and therefore they are totally bal-
anced, that is, their core and the core of their subgames are non-empty. For each game a core cost allocation based on
competitive equilibrium prices is identified.
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1. Introduction

Unbalanced lines in manufacturing systems and ser-
vice systems cause congestion and bottlenecks that
result in large variation in output, unnecessary wastes
and, ultimately, high operating costs. Various line-
balancing practices that help improving the efficiency
of the system are known where the most common one
is pooling certain inner resources and redistributing
them optimally. A line-balancing policy, which is
based solely on pooling inner resources is called a
domestic processing policy. In other words, a line-balan-
cing policy that uses all its capacity in-house, and all
its demand is satisfied by activities that are performed
in-house using this capacity, is a domestic processing
policy. However, in the few last decades, contracting
out some activities by manufacturers and service pro-
viders has also become widespread. Strategic out-
sourcing enables firms to maintain control of critical
core production or service competencies by releasing
some inner capacity and resources towards the per-
formance of tasks in which the firm specializes in and
where it has a competitive advantage over its rivals.
Another practice that is often used by firms at times
when the demand for their products declines is to

reduce the capacity as maintenance of a too high
capacity is expensive. By applying such practices,
firms have achieved competitive edge and have sub-
stantially increased their productivity.
In the sequel, we describe the service/production

systems considered here, and the motivation behind
this research. The service systems consist of parallel
servers where each server is responsible for serving a
certain group of customers. The role of a server may
be played by an individual person, a team of workers
or by an automated mechanism. Examples for such
services include a medical examination such as clini-
cal breast exams for women, MRI screening, renewal
of professional licences, etc. In the context of manu-
facturing, the systems consist of parallel production
units. For the sake of generality, we refer to parallel
lines rather than servers or machines. Each line is
assumed to be a separate cost unit for accounting pur-
poses and therefore it is assigned a dedicated supervi-
sor who is responsible for the effectiveness of the line.
At the end of each fiscal year, the management
distributes bonuses to the supervisors based on their
performance, where their performance is evaluated
by the cost of their line so that the lower the cost is,
the higher the bonus is. Suppose that the management
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is interested in improving the system by using a cer-
tain combination of practices such as pooling and
redistributing some resources, (e.g., demands or cap-
acities), shutting off certain ineffective lines, out-
sourcing some demand or reducing some surplus
capacity. Such practices may reduce the total cost, but
they also affect the characteristics and the cost of the
individual lines. For example, suppose that the lines
are evaluated by their respective congestion cost and
one of the supervisors prior the change improved her
line by increasing its capacity and reducing its con-
gestion, and now she is asked to transfer some of her
surplus capacity to some other lines. By doing so, the
total cost may go down while her direct congestion
cost may go up. How will she be compensated for
contributing her share to lower the total cost of the
system while her own cost has increased? Without an
appropriate compensation she might refuse to con-
tribute her resources to the team. This is the type of
questions that we ask in this study. Given a system,
first we minimize its total cost by line-balancing tech-
niques in an optimal way, and then we look for a fair
scheme that allocates the total cost to the individual
lines.
We consider systems that operate a number of non-

identical parallel lines, where each line is associated
with its own exponential processing time, its own
Poisson demand process and its own cost parameter.
Units that arrive to a line whose buffer is full are dis-
carded and lost forever. We consider systems that
share the same size of buffers for all the lines, and in
this research we focus on the two extreme cases
where either all buffers are infinitely large or all buf-
fers have a zero size. Processing of a unit by a line
starts immediately if upon its arrival the line is idle.
Otherwise, the units queue up in the line’s buffer as
long as the buffer is not full. Units are processed one-
by-one by the lines according to a First Come First
Served (FCFS) policy. Initially, the system on hand is
assumed to use a domestic processing policy, that is,
each line operates at its full capacity while servicing
its demand. Thus we get two types of systems: The
first consists of parallel M/M/1 lines where the cost
of a line is its long run expected congestion cost. The
second consists of parallel M/M/1/1 lines, where no
buffers exist, and the cost of a line is its long run
expected cost due to discarded units. In both cases, it
is assumed that the cost of the whole system is addi-
tive in the costs of the individual lines.
M/M/1 lines are quite common in modeling both

in service and manufacturing systems as, on one
hand, they approximate numerous real models well
and, on the other hand, there exists a wide body of
knowledge that sheds light on their properties. In an
M/M/1 line, all demand is eventually satisfied and
the line is evaluated by its congestion cost. However,

in practice, it is often the case that lines have finite
buffers and therefore their long run expected cost
should take into consideration both the congestion
and the rate of discarded units. As a first step toward
the study of parallel lines with general buffer size, we
consider here systems of M/M/1/1 lines where no
queues are accumulated and their cost is directly
associated with the expected number of loss units.
The line-balancing techniques that we consider here

are: (i) unobservable routing where units in the pooled
arrival streams can be rerouted among all lines and
(ii) capacity sharing where the total capacity is pooled
and can be reassigned among the lines. Unobservable
routing may be coupled with outsourcing, that is,
some of the demand can be outsourced while the rest
is routed optimally among the lines. The total cost of
such a system is the cost of the balanced lines (conges-
tion cost in parallel M/M/1 systems and cost of dis-
carded units in parallel loss systems), plus the
outsourcing cost. Capacity sharing may be coupled
with reduction of capacity, so that the capacity that is
left for in-house activities is optimally reassigned
among the lines. In such a case, the total cost is the
cost of the balanced lines, as described above, minus
the savings due to capacity reduction.
The problem of minimizing the cost of a system by

line-balancing, outsourcing and capacity reduction,
can be formulated as a mathematical programming
problem. The solution of such a problem generates
both the optimal policy and the optimal cost. How-
ever, in many cases this is just the first step in a suc-
cessful implementation of the optimal policy as the
management might be interested in allocation of the
total cost of the system among the lines as, for exam-
ple, for the sake of applying a bonus scheme to the
lines’ dedicated supervisors. In order to achieve full
cooperation while implementing the optimal line-bal-
ancing policy, the management needs to specify an
allocation scheme of the optimal cost among the lines
so that it will be accepted by all the supervisors. This
is exactly the subject of the theory of cooperative games
with transferable utilities. In section 2, some of the main
concepts of this theory are presented, where here we
briefly explain the general approach.
A cooperative game is defined by a given set of

players and a characteristic function. The characteristic
function is a set function that returns the cost of each
coalition, e.g., subset of players. In our context, we
regard the lines (or their dedicated supervisors) as the
players, and the characteristic function returns the
expected long run average cost for any coalition of
players. Initially, the cost of the system is the sum of
the costs of the individual players. If the set of play-
ers is partitioned into disjoint coalitions, then the
cost of the system is the sum of the costs of all coali-
tions in the partition. Under certain conditions on the
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characteristic function, players may be better off coop-
erating. In all the games that we consider, the form of
the characteristic function ensures full cooperation
among the players, so that any bargaining process
among the players would probably end up in full
cooperation, and in the formation of the grand coali-
tion, that is, the coalition that consists of all players.
Once that the grand coalition is formed, the next natu-
ral question is how to fairly allocate the total cost
among the players in order to ensure the stability of
the grand coalition in view of the fact that some play-
ers have a greater contribution to the grand coalition
than others. Several concepts of fairness have been
proposed in the literature. The most appealing one
that we adopt here, is the core: A cost allocation vector
is in the core of the game if it is efficient, that is, the
sum of its entries equals the cost of the grand coali-
tion, and if, in addition, for any coalition of players,
the total cost allocated to its players is bounded from
above by the cost of the coalition if its players would
join forces and abandon the grand coalition. That
means, that a cost vector is in the core if and only if no
coalition has an incentive to defect and play by itself.
We note here that a cost allocation vector is not neces-
sarily non-negative, that is, there may exist players
that are allocated a negative cost. This may occur in
games where "valuable" players exist (in our context,
lines that have a large capacity and a low arrival rate)
and the other players may agree to pay the "valuable"
players in order to convince them to cooperate, as
they may help reducing substantially the total cost. In
general, the core is either empty, or infinitely large or
it consists of a single cost allocation. Though, the defi-
nition of the core sounds reasonable, characterizing
the core may be an intricate task. Indeed, this issue
coupled with the possibility that the core is empty,
makes the problem of finding a core allocation a real
challenge in some games, let alone characterizing the
whole core.
In this study, we consider the problems of line-bal-

ancing by unobservable routing jointly with out-
sourcing, and of line-balancing by capacity sharing
and capacity reduction, in parallel M/M/1 and M/
M/1/1 systems. For each problem the optimal policy
and the long run average cost are identified. The
problems are then formulated as cooperative games
and for each game a core cost allocation is identified.
The rest of the study is organized as follows: In sec-

tion 2 we state the main definitions and prerequisites
on cooperative games, and we present the class of
market games. In section 3, we consider parallel M/M/
1 lines: we find the optimal domestic processing pol-
icy for each of the two versions of the problem and
we define the respective line-balancing games for an
extended version of the problem where either
demand can be outsourced or capacity can be

reduced. In section 4, we consider the same questions
on parallel M/M/1/1 lines. All the four games are
shown to be reducible to market games, proving that
they are totally balanced. A core allocation for each
game based on competitive equilibrium pricing is
found. Section 5 concludes the study.

2. Review on Cooperative Games

A general cooperative game with transferable utility is
defined by a pair G = (N, c), where the set
N = {1, 2, . . ., n} consists of n players, any subset S of
N, ∅ ⊆ S ⊆ N, is called a coalition, where N itself is
called the grand coalition and each coalition S is asso-
ciated with a real value denoted by c(S), where
c(∅) = 0. The value c(S) is the total cost inflicted on
the members of coalition S if its members, and only its
members, cooperate. The set function c : 2N ! < is
called a characteristic function. The total cost incurred
by all players of N that partition into m disjoint coali-
tions, that is, S1 [ S2 [ . . . [ Sm ¼ N; 1 ≤ m ≤ n, isPm

i¼1 cðSiÞ. Note that in general cooperative games
with transferable utility, the total cost is not necessar-
ily additive in the coalitions but the additive form is
the most conventional form that used in the literature.
In the line-balancing games considered here, the
individual lines play the role of the players and the
characteristic function maps each coalition to its long
run expected total cost, as obtained by applying the
line-balancing procedure on its members.
Next we review the main concepts in cooperative

games that are relevant to this study. Given a game,
the first question is whether the grand coalition is the
socially optimal formation of coalitions, that is,
whether cðNÞ � Pm

i¼1 cðSiÞ for any partition to dis-
joint coalitions S1 [ S2 [ . . . [ Sm ¼ N; 1 ≤ m ≤ n. A
sufficient condition for full cooperation is subadditiv-
ity of its characteristic function: A game G = (N, c) is
called subadditive if for any two coalitions S and T,
c(S ∪ T) ≤ c(S) + c(T). Subadditive games bear the
concept of economies of scope, that is, when each player,
or set of players, contributes its own skills and
resources, the total cost is no greater than the sum of
the costs of the individual parts. On top of forming
the grand coalition, it is necessary to establish a way
that allocates the cost c(N) among the players, so that
no group of players may resist the cooperation and
decide to act alone. Several concepts of stability have
been proposed in the literature. The most appealing is
the core: A vector x 2 <n is said to be efficient ifPn

i¼1 xi ¼ cðNÞ, and it is said to be a core cost allocation
of the game if it is efficient and if it satisfies the 2n�2

stand-alone inequalities, namely,
P

i2S xi � cðSÞ for
any S ⊂ N.
The collection of all core allocations, called the core

of the game, forms a polyhedron in <n as it is defined
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by a set of linear constraints with n decision variables.
As the number of constraints that define the core is
exponential in n, finding a core allocation for a given
game may be, in general, an intricate task. Indeed, this
issue coupled with the possibility that the core is
empty, makes the problem of finding a core allocation
a real challenge in some games. Moreover, even if one
can prove the non-emptiness of the core, the question
of finding a cost allocation in the core may be non-
trivial, let alone characterizing the whole core.
A cooperative game G = (N, c) is said to be balanced

if its core is non-empty, and totally balanced if its core
and the cores of all its subgames are non-empty.
Subadditivity is a necessary condition for total bal-
ancedness as if there existed disjoint coalitions S and
T for which c(S) + c(T) < c(S ∪ T), the subgame
(S ∪ T, V) would have an empty core since any effi-
cient allocation of c(S ∪ T) among the players of
S ∪ T will be objected by at least one of the coalitions,
S or T.
Some papers have considered resource pooling in

the context of cooperative games, see e.g., Anily and
Haviv (2010), Chakravarthy (2016), Karsten (2013),
Karsten et al. (2009, 2011), Timmer and Scheinhardt
(2013) and Yu et al. (2015). Directly related to this
study is Timmer and Scheinhardt (2013), which
proves that the domestic processing capacity sharing
game with identical cost parameters across all lines, is
totally balanced and it identifies a specific cost alloca-
tion in the core. We generalize the game by allowing
line-dependent cost parameters in addition to capac-
ity reduction.
The literature provides two main general condi-

tions that are sufficient in order establish the total bal-
ancedness of a game.

CONDITION 1. A game G = (N, c) is a concave game if
its characteristic function is concave, meaning that for
any two coalitions S, T ⊆ N, c(S ∪ T) + c(S ∩ T) ≤
c(S) + c(T). Concave games are, clearly, subadditive but
not the other way around. It was shown in Shapley
(1971) that the core of a concave game possesses n!
extreme points, each of which being the vector of
marginal contribution of the players for a different
permutation of the players.

CONDITION 2. A market game, see e.g., Chapter 13 in
Osborne and Rubinstein (1994), is defined as follows:
Suppose there are ‘ types of inputs. An input vector is a
non-negative vector in <‘

þ. Each of the n players
possesses an initial commitment vector wi 2 <‘

þ,
1 ≤ i ≤ n, which states a nonnegative quantity for each
input. Moreover, each player is associated with a
continuous and convex cost function gi : <‘

þ ! <þ,
1 ≤ i ≤ n. A profile ðziÞi2N of input vectors for whichP

i2N zi ¼
P

i2N wi is an allocation. The game is such

that a coalition S of players looks for an optimal way to
redistribute its members’ total commitments among its
members in order to get a profile ðziÞi2S of input vectors
so as the sum of the costs across the members of S is
minimized. Formally, for any ∅ ⊆ S ⊆ N,

cðSÞ ¼min
nX

i2S
giðziÞ : zi 2 <‘

þ;

i 2 S and
X
i2S

zi ¼
X
i2S

wi

o
:

ð1Þ

Market games are not necessarily concave, but they
are well-known to be totally balanced, see Peleg and
Sudholter (2007), Corollary 3.2.4. Unlike concave
games whose core is fully characterized and has a
closed form (see Condition 1), just a single core alloca-
tion ðx1; . . .; xnÞ; given in equation (2) below, which is
based on competitive equilibrium prices, is known for
a general market game, (see Osborne and Rubinstein
(1994, p. 266):

xi ¼ giðz�i Þ �Hðz�i � ziÞ for i 2 N; ð2Þ
where Θ is the Lagrange multiplier of the constraint
in equation (1), and ðz�i Þni¼1 signifies the optimal
input to each player in equation (1).
In fact, Shapley and Shubik (1969) proves that a

game is a market game if and only if it is totally bal-
anced. In particular, any concave game is a market
game. However, if a game is not naturally formulated
as a market game (see equation (1)), then the task of
reformulating it as a market game (or showing that
such a formulation does not exist), may be as intricate
as proving directly that it is totally balanced (or that it
is not). Thus, it seems that except for games that are
either originally stated as market games, or are easily
transformed to market games, this approach has its
limits. We show that each of the line-balancing games
described here, is transformable to a market game,
enabling us to derive the cost allocation that is based
on competitive equilibrium prices.
Anily and Haviv (2010) analyzes the most basic M/

M/1 service pooling game, where cooperation among
M/M/1 lines generates a new M/M/1 line whose
arrival stream is the union of the individual streams,
its capacity is the sum of the individual capacities and
the characteristic function returns the long run
expected congestion. The game is proved to be totally
balanced though it is neither concave nor monotone,
and the nonnegative part of its core is fully character-
ized. Anily and Haviv (2014) defines a large class of
games, called regular games, that contains most coop-
erative games in service and operations management
including the above mentioned M/M/1 service pool-
ing game and the line-balancing games considered
in this study. Anily (2017) proposes a sufficient
condition for total balancedness of a sub-class of
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subadditive homogenous of degree 0 regular games
that is applicable to theM/M/1 service pooling game.
Anily and Haviv (2014) proves that a subadditive and
homogenous of degree 1 regular game is totally bal-
anced, a result that is applicable to all the line-balan-
cing games considered here. Unlike Conditions 1 and
2, that not only provide sufficient conditions for the
non-emptiness of the core but they also indicate a
methodology to compute a core allocation, no core
allocation is known for games that satisfy the two suf-
ficient conditions regarding regular homogenous of
degree 1 (0) described above.

3. Line Balancing Games of Parallel
M/M/1 Line Systems

In this section we discuss line balancing models
that consist of n non-identical parallel lines, N =
{1, . . ., n}, with infinite buffer where each line is
associated with its own Poisson arrival process of
demands, and its service time, which is exponentially
distributed. Line i 2 N is associated with a mean
service rate li [ 0, and a mean arrival rate �i � 0,
where �i \ li. In such a system the congestion cost is
of concern. The cost per unit of congestion per unit of
time on line i 2 N is ai [ 0; implying that its long

run average congestion cost is ai�i

li��i
. The total cost is

additive in the cost of the lines. In the following, we
use the notation �ðSÞ ¼ P

i2S �i and lðSÞ ¼ P
i2S li

for any subset∅ ⊆ S ⊆ N.
Within the class of domestic processing policies,

that is, where the total capacity l(N) is used to serve
the total demand rate k(N) in-house without using
outsourcing or capacity reduction, two possible
improvement schemes of parallel M/M/1 line sys-
tems have been proposed in the literature: (i) the
capacities of the individual lines are preserved at their
original levels, but the pull of the arrival streams of
rate k(N), can be rerouted among the lines. Such a
situation may occur in a production system where the
lines are identical machines whose production rate is
fixed and machine dependent, but the lines’ input
rates are decision variables. This version of the prob-
lem is called the unobservable routing problem. (ii) the
individual streams of arrivals are kept as given, but
the total pooled capacity l(N) can be reassigned
among the lines. Such a case may occur, for example,
if the last production stage of identical parallel machi-
nes is painting components in different colors, where
one machine paints in blue, another one in red, etc.
The input rate to each machine is the given demand
rate for components of a certain color. The capacities
of the machines can be adjusted by the corresponding
demand rates. This version of the problem, given that
the total capacity l(N) is reassigned among the

machines, is called the capacity sharing problem. We
consider a more general class of line balancing poli-
cies that contains the class of domestic processing
policies, where unobservable routing can be coupled
with outsourcing some demand, and capacity sharing
can be coupled with capacity reduction.
In each of the next two subsections, we consider the

parallelM/M/1 line balancing optimal policy and the
respective cooperative game under unobservable
routing and under capacity sharing. Each subsection
introduces the corresponding optimal domestic pro-
cessing policy. Then we extend the class of policies to
allow either outsourcing some demand at a linear
cost, if demands are pooled, or reducing some capac-
ity for linear savings, if capacities are pooled. For each
model we formulate and solve a mathematical pro-
gramming problem that balances the lines optimally
by generating for the unobservable routing problems
the demand to be outsourced and the demand direc-
ted to each line, and for the capacity sharing prob-
lems, the excess capacity that is reduced as well as the
capacity that is assigned to each line. The optimal
solutions demonstrate the dependence of the optimal
cost in the various parameters of the systems. Then,
we consider the question of how to fairly allocate the
optimal cost among the supervisors of the lines, given
that each line is assigned its own dedicated supervi-
sor, so that no individual supervisor or set of supervi-
sors has an incentive to defect from the full
cooperation. Note that usually the supervisors that
have an incentive to break away from full coopera-
tion, are the ones that seem to subsidize the others.
Usually, those are the most efficient supervisors that
the outcome of cooperation makes them regarded
as less efficient as they are asked to bear a greater
portion of the total load of the system in order to
optimize the efficiency of the whole system.

3.1. The Unobservable Routing with Outsourcing
Game
The optimal domestic processing policy for the unob-
servable routing problem for parallel M/M/1 lines
for the case where the cost per unit of congestion is
the same for all lines, has been derived in Bell and
Stidham (1983) (see also Hassin and Haviv (2003, p.
65), while the case of line-dependent congestion cost
parameters, that we present next, has been solved in
Altman et al. (2011). Thereafter, we derive the opti-
mal policy for the line-dependent congestion cost
parameters with the option of outsourcing demand.
Assume that the lines are indexed in a non-decreas-

ing order of ai
li
; that is, a1=l1 � a2=l2 . . . � an=ln. As

we are going to see, the structure of the optimal solu-
tion is such that a consecutive set of the highest
indexed lines, might be idle, that is, no demand will
be directed to these lines.
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Let denote the arrival rate to be assigned to line i by
zi;0 � zi \ li: Let siðzÞ represent the congestion cost
of line i for arrival rate z\ li, where

siðzÞ ¼ aiz
li � z

: ð3Þ

The corresponding optimal domestic processing
policy problem is defined by:

cðNÞ ¼ min
nXn

i¼1

siðzÞ :
Xn
i¼1

zi ¼ �ðNÞ

and zi � 0 for i ¼ 1; . . .; n
o
:

ð4Þ

The function siðzÞ is an increasing and convex func-
tion of z. The marginal cost of directing an infinitesi-

mal demand to line i is dsiðzÞ
dz jz¼0þ ¼ ai

li
. Thus, the

optimal policy can be obtained by gradually increas-
ing, starting from zero, the demand directed to the
first line until the marginal congestion cost on this line
reaches the marginal congestion cost of directing an
infinitesimal demand to the second line. Subse-
quently, the demands on the two first lines are gradu-
ally increased until the marginal costs on these two
lines reach the marginal cost of directing an infinitesi-
mal demand to the third line. The assignment process
continues until all the total demand k(N) is assigned
to lines. The assignment process may end while some
of the highest indexed lines are not used. Denote the
index of the last open line by i�. Let z�i be the optimal
arrival rate directed to line i, where z�i ¼ 0 for i [ i�.
The Lagrange multiplier of the equality constraint in
equation (4) is denoted by Ψ. Thus, for i � i�;
dsiðzÞ
dz jz¼z�

i
¼ W; and for i [ i�, dsiðzÞ

dz jz¼z�
i
¼0 ¼ ai

li
� W;

where

i� ¼ min i 2 N :
aiþ1

liþ1

�
�Pi

j¼1
ffiffiffiffiffiffiffiffiajlj

p �2
�Pi

j¼1 lj � �ðNÞ�2
8<
:

9=
; ; ð5Þ

W ¼
�Pi�

j¼1
ffiffiffiffiffiffiffiffiajlj

p �2
�Pi�

j¼1 lj � �ðNÞ�2 ; ð6Þ

and the optimal congestion level is shown by mini-
mal algebra to equal

cðNÞ ¼
�Pi�

i¼1

ffiffiffiffiffiffiffiffi
aili

p �2Pi�
i¼1 li � �ðNÞ

�
Xi�
k¼1

ai: ð7Þ

The optimal routing rate to any open line is

z�i ¼ li �
�Xi�

j¼1

lj � �ðNÞ
� ffiffiffiffiffiffiffiffi

aili
pPi�
j¼1

ffiffiffiffiffiffiffiffiajlj
p ; 1� i� i�:

ð8Þ

Next, we generalize the above problem, by allowing
to outsource some or all of the demand while apply-
ing a line balancing policy. The unit outsourcing cost
rate is set to 1, and the line-dependent congestion cost
parameters are scaled accordingly. Define a game
G ¼ ðN; ~cÞ where each coalition ∅ ⊆ S ⊆ N is associ-
ated with a cost ~cðSÞ that represents the optimal
expected long run congestion and outsourcing cost
incurred by a demand rate of k(S) that is met by a
policy that combines outsourcing and processing by
the lines of S where line i 2 S is associated with a
capacity li:
In order to prove that the unobservable routing

with outsourcing game G ¼ ðN; ~cÞ in parallel M/M/
1 lines is totally balanced, we reduce it to a market
game. For that sake, let the function /ið�Þ; for k ≥ 0,
given by equation (9), represent the optimal expected
long run congestion and outsourcing cost of line i 2 N
that faces a demand a rate of k.

/ið�Þ ¼ minfsiðzÞ þ �� zj 0� z��g: ð9Þ
Line i, i 2 N, is better off processing units than out-

sourcing as long as its marginal cost is smaller than 1.
Thus, let �zi for lines i 2 N, whose marginal cost at
zi ¼ 0 is smaller than 1, to be the rate at which the
marginal cost is 1. Otherwise, let �zi ¼ 0.

PROPOSITION 1. The optimal policy that minimizes the
sum of congestion and outsourcing costs of an M/M/1
line i, i 2 N, with capacity li [ 0; and congestion cost
rate ai, is unique: The line processes a demand rate of at
most �zi, and the rest, if positive, is outsourced, where

�zi ¼ maxf0; li �
ffiffiffiffiffiffiffiffi
aili

p g: ð10Þ

PROOF. The solution to the equation dsiðzÞ
dz ¼

aili
ðli�ziÞ2 ¼ 1 is li � ffiffiffiffiffiffiffiffi

aili
p

. If this value is positive

then �zi ¼ li � ffiffiffiffiffiffiffiffi
aili

p
. Otherwise, it is zero. The

uniqueness of the policy is due to the fact that the
function siðzÞ, see equation (3), is strictly convex in
ð0; �ziÞ. h

Proposition 1 implies that any line i 2 N with
ai
li

� 1; is closed at optimality, and its demand is
either processed by other, cheaper, lines of N or it is
outsourced. In particular, if line i with ai

li
� 1; is a sin-

gle line system, /ið�iÞ ¼ �i: Otherwise, namely if
ai
li
\ 1; line i processes a number of units that does not

exceed �zi and if line i is a single line system, the
remaining demand, if positive, is outsourced. To sum-
marize, /ið�iÞ ¼ siðminf�i; �zigÞ þ maxf�i � �zi; 0g:
However, when optimizing the total cost of a multi
line system, it is possible that some lines with ai

li
\ 1;

are also closed as it might be possible to process the
total demand rate k(N) on cheaper lines.
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The optimal unobservable routing with ousourcing
cost in parallel M/M/1 lines of any coalition ∅⊆S⊆N,
~cðSÞ; is defined by

~cðSÞ ¼ min
nX

i2S
/iðziÞ :

X
i2S

zi ¼ �ðSÞ

and zi � 0 for i 2 S
o
:

ð11Þ

The cost of the grand coalition, ~cðNÞ; is obtained by
substituting S by N in equation (11).

THEOREM 1. The unobservable routing with outsourcing
game G ¼ ðN; ~cÞ; on parallel M/M/1 lines system,
where the characteristic function ~c is defined in
equation (11), is a market game.

PROOF. The characteristic function ~c : 2N ! <
obeys the requirements of a market game, see equa-
tion (1), as the functions /iðzÞ;z ≥ 0, 1 ≤ i ≤ n, are
convex. h

In view of Theorem 1 and Condition 2, the un-
observable routing with outsourcing game G ¼
ðN; ~cÞ; on parallel M/M/1 lines system, is totally bal-
anced and the cost allocation based on competitive
equilibrium prices is in its core.
In the following, we investigate structural proper-

ties of the optimal solution of the grand coalition cost
~cðNÞ, see equation (11) for S = N, and we derive the
core cost allocation based on competitive equilibrium
prices for the game G ¼ ðN; ~cÞ. Let Θ be the Lagrange
multiplier of the equality constraint, and z�i , i 2 N, be
the optimal solution of the optimization problem (11)
for S = N. Clearly, Θ ≤ 1 as the marginal cost of
increasing k(N) is bounded by the outsorcing cost rate
that equals 1. In fact,

H ¼ minfW; 1g; ð12Þ
where Ψ is the Lagrange multiplier of the equality
constraint in equation (4), that is, the Lagrange mul-
tiplier for the routing problem without the out-
sourcing option. Recall that the lines are indexed in
a non-decreasing order of the ratio between the cost
rate and the capacity. The set of open lines for prob-
lem ~cðNÞ, see equation (11) by substituting S by N,
is of the form f1; . . .; iog, where

io ¼ min i 2 N :
aiþ1

liþ1

� min 1;
ðPi

j¼1
ffiffiffiffiffiffiffiffiajlj

p Þ2

ðPi
j¼1 lj � �ðNÞÞ2

( )( )
:

ð13Þ
By definition, io � i� where i� is defined in equa-
tion (5). If outsourcing is not used by N, then
io ¼ i�: The following lemma proves that the opti-
mal number of units routed to each line is unique.

LEMMA 1. An optimal solution ðz�1; . . .; z�nÞ to problem
(11) for S = N, satisfies one of the following two cases:

• for all i 2 N, z�i \�zi or z�i ¼ 0: Or,

• for all i 2 N, z�i � �zi.

In addition, there exists a unique optimal routing of units
to the lines, where the routing rate to line i 2 N is
minfz�i ; �zig, and the outsourcing rate is �ðNÞ � P

i2N
minfz�i ; �zig.

PROOF. The convexity of the functions /i;i 2 N, in
equation (11), implies that at optimality ~cðNÞ satis-
fies the following properties: (i) the marginal cost of
all lines with z�i [ 0 is the same; (ii) the marginal
cost of all lines with z�i ¼ 0 is at least as high as the
cost of the former group of lines; and (iii) the mar-
ginal cost of all lines is bounded from above by 1,
which is the outsourcing cost rate. The Lagrange
multiplier Θ of the equality constraint in equa-
tion (11) where S = N is, in fact, the marginal cost of
lines having z�i [ 0. If there exists j 2 N such that
0\ z�j \�zj; then Θ < 1, and the marginal congestion
cost of all lines with z�i [ 0; is Θ, where the mar-
ginal cost of lines with z�i ¼ 0, is at least Θ. In such
a case ousourcing is not used by N, and for each
line i = 1, . . ., n, z�i is the optimal rate of units pro-
cessed by line i, that is, z�i \�zi or z�i ¼ 0. In this
case, the strict convexity of the functions /ið�Þ in
the range � 2 ½0; �ziÞ implies a unique vector
ðz�1; . . .; z�nÞ; which coincides with equation (8).
On the other hand, if there exists a line j 2 N such

that z�j � �zj; then Θ = 1, implying that z�j � �zj units
out of z�j are outsourced. Therefore, the marginal
cost of increasing z�i for all lines i 2 N, is also equal
to Θ = 1, meaning that z�i � �zi for all i 2 N. At opti-
mality, this solution means that each open line i � io

receives a rate of exactly �zi units of demand, and
the total remaining rate of �ðNÞ � Pn

i¼1 �zi; is out-
sourced. Thus, in a case the option of outsourcing is
actually realized, the vector ðz�1; . . .; z�nÞ that solves
~cðNÞ is not unique but the optimal routing of units
to the lines is unique. h

The next theorem specifies explicitly the core cost
allocation ðxiÞni¼1 based on competitive equilibrium
prices, see equation (2). One of the interesting proper-
ties characterizing market games is that the form of
the competitive equilibrium prices core allocation
depends only on ~cðNÞ, rather than ~cðSÞ for all coali-
tions ∅ ⊆ S ⊆ N. In the context of the unobservable
routing and outsourcing games, the vector ðxiÞni¼1

depends only on whether or not the grand coalition
outsources, and not on whether or not any of the
other 2n � 2 sub-coalitions outsources. Recall that Θ is
the Lagrange multiplier of the equality constraint in
equation (11) for S = N.
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THEOREM 2. The optimal solution of the grand coalition
and the competitive equilibrium prices core allocation
ðxiÞni¼1 of the unobservable routing with outsourcing
game ðN; ~cÞ are:
• If Θ < 1 or if Θ = 1 and �ðNÞ � Pio

i¼1 �zi ¼ 0;
then outsourcing is not used by N. The last open
line is io ¼ i�; where i� is defined in equation (5),
the optimal routing z�i to line i 2 N is given in
equation (8), and the optimal cost ~cðNÞ is given in
equation (7). Finally, for i � i�:

xi ¼ �ðli � �iÞ
ðPi�

k¼1

ffiffiffiffiffiffiffiffiffi
aklk

p Þ2
ðPi�

k¼1 lk � �ðNÞÞ2

þ 2
ffiffiffiffiffiffiffiffi
aili

p Pi�
k¼1

ffiffiffiffiffiffiffiffiffi
aklk

pPi�
k¼1 lk � �ðNÞ

� ai ; 1� i� i�

and

xi ¼ �i
ðPi�

k¼1

ffiffiffiffiffiffiffiffiffi
aklk

p Þ2
ðPi�

k¼1 lk � �ðNÞÞ2
; i� þ 1� i� n:

• Otherwise, outsourcing is utilized by N. The last
open line io is defined in equation (13), the optimal
routing to lines i 2 N is z�i ¼ �zi; see Proposition
1, and the optimal cost is ~cðNÞ ¼ �ðNÞ � P

i� io

ð ffiffiffiffi
li

p � ffiffiffiffi
ai

p Þ2. Finally, the competitive equilibrium
prices core allocation is

xi ¼ �i � ð ffiffiffiffi
li

p � ffiffiffiffi
ai

p Þ2; 1� i� io;

and

xi ¼ �i; io þ 1� i� n:

PROOF. The form of the competitive equilibrium
prices core allocation is given in equation (2), where
Θ is the Lagrange multiplier of the equality con-
straint in equation (11) for S = N, and ðz�i Þni¼1 is a
corresponding optimal routing to the problem. The
proof of the two cases is as follows:

• If Θ < 1, or if Θ = 1 and �ðNÞ � Pio

i¼1 �zi ¼ 0,
then the optimal policy is a domestic process-
ing policy analyzed in Altman et al. (2011) and
described at the beginning of this subsection.
As the outsourcing option is not used, Θ = Ψ,
where Ψ is the Lagrange multiplier of the
equality constraint of the optimization problem
(4) whose value is defined in equation (6). In
particular, line i�, defined in equation (5), is
the last open line, and the unique optimal
routing rate z�i , to any line i � i�, is given in
equation (8). In order to complete the proof of
this item, we calculate the competitive equilib-
rium prices core cost allocation ðx1; . . .; xnÞ, see
equation (2), by substituting the values of Θ
and z�i for i 2 N, into xi ¼ /iðz�i Þ � Hðz�i �
�iÞ ¼ aiz�i

li�z�
i
� Hðz�i � �iÞ.

• Otherwise, outsourcing is used, implying that
Θ = 1, the last open line is io given in equa-
tion (13), the unique optimal routing rate to
any line i � io is given by �zi, see Proposition 1,
and any optimal solution ðz�1; . . .; z�nÞ to the
optimization problem (11) for S = N, satisfies
z�i [ �zi for i � io;z�i ¼ 0 for i ¼ io þ 1; . . .; n;
and

P
i2N z�i ¼ �ðNÞ. In particular, in any such

solution, the rate at which units are outsourced
is �ðNÞ � Pio

i¼1 �zi [ 0: Thus, any optimal solu-
tion of problem (11) for S = N, is of the follow-
ing form: z�i ¼ �zi þ di; where di [ 0 for i ¼
1; . . .; io, z�i ¼ 0 for i ¼ io þ 1; . . .; n; andPio

i¼1 di ¼ �ðNÞ � Pio

i¼1 �zi. Substituting into
equation (2) generates the following competi-
tive equilibrium prices core cost allocation
ðx1; . . .; xnÞ: xi ¼ /iðz�i Þ � ðz�i � �iÞ, 1 ≤ i ≤ n,
where for the open lines

xi ¼
� ai�zi
li � �zi

þ di
�
� ð�zi þ di � �iÞ

¼ ai�zi
li � �zi

� ð�zi � �iÞ; 1� i� io

and for the closed lines

xi ¼ �i; io þ 1� i� n:

The proof is terminated by substituting �zi;1 � i � io;
(see equation (10) into this last expression. h

The competitive equilibrium prices core allocation
specified in Theorem 2 demonstrates that lines that
are closed at optimality are charged a cost that is
proportional to their demand rate, increasing at a
rate that is equal to the marginal cost of processing
one additional unit in the system. In fact, this core
cost allocation is independent of the demand rates
and of the congestion cost rates of lines that are
closed, which means that in some sense the supervi-
sors of the closed lines are free riders as they are not
punished for having inefficient lines. This is even
more salient under the case that the outsourcing
option is not used, as the demands of the closed lines
are processed by the open lines, and the closed lines
pay for their total demand, the rate of processing the
last infinitesimal unit on the open lines. In addition,
we would like to highlight the fact that the structure
of the competitive equilibrium prices core allocation
for this line balancing game is quite complex, and
that it is doubtful if one could guess a core allocation
without using Condition 2 in section 2 on market
games, especially that this game is not concave. See
the next example that rules out the possibility of
using Condition 1 in section 2 for proving total bal-
ancedness and characterizing the whole core.
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EXAMPLE 1. Let N = {1, 2, 3}, with l1 ¼ l2 ¼ 100,
�1 ¼ �2 ¼ 1, l3 ¼ 1; �3 ¼ 0:99 and a1 ¼ a2 ¼ a3 ¼
�;where � is sufficiently small so that outsourcing is not
used by any coalition. Let S = {1, 3} and T = {2, 3}.
We have here ~cðf1gÞ ¼ ~cðf2gÞ ¼ 0:01, ~cðf3gÞ ¼ 99: In
coalition S line 1 is open and likewise line 2 is open in
coalition T. Thus, ~cðSÞ ¼ ~cðTÞ ¼ 0:02. In coalition
S ∪ T lines 1 and 2 are open, each getting half of the

total traffic. Hence, ~cðS [ TÞ ¼ 2ð 1þ0:495
100�1�0:495Þ. It is easy

to see ~cðS \ TÞ ¼ ~cðf3gÞ ¼ 99. Hence, ~cðS [ TÞþ
~cðS \ TÞ [ ~cðSÞ þ ~cðTÞ, proving that ~cð�Þ is not a
concave set function.

3.2. The Capacity Sharing and Reduction of
Capacity Game
In this subsection, similarly to subsection 3.1, we con-
sider a system N = {1, . . ., n} of parallel M/M/1
lines, where line i 2 N is associated with a Poisson
demand rate �i [ 0; an exponential service capacity
rate li; where �i \ li, and a unit congestion cost rate
of ai [ 0: As in subsection 3.1, the long run expected
cost of the system in case of no cooperation, is the
sum of the congestion costs of the individual lines,

namely,
P

i2N
ai�i
li��i

; however here, the demand �i of

line i 2 N must be processed by its dedicated line,
that is, line i.
We start by considering basic line balancing poli-

cies that reassign the whole surplus capacity of l
(N) � k(N) units to the lines such that each line
i 2 N gets a positive share of the surplus capacity at
top of the necessary minimal level of �i. The cost of
such a policy is the long run expected congestion
cost of the resulting system. However, in general, it
might be cheaper for the system to reduce the level
of surplus capacity that is used by the lines as a too
high surplus capacity might be expensive due to
high maintenance costs. In such a case, the capacity
that is not used for internal purposes might be left
unused in return to some maintenance cost savings
or it might be rented out to other firms in return to
some income. The cost of the system, in the general
case, consists of the congestion cost of the lines in N
minus the savings or income due to reducing/rent-
ing the extra capacity.
The basic policy that minimizes the total long run

congestion cost for the capacity sharing problem
(with no option of capacity reduction), where the sur-
plus capacity of l(N) � k(N) units is fully allocated to
the lines of N, for the special case where the conges-
tion cost rate is the same for all lines, that is, ai ¼ a
for i 2 N, is derived in Kleinrock (1976, pp. 329–331.
We present next a generalization of Kleinrock’s solu-
tion to line dependent congestion cost parameters. In
order to solve this problem, let the function
fiðsÞ : <þ ! <þ denote the long run expected

congestion cost of line i 2 N if it is allocated s > 0
units of surplus capacity:

fiðsÞ ¼ ai�i

s
; i 2 N: ð14Þ

The optimal long run congestion cost is given by

cðNÞ ¼ min
nX

i2N
fiðsiÞ :

X
i2N

si

¼ lðNÞ � �ðNÞ and si [ 0 for i 2 N
o
:

Basic algebra reveals that the optimal allocation of
the surplus capacity to the lines is given by

s�i ¼
ffiffiffiffiffiffiffiffi
ai�i

p
� ðlðNÞ � �ðNÞÞP

j2N
ffiffiffiffiffiffiffiffi
aj�j

p ; i 2 N; ð15Þ

and the optimal congestion cost is

cðNÞ ¼
�P

j2N
ffiffiffiffiffiffiffiffi
aj�j

p �2
lðNÞ � �ðNÞ : ð16Þ

Next, we allow for surplus capacity reduction,
which comes with unavoidable extra congestion, in
return to saving some maintenance costs or, alterna-
tively, earning some rental fees. The savings/income
rate per unit of capacity that is not used by the lines is
scaled to 1. A capacity reconfiguration of the system
allows for a partial reduction of the surplus capacity
as well as a reassignment of the remaining surplus
capacity among the lines. The total cost consists of the
congestion cost minus the savings/income due to
capacity’s reduction.
Let the function /iðsÞ, defined below, denote the

optimal cost of line i 2 N whose current surplus
capacity is s in view of the option to cut some of its
capacity. Recall that the function f is defined in equa-
tion (14).

/iðsÞ ¼ minffiðwÞ � ðs� wÞj 0\w� sg i 2 N: ð17Þ

Let �si be the surplus capacity for which the deriva-

tive @fiðsÞ
@s ¼ � ai�i

s2 equals �1, implying that

�si ¼
ffiffiffiffiffiffiffiffi
ai�i

p
; i 2 N: ð18Þ

Thus, �si is the maximum value of surplus capacity
that line i utilizes, as otherwise reducing the capac-
ity is more profitable. Therefore,

/iðsÞ ¼
ai�i

s if 0\s��si; i 2 N
ai�i
�si

� ðs� �siÞ otherwise.

(
ð19Þ

We now proceed to the definition of the respective
game G ¼ ðN; ~cÞ; where N = {1, . . ., n} is the set of
M/M/1 lines as in subsection 3.1, and the characteris-
tic function ~c assigns to each coalition ∅ ⊆ S ⊆ N the
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optimal congestion cost of its lines minus the savings
obtained by reducing its capacity over all feasible
policies that assign at most l(S) � k(S) units of the
surplus capacity among the lines of S, and the rest is
reduced. By using the /i; i 2 N, functions defined in
equation (19), the characteristic function for any coali-
tion∅ ⊆ S ⊆ N, is expressed by

~cðSÞ ¼ min
nX

i2S
/iðsiÞ :

X
i2S

si

¼ lðSÞ � �ðSÞ and si [ 0 for i 2 S
o
: ð20Þ

The cost of the grand coalition, ~cðNÞ; is obtained by
substituting S by N in equation (20).

THEOREM 3. The capacity sharing with capacity reduc-
tion game, G ¼ ðN; ~cÞ, where the characteristic function
~c is defined in equation (20), is a market game.

PROOF. The proof follows along the same lines as
the proof of Theorem 1, using the convexity of /iðsÞ
that follows from the convexity of fiðsÞ;i 2 N, see
equations (17), and (14). h

In view of Theorem 3 and Condition 2, the capacity
sharing with capacity reduction game, G ¼ ðN; ~cÞ, is
totally balanced and the cost allocation based on com-
petitive equilibrium prices is in its core.
Let Θ be the Lagrange multiplier of the equality

constraint in equation (20) for S = N. In this problem
it holds that Θ < 0 as increasing the surplus capacity
of the system reduces the total cost. If the option of
capacity reduction is not used, then Θ < �1, and
otherwise Θ = �1. More specifically,

h ¼ max �1; �
P

i2N
ffiffiffiffiffiffiffiffi
ai�i

p
lðNÞ � �ðNÞ
� �2

( )
; ð21Þ

where the expression �
�P

i2N
ffiffiffiffiffiffi
ai�i

p

lðNÞ��ðNÞ
�2

is the Lagrange

multiplier of the capacity sharing version of the
problem where no option of capacity reduction
exists. The next Lemma elaborates on the structure
of the solution to equation (20) for S = N as follows
from the fact that at optimality, the derivatives of
/ið�Þ, see equation (19), for i 2 N, are all identical.
The proof is similar to the proof of Lemma 1 so we
skip it.

LEMMA 2. An optimal solution ðs�1; . . .; s�nÞ for problem
(20) for S = N, satisfies one of the following two cases:

• for all i 2 N, s�i \�si where s�i is defined in equa-
tion (15), or

• for all i 2 N, s�i � �si.

Moreover, there exists a unique optimal surplus capacity
assignment to lines, where line i 2 N is assigned a

surplus capacity of minfs�i ; �sig; and lðNÞ � P
i2N

minfs�i ; �sig units of surplus capacity are reduced.

The next theorem specifies explicitly the core cost
allocation ðxiÞni¼1 based on competitive equilibrium
prices, see equation (2).

THEOREM 4. The optimal cost ~cðNÞ of the grand coali-
tion and the competitive equilibrium prices cost allocation
ðxiÞni¼1 of the capacity sharing with surplus capacity
reduction game, ðN; ~cÞ; are given by:

~cðNÞ ¼ ðPi2N
ffiffiffiffiffiffiffiffi
ai�i

p Þ2
lðNÞ � �ðNÞ and

xi ¼ 2
ffiffiffiffiffiffiffiffi
�H

p ffiffiffiffiffiffiffiffi
ai�i

p
þHðli � �iÞ ; i 2 N:

ð22Þ

where Θ is the Lagrange multiplier of the equality con-
straint in the optimization problem of the grand coalition,
see equation (21).

PROOF. Recall the form of the competitive equili-
brium prices cost allocation given in equation (2),
that is, xi ¼ /iðs�i Þ � Hðs�i � ðli � �iÞÞ; i 2 N, where
Θ is the Lagrange multiplier of the equality con-
straint of the optimization problem of the grand
coalition. In the proof, we distinguish between two
cases and show that the core cost allocation of both
cases boil down to a single form that is based on Θ.

• If Θ < �1, or if Θ = �1 and lðNÞ � �ðNÞ ¼
Ri2N�si; then no reduction of capacity takes
place and the surplus capacity l(N) � k(N) is
distributed among the lines, so that line i 2 N
is allocated a surplus capacity s�i given in equa-

tion (15). By equation (21), H ¼ �
�P

i2N
ffiffiffiffiffiffi
ai�i

p

lðNÞ��ðNÞ
�2

and the long run expected congestion cost ~cðNÞ
is given in equation (16). Substituting these
values into the competitive equilibrium prices

formula gives xi ¼ ai�i
s�
i
�Hðs�i ;�ðli � �iÞÞ; i 2 N;

resulting in the core cost allocation given in
equation (22).

• If Θ = �1, and lðNÞ � �ðNÞ [ Ri2N�si; then
surplus capacity reduction takes place, and
line i 2 N is assigned a surplus capacity of
�si ¼

ffiffiffiffiffiffiffiffi
ai�i

p
; see equation (18). Thus, any vector

ðs�1; . . .; s�nÞ that satisfies s�i ¼ �si þ di where

di [ 0 and
Pn

i¼1 s
�
i ¼ lðNÞ � �ðNÞ; is optimal.

However, the surplus capacity assignment
ð�siÞ; i 2 N, is unique. The reduction level in
capacity is then

P
i2N di ¼ lðNÞ � �ðNÞ�P

i2N �si ¼ lðNÞ � �ðNÞ � P
i2N

ffiffiffiffiffiffiffiffi
ai�i

p
[ 0: The

competitive equilibrium prices cost allocation
vector is obtained by xi ¼ /ið�si þ diÞ�
ð�1Þð�si þ di � ðli � �iÞÞ ¼ /ið�siÞ � di þ ð�si þ
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di � ðli � �iÞÞ ¼ 2
ffiffiffiffiffiffiffiffi
ai�i

p � ðli � �iÞ;i 2 N, as
claimed in equation (22). The optimal cost ~cðNÞ
is equal to

P
i2N xi; as the competitive equilib-

rium prices cost allocation vector ðx1; . . .; xnÞ is
in the core, and thus it satisfies the efficiency
property. h

In the cost allocation specified in Theorem 4, there
are no free riders. The cost allocated to any line i 2 N
is increasing in its congestion cost rate ai and in its
demand rate �i, but is decreasing in the line’s contri-
bution capacity of li.

COMMENT 1. For the game where ai ¼ 1 for all i 2 N,
and with no option of capacity reduction, the vector equa-
tion (22) is shown in Timmer and Scheinhardt (2013), by
a different way, to be in the core.

The next example shows that the game G ¼ ðN;~cÞ
is not concave.

EXAMPLE 2. Using the queueing system described in
Example 1 with ai ¼ M sufficiently large for all i 2 N,
leading to never opting to save by reducing the
capacity under any coalition, results in a gamewhich is
not concave: The value of ~cðf1gÞ is large in comparison
with the value of any other coalition so concavity is
ruled out. Specifically, ~cðSÞ ¼ ~cðTÞ ¼ 0:04M where
~cðS \ TÞ ¼ ~cðf3gÞ ¼ 99M and ~cðS [ TÞ [ 0. Hence,
~cðS [ TÞþ ~cðS \ TÞ [ ~cðSÞ þ ~cðTÞ, showing that ~c is
not a concave set function.

4. Line Balancing of Parallel Loss Lines

In section 3, the unlimited buffers’ size case, is con-
sidered. In practice, however, it is quite common
that lines have finite buffers that are likely to cause
blocking of demand units that arrive to a line when
its buffer is full. Blocked units are assumed to be lost
forever. A line with a positive finite buffer size may
cause two types of cost: (1) the cost of units that
reach the line when its buffer is full and therefore
are lost, and (2) the cost of units due to having to
wait in the buffer. In section 5 we elaborate on possi-
ble future research directions on parallel line sys-
tems with general finite buffers. We note that from a
mathematical point of view, the long run expected
cost of lost units in a line with a finite buffer is a
function of the respective loss probability, that is, the
probability that the buffer is full. In this section we
focus on the simplest form of the loss probability
that applies to a line with no buffer, that is, a buffer
of size zero, as a first step toward a future analysis
of general, possibly line dependent, buffer sizes. In
the next two subsections we consider parallel M/M/

1/1 line systems where the lines have no buffers,
and therefore the cost associated with each line is
the cost of its lost units. Note that systems that con-
sist of parallel lines where each demand unit is
directed to a line that is idle, if such one exists, and
there is no space for waiting units, are called loss
systems. Thus, a systems of parallel M/M/1/1 lines
is also called a system of parallel loss lines. In this
section, the line balancing techniques described in
section 3 are applied and analyzed on parallel M/
M/1/1 line systems where the cost of lost units
replaces the congestion cost. The corresponding
cooperative games are shown to be reducible to mar-
ket games, proving that they are totally balanced. A
competitive equilibrium prices cost allocation is sug-
gested for each of these games. It is interesting to
note that in contrary section 3, in parallel loss lines,
all lines are open in the optimal solution to the
unobservable routing problem, where, some lines
might be closed in the optimal solution to the capac-
ity sharing problem.
For simplicity, we use the same notation as in sec-

tion 3 and follow the same assumptions, except that
the assumption �i \ li is not necessary anymore. As
the lines have no buffers, the demand that arrives to
line i 2 N when it is busy processing another unit, is
immediately discarded. Let bi be the cost of a unit lost
by line i 2 N, implying that its long run average cost

of lost units is
bi�

2
i

liþ�i
. The total cost of the system is

assumed to be additive in the cost of the individual
lines.

4.1. The Unobservable Routing and Outsourcing
Game
The optimal domestic unobservable routing policy in
a parallel loss line system minimizes the expected
average cost of lost units. Each line i 2 N is associated
with a cost bi [ 0 per unit lost by the line, an arrival

rate �i [ 0 and a capacity li [ 0. Thus, �i

�iþli
is the

loss probability,
�2
i

�iþli
is the loss rate of line i 2 N, and

the total long run expected cost of lost units of the sys-

tem is
P

i2N
�2
i

�iþli
. As we show below, it turns out that

for line-dependent lost unit cost parameters, no
closed form solution of the unobservable routing
problem exists. Thus, we first describe the solution for
the case where the lost unit cost parameters are identi-
cal for all lines in N, that is, bi ¼ b [ 0 for i 2 N, and
then we propose a solution method for line-depen-
dent costs too.
Under the assumption bi ¼ b [ 0 for all i 2 N, the

cost of lost units by line i that faces a demand rate of

z, is siðzÞ ¼ bz2

liþz. The unobservable routing problem

form for any coalition ∅ ⊆ S ⊆ N of parallel lines is:
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cðSÞ ¼ min
nX

i2S
siðziÞ :

X
i2S

zi ¼ �ðSÞ

and zi � 0 for i 2 S
o
:

ð23Þ

The unobservable routing problem of the grand
coalition is obtained by substituting S by N in equa-
tion (23). All lines are open at optimality as
limz!0

@siðzÞ
@z ¼ 0 for any li [ 0 and b > 0. We define a

game G = (N, c) where the set of players N is the set
of lines described above, and the characteristic func-
tion value for each coalition ∅ ⊆ S ⊆ N is defined in
equation (23).
Let Ψ be the Lagrange multiplier of the equality

constraint in equation (23) for S = N. Solving equa-
tion (23) for S = N, by using the KKT conditions,
result in

W ¼ b 1� lðNÞ
lðNÞ þ �ðNÞ
� �2

 !
: ð24Þ

Clearly, 0 < Ψ < b, as the chance of a unit of
demand to be lost is less than 1. In particular, the opti-
mal routing to each line is proportional to its capacity:

z�i ¼ �ðNÞ li
lðNÞ ; i 2 N: ð25Þ

In addition, at optimality, all lines share the same
fraction of busy time, which is equivalent to same
chance of a demand unit to be lost :

�ðNÞ
�ðNÞ þ lðNÞ :

The cost of the grand coalition c(N), defined by
equation (23) for S = N, is calculated by substituting
z�i for i 2 N, given in equation (25), into

P
i2N siðziÞ.

The cost of any coalition ∅ ⊆ S ⊂ N is given by

cðSÞ ¼ b�ðSÞ2
�ðSÞ þ lðSÞ : ð26Þ

Interestingly, c(S) is a function of li; i 2 S, only
through the sum l(S), though each line works indi-
vidually.
Next, we consider the respective cooperative game

(N, c), defined by the set of lines N, where the charac-
teristic function value of each coalition of lines
∅ ⊆ S ⊆ N is the expected long run cost of units lost
by the lines of S.

THEOREM 5. The unobservable routing parallel M/M/1/1
lines game (N, c), with the characteristic function defined
in equation (26), is a market game. The competitive
equilibrium prices cost allocation for this game is given by

xi¼ b�ðNÞ
ð�ðNÞþlðNÞÞ2 ½ð�ðNÞþ2lðNÞÞ�i��ðNÞli� ; i2N:

PROOF. The game (N, c) satisfies the requirements
of a market game due to the form of the characteris-
tic function, see equation (23), and to the fact that
functions sið�Þ in equation (23) are convex for i 2 N.
Therefore, the game is totally balanced. The compet-
itive equilibrium prices is obtained by substituting
z�i for i 2 N, see equation (25), and Ψ, see equations
(24), in (2). h

As can be seen from the core cost allocation of the
game as stated in Theorem 5, the cost allocated to any
line i, i 2 N, is linearly increasing in its demand rate
�i and linearly decreasing in its capacity li, where �i

has a greater weight in the cost allocation than li has.
In fact, by rearranging the coefficients of �i and li, we
can see that the cost is increasing linearly in the
demand rate �i and is decreasing in the surplus
capacity li � �i.
The same calculations for non-identical costs per

lost unit by the lines i 2 N, bi, reveal that the optimal
routing to line i, i 2 N, is a function of the respective
Lagrange multiplier Ψ, that depend on ðb1; . . .; bnÞ.
Thus, let ziðWÞ be the optimal routing to line i 2 N as
a function of the respective Lagrange multiplier Ψ.
Some basic algebra results in the following equations
that have no closed form solutions:

ziðWÞ ¼ li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ W

bi �W

s
� 1

 !
; i 2 N: ð27Þ

The next proposition provides some insight to the
line-dependent cost parameters optimization prob-
lem and the respective cooperative game:

PROPOSITION 2. The unobservable routing optimization
problem and the respective cooperative game in parallel
line loss systems with line dependent cost per unit lost,
satisfies the following properties:

1. There exists a unique optimal routing of demands
to the lines.

2. All lines of N are open at optimality.
3. No closed form expression for the optimal routing

of demands to line exists.
4. The game is a market game and therefore it is

totally balanced.

PROOF. Any optimal solution of the unobservable
routing in parallel line loss systems with line depen-
dent cost per unit lost, satisfies equation (27). Let
bmin ¼ minfbi : i 2 Ng.

1. The uniqueness of the solution follows from
the strict convexity of siðzÞ;i 2 N, that implies
the uniqueness of the Lagrange multiplier Ψ.
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2. We first show that W\ bmin. For that sake note
that the cost incurred by any unit of demand
that can be directed to any line, is strictly less
than bmin, as if this demand unit is routed to
the line that is associated with bmin, there is a
strictly positive chance that it will not get lost,
even if all the demand of rate k(N) is routed
to that same line. Thus, by equation (27),
ziðWÞ [ 0 for i 2 N.

3. In order to find the optimal routing, one needs
to solve for Ψ by solving the constraintP

i2N ziðWÞ ¼ �ðNÞ. This equation has no
closed form solution for general bi;i 2 N.

4. The proof that the game is a market game and
is totally balanced follows along the same
lines as the proof of Proposition 2. h

As stated in the third item of Proposition 2, in the
general case of line dependent lost costs, no closed
form solution for Ψ, and therefore neither for z�i ðWÞ,
i 2 N, exist. However, as ziðWÞ, i 2 N, are increasing
functions of Ψ, one can search for Ψ by using a tech-
nique such as bisection. Once that Ψ, and hence z�i ðWÞ,
i 2 N, are found, a core cost allocation based on com-
petitive equilibrium prices can be computed.
In the rest of this subsection we limit ourselves to

lines that have identical unit lost cost parameters
denoted by b > 0, as done at the beginning of this
subsection. In addition, we allow now for out-
sourcing demand at a cost of 1 per unit. The total
cost consists of the cost of lost units plus the out-
sourcing cost. Assuming that each line is assigned its
own dedicated supervisor, the supervisors might be
asked to cooperate by redirecting the incoming
demand to the lines and possibly to the external ser-
vice provider in order to minimize the steady state
expected cost. Let G ¼ ðN; ~cÞ be the cooperative
game that assigns to each coalition of lines
∅ ⊆ S ⊆ N, with given capacities li, i 2 S, the mini-
mum long run expected cost related to a total
demand rate of k(S) units, which are either out-
sourced or redirected to the lines of S.
If b ≤ 1 then the outsourcing cost of a unit is at least

as large as discarding the unit, implying that no unit
is outsourced, and the game G ¼ ðN; ~cÞ boils down
to the game (N, c) analyzed at the beginning of this
subsection, where no option of outsourcing existed.
Thus, in the sequel we then consider the case where
b > 1.
The marginal cost due to lost units increases in the

demand rate routed to the line. Let �zi be the maximum
demand rate routed to line i, i 2 N, before the out-
sourcing cost is cheaper than the expected loss cost on
the line. In order to compute �zi we solve for @siðzÞ

@z ¼ 1;
where siðzÞ ¼ bz2

liþz : Therefore, under the case that
b > 1,

�zi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
b

b� 1

s
� 1Þ li ; i 2 N: ð28Þ

Clearly, �zi increases with li, i 2 N. Let giðzÞ be the
optimal cost of line i for demand rate z:

giðzÞ ¼
bz2=ðli þ zÞ if z��zi; i 2 N

b�z2i =ðli þ �ziÞ þ ðz� �ziÞ otherwise.

8<
:

Thus, the long run expected cost of lost units and
outsourcing of any coalition ∅ ⊆ S ⊆ N in the game
G ¼ ðN; ~cÞ is given by

~cðSÞ ¼ minf
X
i2S

giðziÞ :
X
i2S

zi ¼ �ðSÞ

and zi � 0 for i 2 Sg:
ð29Þ

The cost of the grand coalition ~cðNÞ; is obtained by
substituting S by N in equation (29). Similarly to
equation (12), the Lagrange multiplier correspond-
ing to the equality constraint of problem ~cðNÞ; see
equation (29) for S = N, is equal to

H ¼ minfW; 1g; ð30Þ
where Ψ is defined in equation (24).

THEOREM 6. The unobservable routing with outsourcing
in parallel M/M/1/1 lines game, G ¼ ðN; ~cÞ; is a market
game.

PROOF. The proof is similar to that of Theorems 1
and 3. Based on the form of the characteristic func-
tion of the game, see equation (29), and in view of
the convexity of the functions gi; i 2 N, the game
G ¼ ðN; ~cÞ is a market game, see equation (1). h

Based on Theorem 6 and Condition 2 in section 2,
the game G ¼ ðN; ~cÞ is totally balanced, and the cost
allocation based on competitive equilibrium prices is
in its core.
Similarly to Lemmas 1 and 2, the solution ðz�i Þi2N of

~cðNÞ, see equation (29), satisfies that either for all
i 2 N, z�i \�zi or, for all i 2 N, z�i � �zi. Recall that Θ is
the Lagrange multiplier of the equality constraint in
equation (29) for S = N. If Θ < 1 outsourcing is not
used by the lines of N and z�i \�zi, for all i 2 N. Out-
sourcing is not used also if z�i ¼ �zi, for all i 2 N. If
outsourcing is not used, the routing rate to line i,
i 2 N, is given in equation (25). Outsourcing is used if
and only if �ðNÞ [ P

i2N �zi: In such a case, Θ = 1,
and the optimal routing to line i, i 2 N, is �zi where a
rate of �ðNÞ � P

i2N �zi units is outsourced. In view of
the strict convexity of the functions giðzÞ in z 2 ð0; �ziÞ,
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for i 2 N, at optimality, the routing rates to the lines
of N are unique.

THEOREM 7. The optimal cost of the grand coalition and
the competitive equilibrium prices core allocation ðxiÞni¼1

of the unobservable routing parallel M/M/1/1 lines with
outsourcing game, ðN; ~cÞ, are:
• If Θ < 1, or if Θ = 1 and �ðNÞ ¼ P

i2N �zi, then
no outsourcing takes place by the grand coalition
N, ~cðNÞ is given in equation (26) for S = N, and
the cost core allocation for i 2 N is given in
Theorem 5.

• Otherwise, Θ = 1 and �ðNÞ � P
i2N �zi [ 0,

where �zi;i 2 N, are defined in equation (28). A rate
of �ðNÞ � P

i2N �zi units is outsourced by N,
~cðNÞ ¼ �ðNÞ � lðNÞð ffiffiffi

b
p � ffiffiffiffiffiffiffiffiffiffiffiffiffi

b � 1
p Þ2, and

xi ¼ �i � li
� ffiffiffi

b
p

�
ffiffiffiffiffiffiffiffiffiffiffi
b� 1

p �2
; i 2 N: ð31Þ

PROOF. According to Theorem 6, the cost allocation
based on competitive equilibrium prices, whose gen-
eral form is, xi ¼ giðz�i Þ � Hðz�i � �iÞ for i 2 N, is in
the core of the game ðN; ~cÞ, where ðz�i Þni¼1 is the opti-
mal solution to equation (29) for S = N and Θ is the
respective Lagrange multiplier of its equality con-
straint, see equation (30).

• If Θ < 1, or if Θ = 1 and �ðNÞ ¼ P
i2N �zi, then

�ðNÞ�
X
i2N

�zi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
b

b� 1

s
� 1Þ lðNÞ;

and outsourcing is not used by N thus the results
obtained by analyzing the unobservable routing
game (N, c) at the beginning of this subsection, as
stated in the Theorem, apply.

• Otherwise, outsourcing is used, the arrival rate
to line i is �zi, i 2 N, and a rate of
�ðNÞ � P

i2N �zi [ 0 demand units is out-
sourced. Accordingly, ~cðNÞ is calculated. The
cost allocation in equation (31) is based on
competitive equilibrium prices and as the
game is a market game, see Theorem 6, it is in
its core. h

As all lines are open in the optimal solution, and
the cost allocation has the same form for all lines, no
free riding issue might occur here.
Note that if outsourcing is not used by N, the form

of ~cðNÞ is the same as the cost of a single line with
capacity l(N) and demand of k(N), and moreover it is
not additive is �i or li; i 2 N. Thus, guessing a cost
allocation that satisfies the efficiency constraint, that
is,
Pn

i¼1 xi ¼ ~cðNÞ, is not trivial, let alone guessing a
cost allocation that satisfies also the 2n � 2 stand-alone

constraints, one for each coalition. The identification
of the game as a market game allows us to easily get a
core cost allocation.
We conclude this subsection with an example that

shows that the unobservable routing with out-
sourcing game in loss systems is not concave:

EXAMPLE 3. Consider an instance where N = {1, 2, 3}
and bi ¼ 1 for i 2 N. Let, �1 ¼ 1, �2 ¼ 2, �3 ¼ 3,
l1 ¼ 5, l2 ¼ 3 and l3 ¼ 4. It is easy to check that
outsourcing is not used byN or by any coalition of lines
in N. Take S= {1, 2} and T = {1, 3}. Thus, S∩T = {1}

and S ∪ T = N. ~cðS [ TÞ ¼ 62

18 ¼ 2, ~cðS \ TÞ ¼ 12

6 ¼
0:1667, ~cðSÞ ¼ 32

11 ¼ 0:818182, and ~cðTÞ ¼ 42

13 ¼ 1:2307,

thus~cðS [ TÞ þ ~cðS \ TÞ [ ~cðSÞ þ ~cðTÞ, proving that
the game is not concave, see Condition 1 in section 2.

4.2. The Capacity Sharing and Reduction of
Capacity Game
The last line balancing game that we introduce is the
capacity sharing with possible capacity reduction in
a system that consists of parallel M/M/1/1 lines.
The total cost of a coalition in this game is composed
of the cost of loss units plus the possible savings due
to capacity reduction. As discussed in section 3.2,
the reduced capacity saves the associated mainte-
nance expenses and possibly is rented to other firms
for some profit. We use the same notation as in sec-
tion 4.1, but here, we solve the more general case,
that of line dependent cost per unit lost. First, we
derive the optimal domestic processing policy that
minimizes the long run expected average cost of lost
units. The cost due to lost units for line i 2 N is
given by fiðyÞ ¼ bi�

2
i

yþ�i
, where the variable y ≥ 0

denotes the capacity assigned to line i 2 N and bi is
the cost per unit lost at line i 2 N. The optimal total
cost of lost units of any coalition S∅ ⊆ ⊆ N over all
policies that reassign the capacity l(S) to the lines of
S where each line i 2 S faces a demand rate of �i is
given by

cðSÞ ¼ minf
X
i2S

fiðyiÞ :
X
i2S

yi ¼ lðSÞ

and yi � 0 for i 2 Sg:
ð32Þ

The cost of the grand coalition c(N) is computed by
substituting S by N in equation (32). Let y�i be the
optimal capacity of line i 2 N. Under the optimal
policy, lines with a low cost per unit lost are not
necessarily open as their capacity can be used by
other lines whose cost of lost units is more expen-
sive. Without loss of generality, the lines are
assumed to be indexed in a non-increasing order of
bi, that is, b1 � b2 . . . � bn. We prove that the long
run average cost of lost units is minimized by
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opening lines f1; . . .; i�g, where i� is of the following
form:

i� ¼ min i 2 N : biþ1 �
ðPi

j¼1 �i

ffiffiffiffi
bi

p Þ2

ðlðNÞ þPi
j¼1 �iÞ2

( )
: ð33Þ

THEOREM 8. Consider a capacity sharing parallel M/M/
1/1 lines system where the objective is to minimize the
long run average cost of lost units by allocating the
capacity l(N) among the lines of N. The optimal capacity
allocation is given by y�i ¼ 0 for i [ i� (where i� is
given in equation (33)), and:

y�i ¼ lðNÞþ
Xi�
k¼1

�k
�i

ffiffiffiffi
bi

p
Pi�

k¼1�k

ffiffiffiffiffi
bk

p ��i for i� i� :

! 
ð34Þ

In addition, the cost of the grand coalition is given by

cðNÞ ¼ ðPi�
k¼1 �k

ffiffiffiffiffi
bk

p Þ2
lðNÞ þPi�

k¼1 �k

þ
Xn

k¼i�þ1

bk�k ; ð35Þ

and the Lagrange multiplier of the equality constraint of
equation (32) for S = N is given by

W ¼ � ðPi�
k¼1 �k

ffiffiffiffiffi
bk

p Þ2
ðlðNÞ þPi�

k¼1 �kÞ2
: ð36Þ

PROOF. The proof follows by solving the problem
min

P
i2N fiðyiÞ under the constraint

P
i2N yi ¼ lðNÞ

and yi � 0 for i 2 N. Suppose that initially all lines
of N have zero capacity, and gradually we allocate
them capacities. If line i is closed then it costs bi�i

for losing all its demand. If line i 2 N gets an
infinitesimal capacity, the marginal cost is
dfiðyiÞ
dyi

jyi¼0 ¼ � bi�
2
i

ðyiþ�iÞ2 jyi¼0 ¼ �bi \ 0. Clearly, allocat-

ing additional capacity to line i 2 N is profitable as
fewer demand units of the line are lost. The more
capacity is assigned to line i 2 N, the lower is its
marginal profit from the loss of less units. h

Starting with lines with no capacities, line 1 is the
first to be allocated capacity until either, the total
capacity l(N) runs out or its derivative reaches �b2. If
the first case occurs, only line 1 is open at optimality

and the cost is f1ðlðNÞÞ þ Pn
k¼2 bk�k: If the second

case occurs, continue to allocate capacities to lines 1
and 2 simultaneously and gradually while keeping
df1ðy1Þ
dy1

equal to df2ðy2Þ
dy2

until either, the total capacity l(N)

runs out, or the derivatives reach the value �b3. We
continue this process of allocating capacity until all
the capacity l(N) is allocated. The explicit solution is
obtained by solving the KKT conditions of problem

(32) for S = N and identifying the Lagrange multiplier
Ψ of the equality constraint

P
i2N yi ¼ lðNÞ. In fact, Ψ

is equal to the final value of the derivative of all open
lines, that is, the optimal capacity assignment should

be such that for each open line i, d
dyi

� bi�
2
i

yiþ�i

�jyi¼y�
i
¼ W

and for each closed line i, the derivative at y�i ¼ 0 is
�bi � W: By solving the conditions, i� defined in
equation (33), returns the last open line, and for each

open line i, y�i ¼
ffiffiffi
bi

p
�iffiffiffiffiffiffi�W

p � �i; where Ψ is given in equa-

tion (36). As for each open line i, �bi \W; the capacity
allocated to line i, namely y�i ; is positive. By substitut-
ing the value of Ψ, we get y�i , see equation (34), and by
substituting y�i for i 2 N, into the cost functionP

i2N fiðy�i Þ;we get c(N), see equation (35).
If bi ¼ b for all i 2 N, then all lines are open, and

each line is allocated a capacity that is proportional to

its demand rate, that is, y�i ¼ lðNÞ �i
�ðNÞ. In this case,

the proportion of time that each line is busy, namely,
�ðNÞ

�ðNÞþlðNÞ ; and the optimal cost rate, b �2ðNÞ
�ðNÞþlðNÞ, coin-

cide with the corresponding terms in the solution of
the unobservable routing in parallel M/M/1/1/
lines, analyzed in subsection 4.1.
Next we consider a system of parallel M/M/1/1

lines with the option of capacity reduction in return
for savings of 1 per unit of capacity reduced. Let �yi be
the maximum capacity allocated to line i 2 N before
the capacity reduction option becomes more prof-
itable. A line i 2 N is associated with a positive �yi if

and only if dfiðyiÞ
dyi

jyi¼0 ¼ �bi\� 1. Some basic algebra

gives
�yi ¼ maxf0; �i

� ffiffiffiffi
bi

p
� 1
�g:

The cost of line i 2 N as a function of its capacity
y ≥ 0 is given by

/iðyÞ ¼ bi�
2
i =
�
yþ �i

�
if y� �yi

bi�
2
i =
�
�yi þ �i

�� ðy� �yiÞ otherwise

	
ð37Þ

Let G ¼ ðN; ~cÞ be the respective cooperative game
on a parallelM/M/1/1 lines system, where line i 2 N
is associated with a demand rate �i; and a total capac-
ity of l(N) is allocated to the lines of N, with possible
capacity reduction. The respective characteristic func-
tion value of the grand coalition given in equation (38)
returns the minimum long run expected cost of lost
units minus savings due to capacity reduction over all
feasible policies:

~cðSÞ¼min
nX

i2S
/iðyiÞ :

X
i2S

yi ¼ lðSÞ and yi�0 for i2 S
o
:

ð38Þ
The cost of the grand coalition ~cðNÞ is found by sub-
stituting S by N in equation (38).
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THEOREM 9. The capacity sharing with capacity reduc-
tion in parallel M/M/1/1 lines game G ¼ ðN; ~cÞ, where
the characteristic function ~c is defined equation (38), is a
market game.

PROOF. The Theorem follows directly from the char-
acteristic function, and the convexity of the func-
tions /iðyÞ; i 2 N, see equation (37). h

In view of Theorem 9 the game is totally balanced,
and the cost allocation based on competitive equilib-
rium prices is in its core. Let Θ be the Lagrange multi-
plier of the equality constraint in equation (38) for
S = N. Clearly, Θ < 0 as increasing the capacity of the
system may only reduce the total cost. If the option of
capacity reduction is not used, then Θ = Ψ < � 1, and
otherwise Θ = �1. More specifically,

H ¼ min

� 1; W

�
; ð39Þ

where Ψ is the Lagrange multiplier of the problem
with no option of capacity reduction, see equa-
tion (36). Clearly, the optimal solution to the prob-
lem with the additional option of capacity reduction
is such that all lines i 2 N with bi \ 1, are shut as
the marginal savings of opening such a line is bi,
which is lower than the marginal revenue of reduc-
ing the capacity. In particular, if b1 � 1 then all lines
are shut, all demand is lost, all capacity is redu-
ced, and the long run expected cost is

P
i2N bi�i �

lðNÞ. Otherwise, let i0 ¼ minfi 2 N : bi � 1g � 1:
Thus, line i 2 N is closed if and only if i [

minfi�; i0g ¼def i0, where i� is defined in equation (33).
Similarly to the other games described in this study,

at optimality, either for all i � i0;y�i \ �yi or, for all

i � i0;y�i � �yi.
As is demonstrated in Theorem 10, surprisingly,

this game has a unique form of the equilibrium
competitive prices cost allocation that is indepen-
dent of whether or not reduction of capacity takes
place.

THEOREM 10. The cost of the grand coalition and the
competitive equilibrium prices core allocation ðxiÞni¼1 of
the capacity sharing parallel M/M/1/1 lines with capacity
reduction game ðN; ~cÞ; are given by:

~cðNÞ ¼ 2
ffiffiffiffiffiffiffiffi
�H

p Xio
i¼1

�i

ffiffiffiffi
bi

p
þ H

Xio
i¼1

�i þ lðNÞ
 !

þ
Xn
ioþ1

bi�i;

where H ¼ min

� 1; W

�
with Ψ defined in equa-

tion (36).

xi ¼ 2�i

ffiffiffiffiffiffiffiffiffiffiffiffi
�Hbi

p
þ ð�i þ liÞH for i� io;

xi ¼ �ibi þHli for io\i� n:

PROOF. The proof follows directly from the above
analysis, the fact that the game is a market game,
see Theorem 9, and the form of an competitive equi-
librium prices cost allocation, see equation (2). h

We note that in this problem, at optimality, some
lines might be open and the others might be closed, as
in subsection 3.1. However, here, as we explain
below, the competitive equilibrium prices core alloca-
tion of line i 2 N, given in Theorem 10, which is a
linear function of both the demand rate �i and the ser-
vice rate li, of the line, does not seem to cause adverse
feelings of free riding as we encountered in subsec-
tion 3.1. Each line is compensated for all its capacity
at the rate of |Θ|, see equation (39). A close line
i 2 N, pays for the loss of all of its demand a rate of bi
per unit, that is, it pays a rate of bi�i: An open line

j 2 N, pays for the loss of demand �jð2
ffiffiffiffiffiffiffiffiffiffiffiffi
�Hbj

q
þ

HÞ\ bj�j, meaning that it pays the loss fee for just a

fraction of its demand.
As we have shown for the other games, this last

game is also not concave. In fact, Example 3 shows
that the capacity sharing loss system with capacity
reduction game is not concave for the case that bi ¼ b
for i = 1, 2, 3.

5. Conclusion

The area of line balancing is fundamental in opera-
tions and service management. It allows a firm to
increase its profit and improve its efficiency. It is well
known that in practice, various causes may stand as
obstacles in achieving a stable full cooperation among
various units in a firm. One way that the management
may mitigate these obstacles and encourage full coop-
eration is by displaying a scheme that allocates the
total cost or rewards among the cooperating units so
that both the strengthes and deficiencies of each unit,
are reflected by the scheme. This can be done by using
the theory of cooperative games and the various cost
allocation concepts that have been proposed in the
literature. In this study, we focus on cost allocation
schemes that guarantee full cooperation and the
stability of the grand coalition, namely, no unit or
coalition of units has an incentive to abandon the
grand coalition. We consider here four line balancing
games that are reducible to market games, and as
such we could point out for each game a specific core
cost allocation based on competitive equilibrium pri-
ces. The competitive equilibrium prices cost allocation
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assigns to each player i 2 N the cost that player i faces
after applying an optimal assignment of the players’
initial resources among themselves, minus the eco-
nomic value of the additional resources that are
assigned to player i, where each resource type is eval-
uated by its corresponding Lagrange multiplier. We
note that, in general, market games deal with any
number of resources. In this article, all the line balanc-
ing games that we consider, have a single resource
that is reallocated among the players. In the general
case, however, player i may get more units of some
resources, where simultaneously, the player may be
asked to transfer some (or all of the) units of other
resources that she owns to the other players. By defi-
nition, this cost allocation sounds fair, and indeed it is
proved to be in the core of the game, that is, no coali-
tion ∅ ⊆ S ⊆ N can claim that it can pay less by aban-
doning the grand coalition. Still, it does not mean that
all players will be satisfied by being charged accord-
ing to their competitive equilibrium prices. See our
discussion in subsection 3.1 about possible adverse
feelings on free riding of supervisors of lines that are
closed at optimality.
As discussed in section 1, in practice, lines usually

have buffers of finite size. In production processes,
the buffers are usually finite due to space limitations
that result from the cost of the space, the cost of
holding units in a buffer, or the opportunity cost of
financing WIP within a buffer, see [7]. Similarly, in
service systems, the buffers’ size are determined by
capacity limitations that are the result of either lim-
ited space, or of a constrained technology, e.g., the
number of IP IVR ports in a call center that are used
for queueing purposes. A general parallel line sys-
tem may have line dependent buffer sizes. The cost
of a line with a positive finite-size buffer consists of
both the congestion cost and the cost of demand lost.
In a general system each line i 2 N may be associ-
ated with three types of resources (1) its buffer size
bi; where 0 � bi � 1; (2) its demand rate �i � 0 and
(3) its service capacity rate li � 0: In addition, each
such line is associated with two cost parameters (i) a
cost bi � 0 per unit lost, which is applicable if
bi \1; and (ii) a congestion cost rate ai � 0; which
is applicable if bi [ 0: By considering the redistribu-
tion of the at most three resources listed above, there
exist seven variants of line balancing games on par-
allel line systems. The study of such systems can
help managers to improve their systems by applying
line balancing methods while being sensitive to
designing fair cost/bonus allocation schemes that
retain the stability of the whole system and the

continuing cooperation among the heads of the dif-
ferent units in the firm.
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